

Copyright © DENSO CORPORATION, 2000

All rights reserved. No part of this publication may be reproduced in any form or by any means
without permission in writing from the publisher.

Specifications are subject to change without prior notice.

All products and company hames mentioned in this manual are trademarks or registered trade-
marks of their respective holders.

BHT, CU, BHT-protocol, BHT-Ir protocol, and BHT-BASIC are trademarks of DENSO CORPO-
RATION.

Preface

This manual describes the syntax and development procedure of BHT-BASIC 3.5 which is a
programming language for developing application programs of the BHT-3000/BHT-4000/BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 Bar Code Handy Terminals.

It is intended for programmers who already have some experience in BASIC programming.
For the basic description about the BASIC language, refer to documentations concerning

Microsoft BASIC® or QuickBASIC®. For the details about Windows™, refer to the Microsoft
Windows documentations.

How thisbook is organized

This manual is made up of 18 chapters and appendices.

Chapter 1. Software Overview for theBHT

Surveys the software structure of the BHT and introduces the programs integrated in the ROM
and the language features of BHT-BASIC.

Chapter 2. Development Environment and Procedures

Describes hardware and software required for developing application programs and the devel-
oping procedure.

Chapter 3. Program Structure

Summarizes the basic structure of programs and programming techniques, e.g., program
chaining and included files.

Chapter 4. Basic Program Elements

Describes the format of a program line, usable characters, and labels.

Chapter 5. Data Types

Covers data which the programs can handle, by classifying them into data types--constants
and variables.

Chapter 6. Expressionsand Operators

Surveys the expressions and operators to be used for calculation and for handling concate-
nated character strings. The operators connect, manipulate, and compare the expressions.

Chapter 7. 1/0 Facilities

Defines I/O facilities and describes output to the LCD, input from the keyboard, and control for
the timer, beeper, and other 1/0s by the statements and functions.

Chapter 8. Files
Describes data files and device files.

Chapter 9. Event Polling and Error/Event Trapping

Describes the event polling and two types of traps: error traps and event (of keystroke) traps
supported by BHT-BASIC.

Chapter 10. Sleep Function
Describes the sleep function.

Chapter 11. Resume Function

Describes the resume function.

Chapter 12. Power-related Features

Describes low battery warning, the prohibited simultaneous operation of the beeper/illumina-
tion LED (or laser source)/LCD backlight, the wakeup, and remote wakeup.

Chapter 13. LCD Backlight Function
Describes the LCD backlight function

Chapter 14. Satement Reference

Describes the statements available in BHT-BASIC, including the error codes and messages.

Chapter 15. Function Reference

Describes the functions available in BHT-BASIC, including the error codes and messages.

Chapter 16. Extended Functions

Describes the extended functions newly added in the BHT-7000/BHT-7500.

Chapter 17. Spread Spectrum Communications
(available with the BHT-75009)

Summarizes the spread spectrum communication system that may be configured with the
BHT-7500S. This chapter also explains wireless-related statements and the function library

SS.FN3to be used in wireless communications programming.

Chapter 18. TCP/IP

Surveys the socket application program interface (API) and FTP client. This chapter also
describes the two function libraries--SOCKET.FN3 and FTP.FN3, which are built in the BHT-
7500S for providing BHT-BASIC programs with access to a subset of the TCP/IP family of pro-

tocols over wireless communications devices.

Appendix A:
B:

A & =

I OTMMmMmOO

Error Codesand Error M essages

Reserved Words

Character Sets

/0 Ports

Key Number Assignment on the Keyboard
Memory Area

Handling Space Charactersin Downloading
Programming Notes

Program Samples

Quick Reference for Satementsand Functions

: Unsupported Satements and Functions

= Notational Conventions Used in This Book
Several notational conventions are used in this book for the sake of clarity.

1.

Reserved words are printed in UPPERCASE. These are BHT-BASIC's keywords. You
should not use them as label names or variable names.

Example: CHAI N, GOSUB, and ABS

Parameters or arguments which should be specified in the statements or functions are
expressed in italics.

Example: char acode and ondur ati on

Items enclosed in square brackets [] are optional, which can be omitted.

Example: [commonvari abl e]

Items enclosed in braces { } and separated by vertical bars | represent alternative items.
You should choose either item.

Example: CURSOR { ON| OFF}

An ellipsis . . . indicates that you can code the previous item described in one line two or
more times in succession.

Example: READ vari abl e[, vari able...]

Hexadecimal values are followed by h. In many cases, hexadecimal values are
enclosed with parentheses and preceded by decimal values.

Example: 65 (41h) and 255 (FFh)

In program description, hexadecimal values are preceded by &H.

Example: &H41 and &HFF

Programs make no distinction between uppercase and lowercase letters, except for
character string data.

The uppercase-lowercase distinction used in this manual is intended to increase the
legibility of the statements. For example, reserved words are expressed in uppercase;
label names and variable names in lowercase. In practical programming, it is not nec-
essary to observe the distinction rules used in this manual.

The examples below are regarded as the same.

Example 1. &HFFFF, &f fff, and &FFFF
Example 2. AANDB, a and b, anda ANDb
Example 3: PRI NT STR$(12),Print Str$(12),andprint str$(12)

m |consUsed in This Book

[] Statements and functions unique to BHT-BASIC.

m Syntax for the Statement Reference and Function Reference
The syntax in programming is expressed as shown in the example below.
For the | NPUT statement
Syntax: INPUT [;]["prompt”{,]|;}]variable
According to the above syntax, all of the following samples are correct:

| NPUT; keydat a
| NPUT keydat a
I NPUT "input =", keydata
I NPUT; "i nput ="; keydat a

m Technical TermsUsed in This Manual

Compiler and Interpreter
The BHT-BASIC Compiler, which is a development tool, is expressed as Compiler.
The BHT-BASIC Interpreter, which runs in the BHT, is expressed as Interpreter.
Source Program and Object Program (User Program)

Generally, a source program is translated into an object program by a compiler. This
manual calls an object program a user program.

Easy Pack

Easy Pack is an application program suitable for data collection. Listed below are the
versions and memories in which Easy Pack is to be stored. For details about each ver-
sion of Easy Pack, refer to the respective manual shown below.

Version of Easy

BHT Series Pack Memory Refer to:
BHT-3000 Easy Pack 4.1 ROM "BHT-3000 User’s Manual"
BHT-4000 Easy Pack 4.2 User area of RAM "BHT-4000 User's Manual"
BHT-5000 Easy Pack Pro User area of RAM "Easy Pack Pro User’'s Manual"
BHT-6000 or flash ROM
BHT-6500

BHT and CU

This manual expresses the BHT-3000/BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-
7000/BHT-7500 as BHT. To designate each of them, it expresses the series or model
as listed below.

Series Model RAM Capacity Flash ROM Capacity
BHT-3000 BHT-3041 128KB —
BHT-3045 512KB —
BHT-4000 BHT-4082 256KB —
BHT-4086 768KB —
BHT-4089 2048KB —
BHT-5000 BHT-5071 128KB 512KB
BHT-5075 512KB 512KB
BHT-5077 1024KB 512KB
BHT-5079 2048KB 512KB
BHT-6000 BHT-6045 512KB 512KB
BHT-6047 512KB 1024KB
BHT-6049 512KB 2048KB
BHT-6500 BHT-6505 512KB 512KB
BHT-6509 2048KB 512KB
BHT-7000 BHT-7064 512KB 2048KB
BHT-7500 BHT-7508 1024KB 8192KB
BHT-7508S 512KB 8192KB

In the same way as above, the CU-3000/CU-4000/CU-5000/CU-6000/CU-7000 are
expressed as CU.

Vi

m Abbreviations

ANK AlphaNumerics and Katakana

BASIC Beginners All purpose Symbolic Instruction Code
BCC Block Check Character

BHT Bar code Handy Terminal

CTS (CS) Clear To Send (RS-232C signal control line)
CuU Communications Unit

I/F Interface

I/0 Input/Output

LCD Liquid Crystal Display

LED Light-Emitting Diode

MOD Modulo

MS-DOS Microsoft-Disk Operating System

RAM Random Access Memory

ROM Read Only Memory

RTS (RS) Request To Send (RS-232C signal control line)
VRAM Video RAM

m Related Publications

For BHT-3000 BHT-3000 User’'s Manual
For BHT-4000 BHT-4000 User's Manual
For BHT-5000 BHT-5000 User's Manual
Multilink Transfer Utility Guide
For BHT-6000 BHT-6000 User’'s Manual
For BHT-6500 BHT-6500 User’'s Manual
For BHT-7000 BHT-7000 User's Manual
For BHT-7500 BHT-7500 User’s Manual
For all of the BHTs Transfer Utility Guide

For BHT-6000/BHT-6500/BHT-7000/BHT-7500 Ir-Transfer Utility C Guide
Ir-Transfer Utility E Guide

For BHT-4000R/BHT-5000R BHT-BASIC Programmer’s Manual
For Radio Communications
m Screen Indication

The lettering in the screens of the BHT and host computer in this manual is a little differ-
ent from that in the actual screens. File names used are only for description purpose,
so they will not appear if you have not downloaded files having those names to the BHT.

vii

Chapter 1
Software Overview for theBHT

11

1.2

1.3

CONTENTS

SOWATE OVEIVIEW. ... eiiiiieie ettt ettee et s e et e e st e e st e e saeeeansaeeenes 2
1.1.1 Software Structure of the BHTcooiiiiiiiiiiiie e 2
1.1.2 Overview of BHT-BASIC ..ot 7
BHT-BASIC.....eei ettt e e st e e ste e snbe e e snte e e enaeesnreeas 8
L1.2. 1 FRALUIES ...ttt ettt e e e s e e e e annbe s 8
1.2.2 What's New in BHT-BASIC 3.5 Upgraded from BHT-BASIC 3.07....... 9

I O o o 1= PSR 9

[2] StAEMENTSoiiiiiiiiiiieeee et 9
Program Development and EXECULIONcooiiviiiiiireiiiee e 11
1.3 1 COMPIIET .t 11
R 0 [11T o] =] = S PP PP PP PP PPPTPTP R RTRTRPIN 11

1.1 Software Overview

1.1.1 Software Sructureof theBHT

The structure of software for the BHT is shown below.

m BHT-3000
A ~_ Application
"""""""""""""""""""""""""" programs
| Easy Pack | ROM
A |
| System Mode
A
System
| BHT-BASIC Interpreter | programs
A
| Drivers |

|| Hardware ||

When downloaded, user programs will be stored in the RAM. Other programs reside in the
ROM.

Chapter 1. Software Overview for the BHT

m BHT-4000

User programs <l<":,>} User data ?AM Application
’ (User area) programs

RAM (System area)

| System Mode

| BHT-BASIC Interpreter | System
% programs

| Drivers

| ROM system |

T —

]

| [Hardware | |

Of all the system programs, the drivers, BHT-BASIC Interpreter, and System Mode will be
stored in the system area of the RAM when downloaded. The ROM system resides in the
ROM.

User programs downloaded will be stored in the user area of the RAM.

(For the downloading procedure of the system programs, refer to the "BHT-4000 User’s Man-
ual.")

m BHT-5000/BHT-6000/BHT-6500

RAM or flash ROM]
User programs %@% User data | 'sﬂg'r‘;?;'son
A
| Extension libraries |
----------------------- e
Flash ROM
| System Mode |
’ System
A programs
| BHT-BASIC Interpreter |
/ \ Y
| Font files | | Drivers |
|| Hardware ||

The BHT-5000/BHT-6000/BHT-6500 has a flash ROM and RAM. In the flash ROM reside the
drivers, BHT-BASIC Interpreter, System Mode, and font files. Extension libraries and user pro-
grams will be stored in the user area of the RAM (or in the flash ROM) when downloaded.

NOTE Unlike the RAM, the flash ROM requires no power for retaining stored files. There-

—— fore, leaving the BHT with no rechargeable battery cartridge or dry batteries loaded
will not damage those files stored in the flash ROM while it may damage those files
inthe RAM.

The flash ROM has the following restrictions so that you cannot use it like the RAM:

» The frequency of rewriting operationsis limited to approx. 100,000 times.
* In application programs, you cannot write data onto the flash ROM.

Chapter 1. Software Overview for the BHT

m BHT-7000/BHT-7500

Flash ROM
User programs %@% User data ’Sﬁ)‘gg‘;‘g“
A
Extension libraries
and extended functions
-
| System Mode
i System
A programs
| BHT-BASIC Interpreter |
/ \ Y
| Font files | | Drivers |
|| Hardware ||

The BHT-7000/BHT-7500 has a flash ROM and RAM. All of the system programs, user pro-
grams, extension libraries, and extended functions are stored in the flash ROM. The RAM is
used to run those programs efficiently.

O System Programs

Drivers

A set of programs which is called by the BHT-BASIC Interpreter or System Mode and
directly controls the hardware. The drivers include the Decoder Software used for bar
code reading.

BHT-BASIC Interpreter

Interprets and executes user programs and Easy Pack commands.

System Mode
Sets up the execution environment for user programs or Easy Pack.

ROM System (BHT-4000)
Required for downloading the system programs listed above to the BHT-4000.

Extension Library (BHT-5000/BHT-6000/BH T-6500/BH T-7000/BH T-7500)
A set of programs which extends the function of the BHT-BASIC to enable the following:
« Displaying ruled lines on the LCD
» Transmitting/receiving files by using the X-MODEM and Y-MODEM protocols

These extension programs are stored in files having an FN3 extension, in each file per
function. You should download a xxxx.FN3 file containing the necessary function from
the BHT-BASIC Extension Library (sold separately) to the user area.

Extended Functions (BHT-7000/BHT-7500)

A set of functions integrated in system programs, which extends the function of the
BHT-BASIC. No downloading is required for those functions since they are integrated
in System. For details, refer to Chapter 16, "Extended Functions."

NOTE The extension libraries for the BHT-5000/BHT-6000/BHT-6500 are different from
—— thosefor the BHT-7000/BHT-7500. Use extension libraries suited for your BHT.

O Application Programs

User Programs
User-written object programs which are ready to be executed.

Easy Pack
Application program used for bar code data collection.

Chapter 1. Software Overview for the BHT

1.1.2 Overview of BHT-BASIC

With BHT-BASIC, you can customize application programs for meeting your specific needs as
given below.

Retrieving products nhames, price information, etc. in a master file.
Making a checking procedure more reliable with check digits in bar code reading.

Improving the checking procedure by checking the number of digits entered from the
keyboard.

Calculating (e.g., subtotals and totals).

Supporting file transmission protocols (or transmission procedures) suitable for host
computers and connected modems.

Downloading master files.

Supporting a program capable of transferring control to several job programs depending
upon conditions.

1.2 BHT-BASIC

1.2.1 Features

BHT-BASIC is designed as an optimal programming language in making application programs
for the bar code handy terminal BHT, and to enable efficient program development, with the fol-
lowing features:

m Syntax Similar to Microsoft™ BASIC

BHT-BASIC uses the BASIC language which is the most widely used one among the high-level
languages. The syntax of BHT-BASIC is as close as possible to that used in Microsoft BASIC
(MS-BASIC).

m NoLineNumbersRequired

BHT-BASIC requires no line number notation. You can write a branch statement with a label
instead of a line number so that it is possible to use cut and paste functions with an editor in
developing source programs, thus facilitating the use of program modules for development of
other programs.

m Program Development in Windows95/98 or WindowsNT/Windows2000

You may develop programs with BHT-BASIC on those computers operating on Windows95/98
or WindowsNT4.0/Windows2000.

m Advantages of the Dedicated Compiler

The dedicated compiler outputs debugging information including cross reference lists of vari-
ables and labels, enabling the efficient debugging in program development.

The Compiler assigns variables to fixed addresses so that it is not necessary for the Interpreter
to allocate or release memories when executing user programs, making the execution time
shorter.

m Program Compression by the Dedicated Compiler
The Compiler compresses a source program into the intermediate language to produce an
object program (a user program).

(When a compiled user program is downloaded to the BHT, the BHT packs a pair of ASCII
bytes into a single byte by converting each byte into a 4-bit hexadecimal number for more effi-
cient use of the memory area in the BHT.)

Chapter 1. Software Overview for the BHT

1.2.2 What’s New in BHT-BASIC 3.5 Upgraded from
BHT-BASIC 3.0?

Based on BHT-BASIC 3.0, BHT-BASIC 3.5 newly supports the following functions:

[1] Compiler

m Object linkage editor, Linker

While BHT-BASIC 3.0 Compiler compiles a single source program into a single user program,
BHT-BASIC 3.5 Compiler can convert more than one source program into individual object
programs (intermediate code files for a user program) and then combine them together
through Linker to build a user program. With Linker, you may use existing object programs for
development of user programs.

m Libraries

The Librarian allows you to build libraries out of object files resulting from compiling, which
makes it easier to use existing application programs. This facilitates the use of existing appli-
cation programs for development of other programs.

m Projects

BHT-BASIC 3.5 has added a concept of Project that makes it easier to use multiple source pro-
grams for producing a user program.

[2] Satements

m Added statements

Based on BHT-BASIC 3.0, BHT-BASIC 3.5 newly supports several statements for making dis-
tinction between global variables and local variables, and for defining functions and constants.

Newly added statements

CALL Calls a SUB function in addition to an FN3 function.

CONST Defines symbolic constants to be replaced with labels.

DECLARE Declares user-created function FUNCTI ON or SUB exter-
nally defined.

FUNCTION...END FUNCTION Names and defines user-created function FUNCTI ON.

GLOBAL Declares one or more work variables or register variables
defined in a file, as global variables.

PRIVATE Declares one or more work variables or register variables
defined in a file, as local variables.

SUB...END SUB Names and defines user-created function SUB.

m Defining and declaring user-defined functions more easily

BHT-BASIC 3.5 has added FUNCTI ON...END FUNCTI ON, SUB...END SUB, and DECLARE
statements. With the former two, you may easily define your own functions—FUNCTI ON and
SUB. With the latter one, you may declare FUNCTI ON and SUB functions which are defined
in any other source files.

m Distinction between local variables and global variables
(defined by PRIVATE and GLOBAL statements)

BHT-BASIC 3.5 makes distinction between local variables and global variables to restrict the
access to the variables.

Both local variables and global variables may be defined for work variables and register vari-
ables. Local variables can only be accessed by any routine in the file where that variable is
defined. Global variables can be accessed by any routine in a program.

However, variables used without declaration inside FUNCTI ON or SUB function are regarded
as local variables and can be accessed only within that function.

Since local variables are restricted in access, you can define them with the same name in dif-
ferent files.

m Defining constants
BHT-BASIC 3.5 can define constants.

10

Chapter 1. Software Overview for the BHT

1.3 Program Development and Execu-
tion

BHT-BASIC consists of Compiler and Interpreter.

1.3.1 Compiler

BHT-BASIC 3.5 Compiler consists of the following Compiler, Linker and Librarian:
s Compiler

Compiler, which is one of the development tools, compiles source programs written on a PC
into the resulting "object files."

It checks syntax of source programs during compilation and makes an error file if any syntax
error is found.

m Linker

Linker, which is one of the development tools, combines object files (translated by Compiler)
together to build a "user program" in the intermediate language.

If linking does not end normally, Linker makes an error file.
m Librarian

Librarian, which is one of the development tools, builds "library files" out of object files trans-
lated by Compiler.

If Librarian does not end normally, it makes an error file.

1.3.2 Interpreter

Interpreter interprets and executes a user program downloaded to the BHT, statement by state-
ment.

11

Chapter 2

Development Environment and Procedures

CONTENTS

2.1 Overview of Development ENVIFONMENTccceeiiieiiieeeiiee e 14
2.1.1 Required HardWAarecooovieiiiieiiieee e 14
2.1.2 Required SOfWANE..........eviiiiieiiie it 15

2.2 Overview of Developing ProCeAUIESc.couiiieiiieeiiee e sieee e 16
2.2.1 Developing ProCeAUIEScoiiiiie e eiiee ettt 16
2.2.2 Functions of BHT-BASIC 3.5........ooiiiiiiiiiieeeeee e 17

2.3 WIiting & SOUICE PrOGIaM ...ccc.vviiiiiiieiiiieiiree sttt e e e et e e eninne e 18
2.3.1 Writing a Source Program by an Editor............ccccveevvieeniieeniiee e, 18

2.3.2 Rules for Writing a Source Program........cccccccveereeeeiieeesineenieeesnineeens 18

2.4 Producing @ USEr Programcocuiiiiiieeiiiee ettt 20
2.4.1 Starting the BHT-BASIC 3.5 COMPIlErooveiiiiiiiiieieeeeee e 20

2.4.2 Outline of User Program or Library Production Procedure................. 21

[1] Building a user program out of a single source program file...... 21

[2] Building alibrary out of a single source file, or building a user program
or library out of multiple source files 21

2.4.3 Designating a Single Source File or a Project Fileccccoccceeernne.. 22
2.4.3.1 Designating a single source file..........ccoooveviiiiiiiiiiieeieee 22
[1] Select @asource filecccouveeeiiiiiiiiiieieese e 22
2.4.3.2 Designating a project fileccooieiie i 23
[1] Create @ NEW PrOJECEceivveeeiiiienieeeeiiee e 23
[2] Select an existing project file.........cccocvvviieeiiieine e 24
[3] Addfilestoaproject filecccoeiiiiiiiiiieeiiiieie e 25
[4] Selectfiles in the active Project..........ccoeverviiiniiveeiiieeisiee e 26
2.4.4 Compiling and BUildiNg..........ccouiureiiiieiiiee e 28
[1] Specifying the compiling and linking options............cccceeeveeenee. 28
[2] COMPING coeiiieiiee e 29
[3] BUIIAING et 29
2.4.5 Setting the Editor for Displaying Filescccccovviiiiieriiienneee e, 30
2.4.6 Error Messages and Their Indication onto the Main Window............. 31

[1] Selecting either an editor or main window as an error
message output device 31

[2] How error messages are displayed on the editor or

main window 32
2,47 OPUONS ..eiiitiee ettt 33

12

Chapter 2. Development Environment and Procedures

[1] Compiling OPLIONS.....cciiiiieiiiie et 33
[2] LinKiING OPLIONS ...oeiiiieeeiiie e 34
[3] Outputting debug information files...........cccoceiieiiiiieieee 34
[4] Outputting lISt fileSccevivvieiieiieeeiie e 35
[5] Outputting @ mapfileccceeeiiiriiiieeee e 39

[6] Calculating the address for a statement causing a run-time
error 40
2.4.8 Starting the BHT-BASIC Compiler from the Command Line.............. 41
[1] SYNAX citiieiiieieie e e e 41
[2] OPUONS ..eeiiiiiieieee et 42
[3] Error Level Indication by ERRORLEVELcccccceivieeeniennnen. 44
2.4.9 Output from the BHT-BASIC 3.5 Compiler........c.ccceevvieeniiieniieeiinennn 45
2.4.10 Structure of User Programs and Libraries...........ccccocvvvevivieniiee e a7
DOWNIOAING ..ottt e 48
2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E .. 48
252 Setting UP the BHToiiiiiiiiiecie e 49
EXeCUting @ USEr PrOgram........ccoiviiiieieeiiie ettt nne e 51
P2 T8 S - 1 1 1] T SRS 51
2.6.2 EXECULION....vtiitieteieiti ettt 51
2.6.3 TeIrMINALION ...eeiiiiiiiiiie st e e e e e e ee e e e entbeee e e e eees 51

13

2.1 Overview of Development Environ-
ment

The following hardware and software are required for developing user programs:

2.1.1 Required Hardware

m Personal computer
Use a computer operating with Windows95/98 or WindowsNT4.0/Windows2000.

m BHT (Bar code handy terminal)
Any of the following BHTSs is required:

BHT-3000
BHT-4000
BHT-5000
BHT-6000
BHT-6500
BHT-7000
BHT-7500

m CU (Optical communications unit)

For optical communications, any of the following CUs is required. Note that no CU is required
if the BHT is directly connected with the host computer via the direct-connect interface.

CU-3000
CU-4000
CU-5000
CU-6000

CU-7000

(for BHT-3000)
(for BHT-4000)
(for BHT-5000)

(Option for BHT-6000/BHT-6500. Required if the host computer has no
IR interface port.)

(Option for BHT-7000/BHT-7500. Required if the host computer has no
IR interface port.)

m RS-232C interface cable

This cable connects the CU with the personal computer.

NOTE

The RS-232C interface cable should have the connector and pin assignment required
by the personal computer.

(For information about the connector configuration and pin assignments of the CU,
refer to the BHT's User’s Manual.)

14

Chapter 2. Development Environment and Procedures

2.1.2 Required Software

oS Windows95/98 or WindowsNT4.0/Windows2000
Editor

BHT-BASIC 3.5 Compiler BHTC35W.EXE (Integrated environment manager)
BHT35CPL.DLL (Compiler)
BHT35LNK.DLL (Linker)
BHT35LIB.DLL (Librarian)
BHTC35W.MSG (Error messagefile)

Transfer Utility (option) TU3.EXE (MS-DOS-hased)
TU3W.EXE (16-bit Windows-based)
TU3W32.EXE (Windows-based)

Ir-Transfer Utility C (option) 1T3C.EXE (M S-DOS-based)

IT3CW32.EXE (Windows-based)
Ir-Transfer Utility E (option) 1T3EW32.EXE (Windows-based)

Transfer Utility, Ir-Transfer Utility C, or Ir-Transfer Utility E is an essential tool for downloading
user programs to the BHT.

Each of

the BHT-BASIC Compiler, Transfer Utility, Ir-Transfer Utility C, Ir-Transfer Utility E is

optionally provided in a CD or floppy disk.

NOTE

Prepare editor versions which are operable with the personal computer on which user
programs are to be devel oped.

For the manufacturers and models of computers to which Transfer Utility, Ir-Transfer
Utility C, or Ir-Transfer Utility E is applicable, refer to the “ Transfer Utility Guide,”
“Ir-Transfer Utility C Guide,” or “Ir-Transfer Utility E Guide,” respectively.

15

2.2 Overview of Developing Proce-
dures

2.2.1 Developing Procedures

The program developing procedures using BHT-BASIC 3.5 are outlined below.
» Making source programs
Make source programs with an editor according to the syntax of BHT-BASIC.
» Producing a user program (compiling and linking)

Compile the source programs into object programs by BHT-BASIC Compiler. Then
combine those object programs or libraries (made up by Librarian) together through
Linker to produce a user program in the intermediate language format.

» Downloading the user program

Download the user program to the BHT by using Transfer Utility/Ir-Transfer Utility C/
Ir-Transfer Utility E.

» Executing the user program
Execute the user program on the BHT.

16

Chapter 2. Development Environment and Procedures

2.2.2 Functionsof BHT-BASIC 3.5

BHT-BASIC 3.5 contains Compiler, Linker, and Librarian whose functions are listed below.

Functions of Compiler

Description

Syntax check

Output of object files

Output of debug information

Detects syntax errors in source programs.

Translates source programs into object files and
outputs them.

Outputs list files and debug information files
required for debugging.

Functions of Linker

Description

Output of a link map file

Output of a user program

Outputs a symbol table along with its memory
address.

Integrates more than one object program or
library to produce a user program in the interme-
diate language format. When downloaded to the
BHT by Transfer Utility/Ir-Transfer Utility C/lIr-
Transfer Utility E, the user program will be com-
pressed into programs that the Interpreter can
translate.

Functions of Librarian

Description

Output of a library

Builds a library out of multiple object files. The
library is a collection of object files that Linker
will use.

17

2.3 Writing a Source Program

2.3.1 Writing a Source Program by an Editor

To write a source program, use an editor designed for operating environments where the BHT-
BASIC 3.5 Compiler will execute. The default editor is Windows Notepad.

TIP To write a source program efficiently, use of a commercially available editor is rec-
—— ommended. For the operation of such an editor, refer to the instruction manual for
the editor.

2.3.2 Rulesfor Writing a Source Program

When writing a source program according to the syntax of BHT-BASIC 3.5, observe the follow-
ing rules:

» A label name should begin in the 1st column.

ABC

2000

A statement should begin in the 2nd or the following columns.

PRI NT
FOR I =1 TO 100 : NEXT |

» One program line should be basically limited to 512 characters (excluding a CR code)
and should be ended with a CR code (by pressing the carriage return key).
If you use an underline (_) preceding a CR code, however, one program line can be
extended up to 8192 characters. For statements other than the PRI NT, PRI NT#, and
PRI NT USI NGstatements, you may use also a comma (,) preceding a CR code, instead
of an underline.

18

Chapter 2. Development Environment and Procedures

« Comment lines starting with a single quotation mark (*) and those with a REMshould have
the following description rules each.

A single quotation mark (') can be put starting from the 1st or the following columns, or
immediately following any other statement.

A REMshould be put starting from the 2nd column or the following columns. To put a
REMfollowing any other statement, a colon (:) should precede the REM

* Conment
CLS * Conment

REM Comment
CLS : REM Conmment

* Itis necessary to end the | F statement with an END | F or ENDI F, since the | F state-
ment will be treated as a block-structured statement.

IF a$ = “Y OR a$ = “y” THEN
GOTO SuB12
END | F

» The default number of characters for a non-array string variable is 40; that for an array
string variable is 20.

Specifying the DI M or DEFREG statement allows a single string variable to treat 1
through 255 characters.

DI M b$[255]

DI M c$(2, 3)[255]
DEFREG d$[255]
DEFREG e$(2, 3) [255]

m BHT-BASIC does not support some of the statements and functions used in
—— Microsoft BASIC or QuickBASIC. For details, refer to Appendix K, “Unsupported
Statements and Functions.”

19

2.4 Producing a User Program

2.4.1 Sartingthe BHT-BASIC 3.5 Compiler

Start the Compiler, e.g., by choosing the "BHTC35W.EXE" from the Windows Explorer or the
"BHT-BASIC 3.5" registered to the Start menu.

Ekl Projtest.bhp[Test _src] - BHT-BASIC3.5 Compiler_For Win [Hi[=] [E3

File “iew Project Build Toolz Help Menu bar
D|S|c8| B[] =i 8|E|®| 3” - Tool bar
=y
s Main window
[
Feady l—l_l_l_é

The BHT-BASIC 3.5 Compiler supports the following menus and icons which provide quick
ways to do tasks:

Menus Commands Icons Functions
File New [l | Creates a new project.

Open & | Opens an existing file.

Close Closes the active file.

Open Project 2 | Opens an existing project.

Close Project (vellow) | c|oses the active project.

Exit Quits the BHT-BASIC 3.5 Compiler.

View Toolbar Shows or hides the toolbar.
Status Bar Shows or hides the status bar.
Clear Screen Clears the screen.
Project Select File = Selects or deletes a file in the active project.
(Red)
Add File = Adds one or more files to the active project.
Build Compile Compiles one or more active files (or active
project) to produce an object file(s).

Build Compiles one or more active files (or active
project) and then links them to produce a user
program.

Tools Options [2] Sets compiling options and linking options.

Run Editor Runs the editor.

Set Editor Selects the editor you want to run.

Help About BHT-BASIC 3.5 ®? Displays the program information, version
number and the copyright.

20

Chapter 2. Development Environment and Procedures

2.4.2 Outline of User Program or Library Production
Procedure

Unlike the BHT-BASIC 3.0 Compiler that converts a single source program into a user program
(file named XXX.PD3), the BHT-BASIC 3.5 Compiler converts source programs into object pro-
grams (files named XXX.0OBJ) and then links those object programs to produce a user program
(XXX.PD3). A sequence of the compiling and linking processes is called "Build."

The BHT-BASIC 3.5 Compiler can also build a library (XXX.LIB). You may select whether you
build a user program or library on the Project Configuration Files dialog box.

You may build a user program or library out of either multiple files or a single file (as in the
BHT-BASIC 3.0 Compiler).

Note that to build a library out of a single source file, you need to create a project file for a sin-
gle source file.

[1] Buildingauser program out of a single source program file

What follows is a general procedure for building a user program out of a single source program
file.

(1) Designate a file that you want to use. (For details, refer to Subsection 2.4.3.1, "Designat-
ing a single source file.")

(2) Build a user program out of the designated file. (For details, refer to Subsection 2.4.4, [3
], "Building.")

[2] Buildingalibrary out of a single sourcefile, or building a user program or
library out of multiple sourcefiles

What follows is a general procedure for building a library out of a single source file or for build-
ing a user program or library out of multiple source files.

(1) Designate a project that you want to use. (For details, refer to Subsection 2.4.3.2, "Desig-
nating a project file.")

(2) Build a user program or library out of the designated project. (For details, refer to Subsec-
tion 2.4.4, [3], "Building.")

21

2.4.3 Designating a Single Source Fileor aProject File

2.4.3.1 Designating asingle sourcefile

Just as in the conventional BHT-BASIC 3.0 Compiler, you may designate a single source file to
build a user program or library.

[1] Select asourcefile

(1) Inany of the following methods, display the Open File dialog box shown below:
m From the File menu, choose the Open command.
m Click the open file button [Z in the toolbar.
m While holding down the Ctrl key, press the O key.

Open File
Look in: Ia Test j gl IEET
E Testac
File: hame: I Open I
Filez af type: ISource Files [* 2rc) j s |
I Open as read-only

(2) Select a source file you want to use and then click the Open button.
Then the source file opens.
(3) Proceed to Section 2.4.4, "Compiling and Building."

22

Chapter 2. Development Environment and Procedures

2.4.3.2 Designating a project file

To build a library out of a single source file or to build a user program or library out of multiple
source files, you need to create a project file (described in [1] later) or select an existing
project file (in[2]).

You may add files or delete existing files to/from the designated project file (described in [3]
and [4], respectively).

[1] Createanew project
(1) Inany of the following methods, display the Create File dialog box shown below:
m From the File menu, choose the New command.

m Click the new file button LI in the toolbar.
m While holding down the Ctrl key, press the N key.

Create File EHE
Save jn: Ia Test j gl ¢ 5

File hame: IProitest.bhp Save I
Save az hype: |F'roiec:t Filez [*.bhp) j Cancel |

I Open as read-only

(2) Designate a project file you want to create (Projtest.bhp in this example), and then click
the Save button.

If you create a project file having the same name as one already used, the warning mes-
sage dialog box will appear. If you want to overwrite, click the OK button; if you do not,
click the Cancel button to quit the project creating procedure.

(3) The Add File(s) dialog box appears. Into the newly created project, you need to put files
which should configure the project, according to the statements given in [3], "Add files to
a project file."

23

[2] Select an existing project file

You may select an existing project file in the Select Project File dialog box or in the Open File
dialog box.

Selecting in the Select Project File dialog box

(1) Inany of the following methods, display the Select Project File dialog box shown below:
m From the File menu, choose the Open Project command.
m Click the open project button & (yellow) in the toolbar.
m While holding down the Ctrl key, press the P key.

Select Project File

Look i | A Test ﬂ m ’g

File narne: |Proitest.bhp Open |
Files of type: |Proiect Files [*.bhp] ﬂ Cancel

" Open as read-only

(2) Select an existing project file you want to use (Projtest.bhp in this example), and then
click the Open button.

(3) Proceed to Section 2.4.4, "Compiling and Building."

Selecting in the Open File dialog box

(1) Display the Open File dialog box, referring to Subsection 2.4.3.1, [1].

(2) Select an existing project file you want to use (Projtest.bhp in this example), and then
click the Open button.

Open File 2]
| N Test j ﬂ i
'51 Testdsrc
[#] Testd.0BJ
'51 Testdsrc
[#] Test5.0BJ
% Test2 s % Testh.src

=] Test3.0BJ

File name: |Pr0itest.bhp Open |
Files of type: [l Files [+¥] =l Cancel

[T Open as read-only

(3) Proceed to Section 2.4.4, "Compiling and Building."

24

Chapter 2. Development Environment and Procedures

[3] Addfilestoaproject file

You may add one or more source files and libraries to a project file.

(1) Create a new project (Refer to [1] in this subsection) or select an existing project file to
which you want to add files (Refer to [2] in this subsection).

(2) In either of the following methods, display the Add File(s) dialog box shown below:
m From the Project menu, choose the Add File command.
m Click the add file button 22 in the toolbar.

Add File[s) EHE
Lookin: |3 Test = gl i

File name: I"Test5.src" "Testd src” "Test3src" "'Testd. src” Dpen I
Files of type: |Files [*.zrc®.lib) j Cancel |

™ Open az read-only

(3) Select files you want to add to the active project file and then click the Open button.

(4) The Project Configuration Files dialog box will appear which lists files in the project. For
details about the Project Configuration Files dialog box, refer to [4], "Select files in the
active project” given later.

25

[4] Select filesin the active project

From files existing in the active project, you may select files that you want to compile or build.
(1) In either of the following methods, display the Project Configuration Files dialog box
shown below:
m From the Project menu, choose the Select File command.
m Click the select file button E2 (red) in the toolbar.

TIP The Project Configuration Files dialog box will appear aso following the new
—— project creation process (see[1] earlier) or the file addition process to an exist-
ing project (see[3] earlier).

(2) Select files you want to compile or build.

Project Configuration Files

Project configuration
List of Files in a Project_ T'/ fiIeSJ display agrea
Testl.src
Test3.src
Testd.src
Testh.src Cancel
Add File...
Delete File
— Drive buttons
Main Object
Run Editor
Main Object
Compile
Type of File to be Created
% Create user program[PD3]
" Create library[LIB] Build ‘
) -
\ Main object display area

Selection buttons for user
program or library to be created

(3) In the Project Configuration Files dialog box are the following display areas and buttons
from which you may also select a user program or library to be built, may start compiling
or building, and may run the editor, as well as adding or deleting files to/from the active
project.

« List of Files in a Project

This display area shows a list of files which configures the active project. The filenames
are displayed as a relative path.

2

)]

Chapter 2. Development Environment and Procedures

* Main Object

This display area shows the name of a main object in a user program if you have
selected "User program (PD3)" with the "Type of File to be Created" selection button. If
you have selected "Create library (LIB)," nothing will appear on this area.

 Type of File to be Created

Lets you select whether you create a user program (PD3) or library (LIB).

» Add File button

Adds the currently selected files to the active project. (Refer to “[3] Add files to a
project file.”)

* Delete File button

Deletes the currently selected file(s) from the active project.

* Main Object button

Specifies the currently selected file as a main object if you have selected "User program
(PD3)" with the “Type of File to be Created” selection button. A library cannot be speci-
fied as a main object.

This button will be disabled if more than one file is selected or “Create library (LIB)” is
selected with the “Type of File to be Created” selection button.

* Run Editor button
Opens a file currently selected by the editor.

» Compile button

Compiles currently selected source files into object files.

 Build button
Builds a user program out of the active project.

27

2.4.4 Compiling and Building
First specify the options and then proceed to the compiling or building process.

[1] Specifyingthecompiling and linking options

(1) In either of the following methods, display the Set Options dialog box shown below:
m From the Tools menu, choose the Options command.
m Click the option button # in the toolbar.

M Symbal table
M # (Cross) reference

[T “arishles size

Linking Options
™ Mapfile ‘

Compiling Options
[Debug information file
M &ddress—saurce List Cancel |

* To the Editor = To the Window

Errar Message Cutput ‘

(2) Select the check boxes of the options you want to specify.

For details about the options, refer to Subsection 2.4.7.

28

Chapter 2. Development Environment and Procedures

[2] Compiling
In any of the following methods, compile the currently selected source file(s) into an object
file(s):

m From the Build menu, choose the Compile command.

m [n the Project Configuration Files dialog box, click the Compile button. (For details
about the Project Configuration Files dialog box, refer to Subsection .4.3.2, [4].
m Click the compile start button in the toolbar.

m While holding down the Ctrl key, press the G key.

If compiling ends normally, the screen shown below will appear.

E}i Projtest. bhp[Testl .src] - BHT-BASIC3.5 Compiler_For Win [Hi[=] EJ

File “iew Project Build Tool: Help
MEEER | 2|
Compiling Testl.src now. =]

0000 Error statement Compiled End
Compiling finished normally.

[3] Building
In any of the following methods, build a user program or library out of object files:
m From the Build menu, choose the Build command.

m In the Project Configuration Files dialog box, click the Build button. (For details about
the Project Configuration Files dialog box, refer to Subsection 2.4.3.2,[41].)

m Click the build start button

in the toolbar.
m While holding down the Ctrl key, press the B key.

If building ends normally, the screen shown below will appear.

E Projtest. bhp[Test1 _src] - BHT-BASIC3.5 Compiler_For Win [Hi[=] E3

File “iew Project Build Tool: Help
sEEER |

Compiling Testl.src now. J

0001 Error statement Compiled End

Compiling finished normally.

Compiling Test2.s5rc now.

0000 Error statement Compiled End

Compiling finished normally.

Compiling Test3.src now.

0000 Error statement Compiled End

Compiling finished normally.

Compiling Testd.src now.

0000 Error statement Compiled End

Compiling finished normally.

Compiling Testh.src now.

0000 Error statement Compiled End

Compiling finished normally.

Linking Protest.bhp nowr.

8888 Error statement Linked End

Building finished normally.

29

2.4.5 Setting the Editor for Displaying Files

Set the editor that you want to use for displaying source files and error message files
(XXX.ERR) according to the steps below.

(1) From the Tools menu, choose the Set Editor command.

S Untitled - BHT-BASIC3.5 Compiler_For Win

File View Project Buld EEE Help

D|&@le| =[] | Options.. lmml @ 1]
= Editar 3 Bun Editar
D G Editor

The Set Editor dialog box appears as shown below.

Set Editor

Command line

IC:\WINDOWS\nutepad.exe Browse... |

(2) Inthe Command line edit box, type the filename of the editor. If the editor is not located in
the current directory or working directory, type the absolute path or relative path. (The
default editor is Windows NotePad.)

If you don’t know the editor’s filename or directory path, choose the Browse button in the
Set Editor dialog box to display the Select Editor dialog box. From a list of files and direc-
tories displayed, select the appropriate filename and then choose the OK button.

ﬁ Setting the editor having the tag-jump function allows you to efficiently cor-
rect a source program file which has caused an error. For details about the
tag-jump function, refer to the user's manual of the editor.

30

Chapter 2. Development Environment and Procedures

2.4.6 Error Messages and Their Indication onto the
Main Window

[1] Selecting either an editor or main window as an error message output
device

According to the procedure below, you may select whether error messages should be output-
ted to an editor or main window if an error message file (XXX.ERR) is produced.

(1) From the Tools menu, choose the Options command.

Eg Untitled- BHT-BASIC3.5 Compiler_For Win
File View Project Build

SEEEEE, -y

The Set Options dialog box appears as shown below.

Set Dptions

~Compiling Options

[Debug information file

[~ Address-source List Cancel |

[Symbol table
[" X [Cross) reference

[~ ¥ariables size

~Linking Options
[" Mapfile

—Error Message Output
= To the Editor " To the Window

(2) Inthe Set Options dialog box, select either "To the Editor" or "To the Window" check box.
(The default output device is Editor.)

31

[2] How error messages are displayed on the editor or main window

During building, the BHT-BASIC 3.5 Compiler may detect errors which can be divided into two
types: syntax errors and fatal errors.

m Syntax errors

If the Compiler detects a syntax error, it outputs the error message to the XXX.ERR file. For
details about the file, refer to Subsection 2.4.9, "Output from the BHT-BASIC 3.5 Compiler."

If the "To the Editor" check box of the Error Message Output is selected in the Set Options dia-
log box, the editor will automatically open and show the detected errors. If the "To the Window"
check box is selected, those errors will be outputted to the main window.

The total number of detected syntax errors always displays on the main window.
- Error messages displayed on the editor

E Projtest.err - Hotepad =] 3
File Edit Seach Help

print "123 J
testl.src(18): error 3: ' missing

ddd

testl.src(22): error 71: Syntax error

o

- Error messages displayed on the main window

EH Project bhpltest] ere] - B I mpiler_For Win !E

File Wiew Project Build Toolz Help

== 8|a/&| 7|

ompiling teztl zrc now. d
1002 Error statement Compiled End
Failed to compile.

print “123
testlzrc(18): errar 3: ™" miszing

=
ot

ddd
testlzrc(22) : error 71 : Syntax error
Failed to build

m Fatal errors
If the Compiler detects a fatal error, it outputs the error message to the main window.

Bl Projtest.bhp[Test en] - BHT-BASIC3.5 Compiler_For Win [Hi[=] E3

File “iew Project Build Tools Help

DB 2]=f| 2|6 8 3|% 2
fatal error 38: Cannot find include file J

m ERRORLEVEL

The ERRORLEVEL function is supported only when a +E option is specified at the command
line. (Refer to Subsection 2.4.8, "Starting the BHT-BASIC 3.5 Compiler from the Command
Line,"[31.)

32

Chapter 2. Development Environment and Procedures

2.4.7 Options

To specify compiling options and linking options, select the check-box options you want in the
Set Options dialog box. Each of available options is explained below.

[1] Compiling options

Compiling Options Description

Debug information file Outputs debug information files (XXX.ADR, XXX.LBL, and
XXX.SYM files).

If this option is not selected, no debug information file will be
outputted. (default)

(For detalils, referto [3].)

Address-source List Outputs an address-source list to the file XXX.LST.

If this option is not selected, no address-source list will be
outputted. (default)

(For details, referto [4].)

Symbol table Outputs a symbol table to the file XXX.LST.

If this option is not selected, no symbol table will be output-
ted. (default)

(For details, referto [4].)

X (Cross) reference Outputs a cross reference to the file XXX.LST.

If this option is not selected, no cross reference will be out-
putted. (default)

(For detalils, referto [4].)

Variable size Outputs the sizes of common variables, work variables, and
register variables to the file XXX.ERR. or main window.

If this option is not selected, no variable size will be output-
ted. (default)

The output example (TESTA.err) is as follows:

Common area = XXXXX bytes (XXXXX bytes on menory.
XXXXX bytes in file)

Work area = XXXXX byt es (XXXXX bytes on nmenory.
XXXXX bytes in file)

Regi ster area = XXXXX bytes in file

33

[2] Linkingoptions

Linking Options Description

Mapfile Outputs map information to the file XXX.MAP.

If this option is not selected, no map information will be
outputted. (default)

(For detalils, refer to [5] in this subsection.)

[3] Outputting debug information files

If you select the "Debug information file" check box in the Set Options dialog box and run the
Compiler, then the Compiler will output three types of debug information files.

Each information file will be given the same name as the source program and annexed one of
the three extensions .ADR, .LBL, and .SYM according to the file type as listed below.

Debug Information Files Filename Extension
Source line—address file ADR
Label-address file .LBL
Variable—intermediate language file .SYM

» Source line-addressfile (ADR)

Indicates the correspondence of line numbers in a source program to their
addresses in the object program written in intermediate language.

Each line consists of a four-digit line number in decimal notation and a four-digit
address in hexadecimal notation.

e Label-addressfile (.LBL)

Indicates the correspondence of labels and user-created functions defined in a
source program to their addresses in the object program written in intermediate lan-
guage.

For user-defined functions in the one-line format, the first addresses of those func-
tions in the object program are listed in this file; for those in the block format, the
addresses of the first statements in the blocks are listed.

Each line consists of a label name or a user-defined function name, and a four-digit
address in hexadecimal notation.

* Variable-intermediate languagefile (.SYM)

Indicates the correspondence of variables used in a source program to the interme-
diate language.

Each line consists of a variable and its intermediate language.

34

Chapter 2. Development Environment and Procedures

[4] Outputtinglist files

The Compiler may output three types of list files as listed below depending upon the options
specified at the start of compiling, in order to help you program and debug efficiently.

List File Option Filename Extension

Address-source list Select the Address-source List check box.
Symbol table Select the Symbol table check box. .LST
Cross reference Select the X (Cross) reference check box.

The list file will be given the same name as the source program file and annexed with an exten-
sion .LST.

When outputted, each list file has the header format as shown below.

BHT- BASI C 3.5 Conpil er Version X XX Versionof BHT35CPL.DLL
Copyright (C) DENSO CORPORATI ON 1998. All rights reserved.
source = Source filename.ext (to be given as an absolute path)

m Address-sourcelist

Select the Address-source List check box and run the Compiler, and the following information
will be outputted:

BHT- BASI C 3.5 Conpiler Version X XX

Copyright (C) DENSO CORPORATI ON 1998. All rights reserved.
source = C/\TEST. SRC

Addr Li ne St at ement

Address of object program in
intermediate language

0000 0001 R EEEE R

0000 *

0000 0014 ON ERROR GOTO ErrorProg Line number in source
0003 0015 /prog’am
0003 0016 DEFREG VF% = 0

0003 0017 DEFREG ConF% = 0

0003 0018 DEFREG RecF% = 0

0003 0019 DEFREG FreeSpace

0003 0020 DEFREG ESC = -1

0003 0021 DEFREG bps$ = "9600"

0003 0022

0338 0023 REM $ I NCLUDE : ' SAKeyFnc. SRC Source program statement
0338 0024

0338 0025 Mast er $ = "Master92. DAT"

034A 0026 Workfile$ = "WKkKFi|s. DAT"
035C 0027 Sal es$ = "Sal esSA. DAT"

036D 0028

036D 0029 IFvi% = 0 THEN

0377 0030 GOSUB cautionB

037A 0031 CLCSE

037E 0032 Freespace = FRE(1)
0387 0033 VF% = 1

038E 0034 END | F

038E 0035 Mai nPr og:

038E 0036 aosuB fil Open

0000 Error Statenent Conpiled End.

35

» Address of object program in intermediate language

Shows an intermediate language address corresponding to a source program line in
four-digit hexadecimal notation.

e Linenumber in source program
Shows a line number for a source program statement in four-digit decimal notation.
* Source program statement
Shows the same content as a statement written in a source program.
Notes for address-source lists

(1) If a source program statement contains line feeding caused by a CR code preceded by an
underline () or a comma (,), the line number will increase, but no address will appear.

(2) Neither page headers nor new page codes will be inserted.

(3) If a syntax error occurs, the error message will be outputted on the line following the error
statement line.

(4) If more than one syntax error occurs in a statement, the error message only for the first
detected error will appear.

(5) A TAB code will be replaced with eight space codes.
The total number of syntax errors will be outputted at the end of the list.

= Symbol table

Select the Symbol table check box and run the Compiler, and the following information will be
outputted:

BHT- BASI C 3.5 Conpiler Version X XX
Copyright (C) DENSO CORPORATI ON 1998. All rights reserved.
source = C:\Test.SRC

Symbol table for common variables

COMMON SYMBOL Symbol table for work variables
WORK SYMBOL -

F% | NPUTERRY J2% SEQNO% SREC%

SW SUBC% SUBFLAG% WREC% X1%

Symbol table for register variables
REGI STER SYMBOL

COVF% RECNO% Symbol table for labels
LABEL SYMBOL /
AMOUNT AMOUNTKYI N CAUTI ONB COVRETRY DATASET
Symbol table for user-defined
LABEL SYMBOL function
FNKEY!I NPUT FNSPAT FNXCENTER FNZPAT

Variables will be outputted in the following format:
In case of global variables Variablename

In case of local variables Variablename:Filename (no extension)-
In other cases Variablename:Name of user-defined function defining the
variable

36

Chapter 2. Development Environment and Procedures

Symbol table for common variables
Lists common variables arranged according to their types. An array variable has a suffix
of parentheses ().
» Symbol table for work variables
Lists work variables and dummy arguments arranged according to their types. An array
variable has a suffix of parentheses ().
« Symbol tablefor register variables
Lists register variables arranged according to their types. An array variable has a suffix
of parentheses ().
« Symbol tablefor labels
Lists labels arranged in alphabetic order.
» Symbol tablefor user-defined functions
Lists user-defined functions arranged according to their types (i.e. integer, real, and
string types).
Each of common variables, work variables, and register variables can be divided into the fol-
lowing types:
Non-array integer type Non-array real type Non-array string type
Array integer type Array real type Array string type

37

m Crossreference

Select the X (Cross) reference check box and run the Compiler, and the following information
will be outputted:

For common variables
Outputs line numbers where common variables are defined and referred to.

For work variables
Outputs line numbers where work variables and dummy arguments are referred to.

For register variables
Outputs line numbers where register variables are defined and referred to.

For labels
Outputs line numbers where labels are defined and referred to.

For user-defined functions
Outputs line numbers where user-defined functions are defined and referred to.

38

Chapter 2. Development Environment and Procedures

[5] Outputting a mapfile

Select the Mapfile check box of the Linking Options in the Set Options dialog box and build a
user program, and the mapfile as shown below will be outputted. The mapfile will be given the
same name as the project file and annexed with an extension .MAP.

COMVON SYMBOL / Map for common variables

% 2400
‘P——__—_________________._——-Mapforworkvaﬂabbs
WORK SYMBOL
2900
B 2901
003 2A00
‘P_—____—__________________———-Mapforregstervaﬂabbs
REG STER SYMBOL
R$ 2E00
‘P——‘_—_____________________-Mapforusehdeﬂnedfuncﬁon
FUNCTI ON SYMBOL
AAA 003B

‘_—___-_—__________________———-Mapforvanabbs and object
OBJECT | NFORMATI ON codes

of fset size

PRC 0000 0035
REG 0035 002F
PRD 0064 0047
‘H_——________________________———-Detaﬂs of object codes
PRD | NFORMATI ON
[Fi | enane] of fset size
t est. obj 0000 0038
Functi on. obj 0038 000F
[Total] 0047

* Map for common variables

Shows the symbols of common variables in the Interpreter which are arranged according
to their types together with their pointing addresses. An array variable has a suffix of
parentheses (). If no common variables are used, this item will not be outputted.

* Map for work variables

Shows the symbols of work variables in the Interpreter which are arranged according to
their types together with their pointing addresses. An array variable has a suffix of paren-
theses (). If no work variables are used, this item will not be outputted.

« Map for register variables

Shows the symbols of register variables in the Interpreter which are arranged according
to their types together with their pointing addresses. An array variable has a suffix of
parentheses (). If no register variables are used, this item will not be outputted.

39

* Map for user-defined functions
Shows the symbols of user-defined functions in the Interpreter which are arranged
according to their types (i.e., integer, real, and string types). If no user-defined functions
are used, this item will not be outputted.

« Map for variables and object codes

Shows the addresses of variables and object codes in a user program. The PRC indi-
cates the program allocation information area, the REG indicates the register variables
area, and the PRD indicates the program reserved area.

* Details of object codes
Shows the allocation information of objects in a user program. The [Filename] lists the
names of object files configuring a user program. The [Offset] lists the heading
addresses of individual object files in 4-digit hexadecimal form. The [Size] lists the sizes
of individual object files in 4-digit hexadecimal form.

[6] Calculatingtheaddressfor a statement causing arun-time error

If a run-time error occurs, the Compiler returns the address (ERL=XXXX) assigned starting
from the head of the user program. When building a user program out of multiple object files,
therefore, you need to calculate an address of a statement in an object file causing a run-time
error according to the procedure given below.

(1) Inthe Set Options dialog box, select the Address-source List check box of the Compiling
Options and the Mapfile check box of the Linking Options beforehand.

(2) Build a user program out of object files so as to output the address-source list file (source
filename.LST) and the mapfile (project name.MAP).

(3) In the "details of object codes" item, retrieve an object file containing the address
(ERL=XXXX) assigned to a statement causing a run-time error.

(4) In the Address-source List file of the retrieved object file, retrieve the address for the
statement causing a run-time error.

Subtract the heading address of the object file from the address of the statementstate-
ment causing a run-time error, and you can obtain where a run-time error has occurred.

40

Chapter 2. Development Environment and Procedures

2.4.8 Sarting the BHT-BASIC Compiler from the
Command Line

You may start the BHT-BASIC Compiler from the command line in the MS-DOS Prompt of
Windows95/98 or WindowsNT4.0/Windows2000.

[1] Syntax

At the MS-DOS command prompt, type in the following format:
BHTC35W [options] [[directorypath]fil enane.][options]
directorypath You may specify either an absolute path or relative path. Omitting

this option will make the Compiler look for that file in the current work-
ing directory. Specifications of directorypath only is not allowed.

filenane You may specify the name of any of a project file, source file and
library file.
opti ons You may specify compiler processing options, compiling options, and

linking option. For details, refer to the next item, [2], "Options."

The Compiler will recognize a project specified by filename merely as a group of

M files. If you do not specify a+BL option (Building library described in [2]), there-
fore, the Compiler automatically produces a user program.
ﬁ To produce a user program from asingle sourcefilein abatch file, typeinthe follow-

ing:
>START /W +E +B TEST. SRC

Writing START /W as above will not proceed to the next batch processing until the
BHT-BASIC 3.5 Compiler completes the processing. For details about +E or +B
option, refer to “[2] Options” in this subsection.

41

[2] Options

The BHT-BASIC 3.5 Compiler supports three types of options—compiler processing options,
compiling options, and linking option.

m Compiler processing options

Processing options Description

+C Compiles one or more designated file(s) into object file(s).

+B programane Builds a user program with the specified program name. If
no pr ogr anmaie is specified, the filename specified first
will apply.

+BL Builds a library with the specified library name. If no

l'i brarynane I i brarynamne is specified, the filename specified first
will apply.

+E, -E Determines whether to terminate the BHT-BASIC 3.5 Com-

piler after completion of processing.

Specifying the +E terminates the Compiler without display-
ing the compiler window after completion of processing.
Specifying the - E displays the compiler window and does
not terminate the Compiler even after completion of pro-
cessing.

The default is - E.

M If more than one option with different specifications is written (e.g., +C, +B, and
+BL), the last option takes effect.

If the same option is set more than one time with different specifications (e.g., +E and
-E), the last option takes effect.

42

Chapter 2. Development Environment and Procedures

Compiling options

Compiling options Description

+D Outputs debug information files (XXX.ADR, XXX.LBL. and
XXX.SYM files).

(Same as you select the Debug information file check box
in the Set Options dialog box. Refer to Subsection 2.4.7,[1

1)

+L Outputs an address-source list to the file XXX.LST.
(Same as you select the Address-source List check box in
the Set Options dialog box. Refer to Subsection 2.4.7,[11.)

+S Outputs a symbol table to the file XXX.LST.
(Same as you select the Symbol table check box in the Set
Options dialog box. Refer to Subsection 2.4.7,[11].)

+X Outputs a cross reference to the file XXX.LST.
(Same as you select the X (Cross) reference check box in
the Set Options dialog box. Refer to Subsection 2.4.7,[1].)

+V Outputs the sizes of common variables, work variables,
and register variables to the file XXX.ERR or main window.
(Same as you select the Variable size check box in the Set
Options dialog box. Refer to Subsection 2.4.7,[11].)

Linking option

Linking options Description

+M Outputs map information to the file XXX.MAP.
(Same as you select the Mapfile check box in the Set
Options dialog box. Refer to Subsection 2.4.7,[21].)

NOTE Options specified at the command line will take effect only when you run the BHT-
—— BASIC 3.5 Compiler at the command line. (Those option settings will not be written
into theinitialization file BHTC35W.INI.)

Evenif you specify a-E option (default) so that the Compiler does not terminate after
completion of processing, neither filename nor options designated for the preceding
processing will be saved. You need to designate them again.

Option settings stored in the initiaization file BHTC35W.INI will not apply when
you run the BHT-BASIC 3.5 Compiler at the command line. To output debug infor-
mation files, therefore, you need to specify options at the command line.

43

[3] Error Leve Indication by ERRORLEVEL

If you specify a +E option at the command line and run the BHT-BASIC 3.5 Compiler, the
ERRORLEVEL of MS-DOS allows the Compiler to set the compiling end status to the MS-DOS
environmental variable ERRORLEVEL after completion of processing, as any of the error lev-
els listed below.

By referring to this ERRORLEVEL, you can learn the compiling end status.

ERRORLEVEL Description
0 Normal end
1 No designated file or path found.
2 Filename format not correct
4 Project invalid
5 File open error
6 Write-protect error
7 File renaming failure
8 Project file creating failure
9 Existing project file deleted
10 Entered option invalid
20 Compiling syntax error
21 Compiling fatal error
30 Link error
40 Library error
70 No empty space in the designated disk
99 Other errors

By making a batch file which automatically starts proper operation according to the error level,
you can facilitate debugging procedures.

For details about the ERRORLEVEL, refer to the MS-DOS Reference Manual.

44

Chapter 2. Development Environment and Procedures

2.4.9 Output from the BHT-BASIC 3.5 Compiler

The BHT-BASIC 3.5 Compiler outputs the following information as well as object programs to
the destination depending upon the conditions.

Output

Destination

Conditions

Object file

File XXX.0OBJ (in the direc-
tory where the source pro-
gram is located)

When the specified source
program has been normally
compiled without occur-
rence of a compiling error.

User program

File YYY.PD3 (in the direc-
tory where the project is
located)

When the specified project
has been normally built with-
out occurrence of a compil-
ing error or linking error.

Library file

File YYY.LIB (in the
directory where the project
is located)

When the specified project
has been normally built with-
out occurrence of a compil-
ing error or library error.

Error message
(Syntax error)

File XXX.ERR (in the direc-
tory where the source pro-
gram is located)

If a compiling error is
detected during compilation
of the specified source pro-
gram.

File YYY.ERR (in the direc-
tory where the project is
located)

If an error is detected during
building of the specified
project.

Error message
(Fatal error)

Main window

If a fatal error is detected
during compilation of the
specified source program.

Debug Source line— | File XXX.ADR (in the direc-
infor- Address tory where the source pro-
mation information gram is located)
Label- File XXX.LBL (in the direc-
Address tory where the source pro-
information gram is located)
Variable— File XXX.SYM (in the direc-
Intermediate tory where the source pro-
language gram is located)
information

If the Debug information file
check box is selected in the
Set Options dialog box.

45

Output

Destination

Conditions

Address—Source list

Symbol table

Cross reference

File XXX.LST (in the direc-
tory where the source pro-
gram is located)

If the Address-source List
check box is selected in the
Set Options dialog box.

If the Symbol table check
box is selected in the Set
Options dialog box.

If the X (Cross) reference
check box is selected in the
Set Options dialog box.

Sizes of variables

File XXX.ERR (in the direc-
tory where the source pro-
gram is located) or

File YYY.ERR (in the direc-
tory where the project is
located)

If the Variable size check
box is selected in the Set
Options dialog box.

Mapfile

File YYY.MAP (in the direc-
tory where the project is
located)

If the Mapfile check box is
selected in the Set Options
dialog box.

XXX represents a source program filename.

YYY represents a project name.

46

Chapter 2. Development Environment and Procedures

2.4.10 Structureof User Programsand Libraries

If you specify a user program to be produced in the Project Configuration Files dialog box, the
BHT-BASIC 3.5 Compiler produces a user program provided that no compiling error or link
error occurs. The user program file will be given the same name as the project file and
annexed with an extension .PD3.

If you specify a library to be produced, the Compiler produces a library provided that no compil-
ing error or library error occurs. The library file will be given the same name as the project file
and annexed with an extension .LIB.

If the name of a newly produced file is the same as that of an existing file in the destination
directory, Compiler will overwrite the existing file with the new file.

Structure of user programs

A user program is expressed in the intermediate language, where statements, functions and
variables are in two-byte form of ASCIl characters. A record is 128 bytes in length and
annexed with CR and LF codes.

When downloaded to the BHT and stored in its memory, a user program will be compressed
from two-byte form into single-byte hexadecimal form. Accordingly, the length of a record
comes to 64 bytes.

Structure of libraries

A library consists of more than one object filename and object information.

47

2.5 Downloading

2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/
Ir-Transfer Utility E

Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E transfers user programs and data files

(e.g., master files) between the BHT and the connected personal computer. It has the follow-
ing functions:

Functions of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E

Downloading extension programs
Downloading programs
Downloading data

Uploading programs

Uploading data

For operations of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E, refer to the related
guide.

48

Chapter 2. Development Environment and Procedures

2.5.2 Settingup theBHT

= BHT-3000

If the error message "Report to the personnel in charge (x)" appears, it is necessary to initialize
the BHT before downloading user programs.
The above error message appears in any of the following cases:

» The BHT is first powered on from the time of purchase.

» The BHT is powered on after being left without batteries (main and sub) loaded for a long
time.

Initialization will not only erase al of the programs and data stored in the RAM
but also reset the system calendar clock and communications parameters to their
defaults. Therefore, set those reset parametersin System Mode before accessing
the download menu.

CAUTION

For details about the initialization and downloading, refer to the "BHT-3000 User's Manual."

= BHT-4000

If the error message "No System" appears, it is necessary to download the System Programs
and initialize the BHT before downloading user programs. If the error message "Report to the
personnel in charge!!" appears, it is necessary to initialize the BHT.

The error message "No System" appears in any of the following cases:
» The BHT is first powered on from the time of purchase.
» The BHT is powered on after being left without main battery loaded for a long time.

m Initialization will not only erase al of the programs (including Easy Pack) and

—— datastored in the user area of the RAM but also reset the system calendar clock
and communications parameters to their defaults. Therefore, set those reset
parameters in System Mode before accessing the download menu.

For details about the initialization and downloading (of System Program and user programs),
refer to the "BHT-4000 User's Manual.”

49

= BHT-5000/BHT-6000/BHT-6500

If the error message given below appears, it is necessary to initialize the BHT before down-
loading user programs.

"System error ! Contact your administrator. Note the error drive. (DRIVE x)"
The above error message appears in any of the following cases:
» The BHT is first powered on from the time of purchase.
» The BHT is powered on after being left without main battery loaded for a long time.

m Initialization will not only erase all of the programs and data stored in the RAM

—— and flash ROM but aso reset the system calendar clock and communications
parameters to their defaults. Therefore, set those reset parameters in System
Mode before accessing the download menu.

For details about the initialization and downloading, refer to the "BHT’s User's Manual.”

s BHT-7000/BHT-7500

If the error message given below appears, it is necessary to set the calendar clock before
downloading user programs.

"Set the current date and time. XX/XX/XX YY:YY"
The above error message appears in any of the following cases:

e The BHT is first powered on from the time of purchase.

» The BHT is powered on after being left without main battery loaded for a long time.
For details about the calendar clock setting, refer to the "BHT’s User's Manual."

50

Chapter 2. Development Environment and Procedures

2.6 Executing a User Program

2.6.1 Sarting

To run a user program, start System Mode and select the desired program in the Program Exe-
cution menu.

If you have selected a user program as an execution program in the Setting menu of System
Mode, the BHT automatically runs the user program when powered on.

For the operating procedure of System Mode, refer to the BHT's User’s Manual.

2.6.2 Execution

The Interpreter interprets and executes a user program from the first statement to the next, one
by one.

2.6.3 Termination

The BHT system program terminates a running user program if
» the END, PONER OFF, or POAER O statement is executed in a user program,
* the power switch is pressed,
* no valid operations are performed within the specified time length (Automatic powering-
off), or
Valid operations: - Entry by pressing any key
- Bar-code reading by pressing the trigger switch

- Datatransmission

- Datareception
Specified time length: Length of time specified by the POWER statement in the
user program. If not specified in the program, three min-
utes will apply.
« the battery voltage level becomes low.
Low battery: If the voltage level of the battery cartridge or that of the

dry cells drops below the specified level, the BHT dis-
plays the low battery warning message on the LCD and
powers itself off.

If the resume function is activated in System Mode, only the execution of the END, POAER
OFF, or POVER 0 statement can terminate a running user program. Other cases above
merely turn off the power, so turning it on again resumes the program.

51

Chapter 3

Program Structure

3.1

3.2

CONTENTS
Program OVEIVIEWcccuiieiiuieeesiiee et et et ee s sttee s seaee e st e e s nneee s saeeeesnneeenaee 53
3.1.1 Statement BIOCKScooiiiiiiiieiiie e 53
[1] SUDIOULINES ..o e s 53
[2] Error-/Event-handling ROULINESccurveriiiniiiieiiiee e 53
[3] User-defined FUNCLONScooviiiiiiiiiiiiiee e 54
[4] Block-structured Statementsccccoeecvviieeeeiiiiiie e 54
3.1.2 Notes for Jumping into/out of Statement BIOCKScccceevcivvieeeennnes 55
Handling USEr PrOgramscoeoieieiieieeiieeesieee e siieessite e s snteeeseeeesnneeeenes 56
3.2.1 User Programs in the MemMOIYcocciiiiiereiiieeniee e 56
3.2.2 Program ChaiNiNgcoooueeiiiiieiiie et 56
3.2.3 INCIUAEA FlES ...t 57

52

Chapter 3. Program Structure

3.1 Program Overview

3.1.1 Satement Blocks

A statement block is a significant set of statements (which is also called "program routine").
The following types of statement blocks are available in programming for the BHT:

Statement Blocks Description
Subroutine A routine called by the GOSUB statement.
Error-/event-handling routine An error-/event-handling routine to which

control is passed when an error trap or event
(of keystroke) trap occurs, respectively.

User-defined function A function defined by any of the following
statements:
DEF FN (in single-line form)
DEF FN...END DEF (in block form)
SUB...END SUB
FUNCTI ON...END FUNCTI ON

Block-structured statement FOR...NEXT
| F..THEN...ELSE...ENDI F
SELECT...CASE...END SELECT
VHI LE...\\END

Avoid jumping into or out of the midst of any of the above statement blocks using the GOTO
statement; otherwise, it will result in an error. (Refer to Section 3.1.2.)

[1] Subroutines
A subroutine is a statement block called from the main routine or other subroutines by the
GOSUB statement.

Using the RETURN statement passes control from the called subroutine back to the statement
immediately following the GOSUB statement in the original main routine or subroutine.

[2] Error-/Event-handling Routines
An error- or event-handling routine is a statement block to which program control passes when
an error trap or event (of keystroke) trap occurs during program execution, respectively.

The RESUME statement passes control from the error-handling routine back to the desired
statement.

The RETURN statement in the keyboard interrupt event-handling routine returns control to the
statement following the one that caused the interrupt.

53

[3] User-defined Functions

Before calling user-defined functions, it is necessary to define those functions with any of the
following statements. Generally, those statements should be placed before the main routine
starts.

DEF FN (in single-line form)

DEF FN..END DEF (in block form)
SUB...END SUB

FUNCTI ON...END FUNCTI ON

When using SUB and FUNCTI ON functions written in other files, it is necessary to declare
them with the DECL ARE statement before calling them.

[4] Block-structured Statements

The statements listed below have the statement block structure and are useful for structured
programming.

FOR. .. NEXT

IF... THEN...ELSE.. .END I F
SELECT. .. CASE. . . END SELECT
VWHI LE. . . VEND

m Nested Structure
Block-structured statements allow you to write nesting programs as shown below.

FOR i =1 TO 10
FOR j =2 TO 10 STEP 2
PRINT i, j, k
NEXT |
NEXT i

Nesting subroutines as shown below is also possible.

GOSUB aaa
aaa
PRI NT "aaa"
GOSUB bbb
RETURN
bbb
PRI NT "bbb"
RETURN

54

Chapter 3. Program Structure

3.1.2 Notesfor Jumping into/out of Satement Blocks

It is not recommended to jump control from a main routine or subroutines into the midst of sig-
nificant statement blocks or to jump out from the midst of those statement blocks, using the

GOT O statement.
Statement Blocks Jump into Jump out
Subroutine O O
Error-/event-handling routine O]
Block-format user-defined function O O
Block-structured statement O A

NOTE

To be avoided. A run-time error may occur.

Not recommended, although no run-time error will result directly. Nesting may
cause a run-time error.

* It is possible to jump control out of the midst of block-structured statements
(except for FOR...NEXT) by using the GOT O statement.

« Avoid jumping the control out of the midst of FOR...NEXT statement block with the
GOTOstatement. The program given below, for example, should be avoided.

FOR 1 %0 TO 10
IF 1 %5 THEN
GOTO AAA
ENDI F
NEXT | %
AAA

Generally, the frequent or improper use of GOTO statements in a program will

decrease debugging efficiency and might cause fatal run-time errors. You are, there-
fore, recommended to avoid using GOTO statements, if possible.

55

3.2 Handling User Programs

3.2.1 User Programsin the Memory

The user area of the memory (memories) in the BHT can store more than one user program.
(For details about memories, refer to Appendix F, "Memory Area.")

If you have selected one of those programs as an execution program in the Setting menu of
System Mode, the BHT automatically runs the user program when powered on.

For the operating procedure of System Mode, refer to the BHT's User’s Manual.

3.2.2 Program Chaining

Program chaining, which is caused by the CHAI N statement as shown below, terminates a
currently running user program and transfers control to another program.

CHAI N "anot her . PD3"

To transfer the variables and their values used in the currently running user program to the
chained-to program along the program chain, use the COMMON statement as follows:

COVWMON a$(2), b, co% 3)
CHAI N "anot her . PD3"

The Interpreter writes these declared variable values into the "common variable area" in the
memory. To make the chained-to program refer to these values, use the COMMON statement
again.

COVMON a$(2), b, c% 3)

In BHT-BASIC, all of the name, type, definition order, and number of COVMON-declared vari-
ables used in the currently running program should be identical with those in the next program
(the chained-to program).

When compiling and linking more than one file to produce a user program, define all necessary
common variables in the main object (to be executed first). In other objects, declare common
variables required only in that object. If you link an object where common variables not defined
in the main object are newly defined, an error will result.

* progl. PD3
COWON a(10), b$(3),c%

CHAI N "prog2. PD3"
" prog2. PD3
COVMMON a(10), b$(3),c%

Since the COMVON statement is a declarative statement, no matter where it is placed in a
source program, the source program will result in the same output (same object program), if
compiled.

56

Chapter 3. Program Structure

3.2.3 Included Files

"Included files" are separate source programs which may be called by the | NCLUDE meta-
command.

Upon encounter with the | NCLUDE metacommand in a source program, the Compiler fetches
the designated included file and then compiles the main source program while integrating that
included file to generate a user program.

You should specify the name of an included file by using the REM $I NCLUDE or
" $I NCLUDE. In the included files, you can describe any of the statements and functions
except the REM$! NCLUDE and’ $1 NCLUDE.

Storing definitions of variables, subroutines, user-defined functions, and other data to be
shared by source programs into the included files will promote application of valuable program
resources.

If a compilation error occurs in an included file, it will be merely indicated on the line where the
included file is called by the | NCLUDE metacommand in the main source program, and neither
detailed information of syntax errors detected in the included files nor the cross reference list
will be outputted. It is, therefore, necessary to debug the individual included files carefully
beforehand.

57

Chapter 4
Basic Program Elements

4.1

4.2

4.3
4.4
4.5

CONTENTS
Structure of @ Program LiNE.........coouiieiiiee et 59
4.1.1 Format of a Program LiNecoccviiiiiiiiiie e 59
[1] LADEIS ..o 59
[2] SEAEMENTSooiiiiiiiee e 60
[B] COMMENTS....oiiiiiiiiiiie et 60
4.1.2 Program Line LeNgth.........ccooiiiiiiiiiiicee e 61
USADIE CharaClerScoociiiiiiee it 62
4.2.1 Usable CharaCters.........cccuviiiiiiieiiieiee st 62
4.2.2 Special Symbols and Control COAeS.........coeiurireriiiiiiiieiiiee e 63
LADEIS ... s 65
THENTITIEIS ..t 66
RESEIVEA WOTS ...ttt 67

58

Chapter 4. Basic Program Elements

4.1 Sructureof aProgram Line

4.1.1 Format of a Program Line

A program line consists of the following elements:

[label] [statenment] [:statenent] ... [comment]

* label
A label is placed at the beginning of a program line to identify lines.

e statement
A statement is a combination of functions, variables, and operators according to the syn-
tax.

A group of the statements is a program.

e comment
You may describe comments in order to make programs easy to understand.

[1] Labels

To transfer control to any other processing flow like program branching, you may use labels
which designate jump destinations. Labels can be omitted if unnecessary.

Labels differ from line numbers used in the general BASIC languages; that is, labels do not
determine the execution order of statements.

You should write a label beginning in the 1st column of a program line. To write a statement
following a label, it is necessary to place one or more separators (spaces or tabs) between the
label and the statement.

As shown below, using a label in the | F statement block can eliminate the GOT O statement
which should usually precede a jump-destination label.

IF a = 1 THEN Check
ELSE 500
ENDI F

Where the words "Check" and "500" are used as labels.

For detailed information about labels, refer to Section 4.3.

59

[2] Satements
Statements can come in two types: executable and declarative statements.

» Executable statements
They make the Interpreter process programs by instructing the operation to be executed.

» Declarative statements

They manage the memory allocation for variables and handle comments. Declarative
statements available in BHT-BASIC are listed below.

REM or single quotation mark ()
DATA

COVVON

DEFREG

Multi-statements: You can describe multiple statements in one program line by separating
them with a colon (3).

[3] Comments
A single quotation mark (") or REMcan begin a comment.

» Single quotation mark (')
A single quotation mark or apostrophe (*) can begin in the first column of a program line
to describe a comment.

When following any other statement, a comment starting with a single quotation mark
requires no preceding colon (;) as a delimiter.

comrent
PRI NT "abc" " commrent

* REM
The REMcannot begin in the first column of a program line.

When following any other statement, a comment starting with a REMrequires a preced-

ing colon (2).
REM comrent
PRI NT "abc" : REM comrent

60

Chapter 4. Basic Program Elements

4.1.2 Program LineLength

A program line is terminated with a CR code by pressing the carriage return key.

The allowable line length is basically 512 characters excluding a CR code placed at the end of
the line.

In either of the following two description ways, however, you can write a program line of up to
8192 characters:

In the samples below, symbol "1 " denotes a CR code entered by the carriage return key.

» Extend a program line with an underline (_) and a CR code.

IF (a$ = "," ORa$ = ".") AND b<c _.
AND EOF(d) THEN ...

» Extend a program line with a comma (,) and a CR code.

FI ELD #1, 13 as p$,5 as k$, !
10 as t$.

Note that the latter description way above (using a comma and CR code) cannot be used for

the PRI NT, PRI NT#, and PRI NT USI NG statements. Only the former way should apply to
them.

61

4.2 Usable Characters

4.2.1 Usable Characters

Listed below are characters which can be used for writing programs. Note that a double quote
(") cannot be used inside a character string. Symbols | and ~ inside a character string will
appear as | and - on the LCD of the BHT, respectively.

If used outside of a character string, symbols and control codes below have special meaning
described in Subsection 4.2.2.

Alphabet letters Including both the uppercase and lowercase letters
(AtoZandato z).

* Numerals Including 0 to 9 for decimal notation, and 0 to 9 and
A to F (a to f) for hexadecimal notation.

* Symbols Including the following:
$%*+—./<=>"&"():;[1{}#!1?@\] .

» Control codes CR, space, and tab
« Katakana €9, 7, 4, g~V
» Kanji (2-byte codes) €9, W ¥, 7, A, ...

(Full-width characters)

 Kanji (2-byte codes) eg., A 1, 7, ...
(Half-width characters)

m Distinction between Uppercase and L owercase L etters

The Compiler makes no distinction between the uppercase and lowercase letters, except for
those used in a character string data. All of the statements below, for example, produce the
same effect.

PRI NT a

print a

PRI NT A

print A

When used in a character string data, uppercase and lowercase letters will be distinguished
from each other. Each of the statements below, for example, produces different display output.

PRI NT "abc"
PRI NT " ABC"

62

Chapter 4. Basic Program Elements

4.2.2 Special Symbolsand Control Codes

Symbols and control codes used outside of a character string have the following special mean-

ing:
Symbols and Tvpical use
control codes yp
$ String suffix for variables or user-defined functions
(Dollar sign)

%
(Percent sign)

Integer suffix for variables, constants (in decimal notation), or user-
defined functions

*

Multiplication operator

(Asterisk)
+ » Addition operator or unary positive sign
(Plus sign) » Concatenation operator in string operation
 Format control character in PRI NT USI NG statement
- Subtraction operator or unary negative sign
(Minus sign)
. » Decimal point
(Period) » Format control character in PRI NT USI NG statement
/ « Division operator
(Slant) « Separator for date information in DATES$ function
< Relational operator

(Less-than sign)

» Relational operator

(Equal sign) » Assignment operator in arithmetic or string operation
» User-defined function definition expressions in single-line form
DEF FN
» Register variable definition expressions
> Relational operator

(Greater-than sign)

(Double quote)

A pair of double quotes delimits a string constant or a device file
name.

&
(Ampersand)

* Integer prefix for constants (in hexadecimal notation), which
should be followed by an H.
 Format control character in PRI NT USI NG statement

(single quotation mark
or apostrophes)

* Initiates a comment.
A pair of apostrophes (single quotations) delimits an included file
name.

(Left and right paren-
theses)

 Delimit an array subscript or a function parameter.
 Force the order of evaluation in mathematical, relational, string,
and logical expressions.

63

Symbols and
control codes

Typical use

(Collon)

- Separates statements.
+ Separates time information in TI ME$ function.

(Semicolon)

Line feed control character in | NPUT and other statements.

(]
(Square brackets)

« Define the length of a string variable.
 Define the string length of the returned value of a string user-
defined function.

{} Define the initial value for an array element.
(Braces)
« File number prefix in OPEN, CLFI LE, FI ELD, and other state-

(Pound sign)

ments.
» Format control character in PRI NT USI NG statement

!
(Exclamation mark)

Format control character in PRI NT USI NG statement

@ Format control character in PRI NT USI NG statement
' « Separates parameters or arguments.
(Comma) « Line feed control character in | NPUT and other statements.
_ If followed by a CR code, an underline extends one program line
(Underline) up to 8192 characters.
CR code Terminates a program line.
(Enter)

(Half-width space)

Separator which separates program elements in a program line.
(Note that a two-byte full-width space cannot be used as a separa-
tor.)

TAB
(Tab code)

Separator which separates program elements in a program line.

64

Chapter 4. Basic Program Elements

4.3 Labels

A label can contain the following characters:

 Alphabet characters
* Numeral characters
* Period (.)

m Rulesfor naming labels

The label length should be limited to 10 characters including periods.

A program can contain up to 9999 labels.

Label names make no distinction between uppercase and lowercase letters.
The following labels, for example, will be treated as the same label.

filewite
FI LEWRI TE
FileWite

No asterisk (*) or dollar sign ($) should be used for a label. The following label examples
are invalid:

*Label O
Label 1$

A label made up of only numeral letters as shown below is valid.

1000
1230

Note that a single 0 (zero) should not be used as a label name since it has a special
meaning in ONERROR GOTO, ONKEY...GOSUB, and RESUME statements.

A reserved word cannot be used by itself for a label name, but can be included within a
label name as shown below.

i nput key

A label should not start with the character string FN.

65

4.4 |dentifiers

Identifiers for the names of variables should comprise the same alphanumerics as the labels.
m Rulesfor naming identifiers

+ The identifier length should be limited to 10 characters including periods and excluding $
(dollar sign) and %(percent sign) suffixes.

» Every type of variables can contain up to 255 identifiers.

» A reserved word cannot be used by itself for an identifier name, but can be included
within an identifier name.

 An identifier should not start with a numeral character or the character string FN. If start-
ing with an FN, the character string will be treated as a function identifier defined by the
DEF FN statement.

Examples of identifiers:

a
abcdef $
al

al2345%

66

Chapter 4. Basic Program Elements

4.5 Reserved Words

"Reserved words" are keywords to be used in statements, functions, and operators. For the
reserved words, refer to Appendix B, "Reserved Words."

m Rulesfor using reserved words

» A reserved word cannot be used by itself for a label name, a variable name, or other
identifiers, but can be included within them. The following identifiers, for example, are
improper since they use reserved words "input" and "key" as is, without modification:

i nput = 3
key = 1

» Areserved word can be used for a data file name as shown below.
OPEN "input"™ AS #1

67

Chapter 5
Data Types

51

5.2

5.3

54

CONTENTS
CONSTANTS. ..ot 69
5.1.1 Types Of CONSLANTScocuvviiiiieiiiii et 69
[1] String CONSIANTS......ceeiiiiieiiiiee it 69
[2] NUMENC CONSLANTS.....cciviieiiiiiieriieeerieee et 69
VANTADIES ... e 71
5.2.1 Types of Variables according to FOrmat............ccccceeviuverinieesnieeennnen. 71
[1] String Variables........ccoooiiiiiieiee e 71
[2] Numeric Variables.........c.ccooiiiiiiiiie e 72
5.2.2 Classification of Variablesccccveiiiiiiiiiiiiec e 73
User-defined FUNCHONS.ciiiiiiiiiiie it 74
TYPE CONVEISION.ueeeiiiiiieiiieeeiiee e stee e et e e e stee e et eesnteeeetaee s snneeeanbeeeenneeeennees 75
5.4.1 TYPE CONVEISION ..utviiiiiiiiitie ettt ettt ettt e et et as 75
5.4.2 Type Conversion EXamplescccoceeiiiiiiiiiie e 76

68

5.1 Constants

5.1.1 Typesof Constants

Chapter 5. Data Types

A constant is a data item whose value does not change during program execution. Constants

are classified into two types: string constants and numeric constants.

Constant

Example

String constants

"ABC', "123"

Numeric constants

Integer constants In decimal notation

123% -4567

In hexadecimal notation | &HFFF, &h1A2B
Real constants 123. 45, -67.8E3

[1] String Constants

A "string constant" is a character string enclosed with a pair of double quotation marks ("). lts
length should be a maximum of 255 characters.

The character string should not contain a double quotation mark (") or any control codes.

[2] Numeric Constants

Integer Constants

In decimal notation

An integer constant in decimals is usually followed by a percent sign (%) as shown
below, but the % can be omitted.

Syntax: si gn deci mal nunericstring%
Where the si gn is either a plus (+) or a minus (-). The plus sign can be omitted.
The valid range is from -32768 to 32767.
If included in an integer constant in decimals, a comma (,) for marking every three digits
will cause a syntax error.
In hexadecimal notation
Integer constants in hexadecimals should be formatted as shown below.
Syntax: &Hhexnumeri cstring
The valid range is from Oh to FFFFh.

If included in a numeric string in hexadecimals, a period denoting a decimal point will
cause a syntax error.

69

Real Constants
Real constants should be formatted as shown below.
Syntax: sign manti ssa
Syntax: sign manti ssa E sign exponent
Where a lowercase letter "e" is also allowed instead of uppercase letter "E."

ment i ssa is a numeric string composed of a maximum of 10 significant digits. It can
include a decimal point.

If included in a real constant as shown below, a comma (,) for marking every three digits
will cause a syntax error.

123, 456 'syntax error!

70

Chapter 5. Data Types

5.2 Variables

A variable is a symbolic name that refers to a unit of data storage. The contents of a variable
can change during program execution.

5.2.1 Typesof Variablesaccording to Format

Variables are classified into two types: string variables and numeric variables, each of which is
subclassified into non-array and array types.

Classification of Variables Example

String variables Non-array type ab3$
I— Array type —|: One-dimensional €% (10)
Two-dimensional ~ gh$ (1,3)
Numeric variables Integer variables Non-array type a%
_|: Array type —|: One-dimensional €% (10)
Two-dimensional g% (2,3)

Real variables —|: Non-array type a,bed
Array type —|: One-dimensional e (10)
Two-dimensional fg (2,3)

Array variables should be declared in any of the DI M COVMON, and DEFREG statements.
Note that the DI Mstatement should precede statements that will access the array variable.

BHT-BASIC can handle array variables up to two-dimensional.
The subscript range for an array variable is from 0 to 254.

[1] String Variables
A string variable should consist of 1 through 255 characters.

* Non-array string variables

A non-array string variable should be formatted with an identifier followed by a dollar sign
($) as shown below.

Syntax: identifier$
Example: a$, bcd123%$
The default number of characters for a non-array string variable is 40.

» Array string variables

An array string variable should be formatted with an identifier followed by a dollar sign ($)
and a pair of parentheses () as shown below.

Syntax: identifier$(subscript[,subscript])
Example: a$(2), bcd123%(1, 3)
Where a pair of parentheses indicates an array.

The default number of characters for an array string variable is 20.

71

= Memory Occupation

A string variable occupies the memory space by (the number of characters + one) bytes, where
the added one byte is used for the character count. That is, it may occupy 2 to 256 bytes.

If a non-array string variable consisting of 20 characters is declared, for example, it will occupy
21-byte memory space.

[2] Numeric Variables

* Non-array integer variables

A non-array integer variable should be formatted with an identifier followed by a percent-
age sign (%) as shown below.

Syntax: i dentifier%
Example: a% bcd%

« Array integer variables

An array integer variable should be formatted with an identifier followed by a percentage
sign (%) and a pair of parentheses () as shown below.

Syntax: identifier%subscript[,subscript])
Example: e% 10),fg% 2,3), h%i % %
Where a pair of parentheses indicates an array.

* Non-array real variables
A non-array real variable should be formatted with an identifier only as shown below.
Syntax: identifier
Example: a, bcd

» Array real variables

An array real variable should be formatted with an identifier followed by a pair of paren-
theses () as shown below.

Syntax: i dentifier(subscript[,subscript])
Example: e(10),fg(2,3),h(i%|%
Where a pair of parentheses indicates an array.

m Memory Occupation

A numeric variable occupies 2 bytes or 6 bytes of the memory space for an integer variable or
a real variable, respectively.

72

Chapter 5. Data Types

5.2.2 Classification of Variables

m Work Variables

A work variable is intended for general use. You may use it either by declaring with the DI M
statement as a non-array variable or without declaration as an array variable. The following
examples show work variables:

DI M a(10), b%5), c$(1)
d=100: e%=45

FOR count% = s1% TO s2%
NEXT count %

At the start of a user program, the Interpreter initializes all of the work variables to zero (0) or a
null character string. At the end of the program, all of these variables will be erased.

Upon execution of the DI Mstatement declaring an array variable, the Interpreter allocates the
memory for the array variable. The declared array variable can be erased by the ERASE state-
ment.

m Common Variables

A common variable is declared by the COMVON statement. It is used to pass its value to the
chained-to programs.

m Register Variables

A register variable is a unique non-volatile variable supported exclusively by BHT-BASIC. It
will retain its value (by battery backup) even after the program has terminated or the BHT has
been powered off. Therefore, it should be used to store settings of programs and other values
in the memory.

The Interpreter stores register variables in the register variables area of the memory which is
different from the work variables area.

Like other variables, register variables are classified into two types: string variables and
numeric variables, each of which is subclassified into non-array and array types.

The format of register variables is identical with that of general variables. However, you need to
declare register variables including non-array register variables with DEFREG statements.

BHT-BASIC can handle array variables up to two-dimensional.

In the BHT-5000/BHT-6000/BHT-6500, when starting a user program stored in the flash ROM
for the first time, the Interpreter copies the register variables into the RAM (so that both the
flash ROM and RAM store the register variables). When modifying the register variables, the
Interpreter changes those stored in the RAM.

When uploading a program file stored in the flash ROM by using the XFI LE statement or Sys-
tem Mode, the BHT-5000/BHT-6000/BHT-6500 uploads the program (except for the register
variables in the flash ROM) together with the register variables stored in the RAM.

73

5.3 User-defined Functions

Out of user-defined functions, the SUB and FUNCTI ON functions can be called from other
files. The DEF FN function can be called only in the file where that function is defined and
should start with an FN.

The DEF FN and FUNCTI ON functions are classified into three types: integer functions, real
functions, and character functions, each of which should be defined in the following format:

User-defined Function Format of DEF FN Format of FUNCTI ON
Integer functions FN functi onnamre %
Real functions FN functi onnane
Character functions FN functi onnarme $

m Setting Character String Length of Returned Values of Character Functions

A character function may return 1 through 255 characters. Note that the default character
string length results in the returned value of 40 characters.

If the returned value of the character string length is always less than 40 characters, you can
use the stack efficiently by setting the actual required value smaller than the default as the
maximum length. This is because the Interpreter positions returned values on the stack during
execution of user-defined functions so as to occupy the memory area by the maximum length
size. To define a function which results in the returned value of one character, for example,
describe as follows:

DEF FNshort $(i %[1]
On the other hand, if the returned value is more than 40 characters, it is necessary to set the

actually required length. To define a function which results in the returned values of 128 char-
acters, for example, describe as follows:

DEF FN ong$(i % [128]

= Dummy Arguments and Real Arguments

Dummy arguments are used for defining user-defined functions. In the example below, i %is a
dummy argument.
DEF FNf unc%i %
FNf unc%i % 5
END DEF

Real arguments are actually passed to user-defined functions when those functions are called.
In the example below, 3 is a real argument.

PRI NT FNf unc% 3)

74

Chapter 5. Data Types

5.4 Type Conversion

5.4.1 TypeConversion

BHT-BASIC has the type conversion facility which automatically converts a value of one data
type into another data type during value assignment to numeric variables and operations; from
a real number into an integer number by rounding off, and vice versa, depending upon the con-
ditions.

» The Interpreter automatically converts a value of a real into an integer, in any of the fol-
lowing cases:

- Assignment of real expressions to integer variables

- Operands for an arithmetic operator MOD

- Operands for logical operators: AND, OR, NOT, and XOR
- Parameters for functions

- File numbers

In the type conversion from real into integer, the allowable value range of resultant inte-
ger is limited as shown below. If the resultant integer comes out of the limit, a run-time
error.

-32768 < resultantintegerval ue < +32767

 In assignments or operations from integer to real, the type-converted real will have higher
accuracy:

Syntax: real vari abl e = i ntegerexpression

In the above case, the Interpreter applies the type conversion to the evaluated resultant
of the integer expression before assigning the real value to the real variable.

Therefore, a in the following program will result in the value of 184.5.
a=123%1.5

75

5.4.2 Type Conversion Examples

The following examples show the type conversion from real to integer.

m Assignment of Real Expressionsto Integer Variables

When assigning the value of the real expression (right side) to the integer variable (left
side), the Interpreter carries out the type conversion.

Syntax: i ntegervari abl e = real expression
Example: b% = 123. 45
Where b%will become 123.

m Operandsfor an Arithmetic Operator MOD
Before executing the MOD operation, the Interpreter converts operands into integers.
Syntax: real expressi on MOD real expressi on
Example: 10.5 MOD 3.4
Where the result will become identical with 11 MOD 3.

m Operandsfor Logical Operators AND, OR, NOT, and XOR

Before executing each logical operation, the Interpreter converts operands into inte-
gers.

Syntax: NOT real expressi on,
real expressi on { AND| OR| XOR} real expression

Example: 10.6 AND 12. 45
Where the result will become identical with 11 AND 12.

m Parametersfor Functions

If parameters i and j of the functions below are real expressions, for example, the
Interpreter converts them into integers before passing them to each function.

CHR$(i), HEX$(i), LEFT$(x$,i), M D$(x$,1,]j),
R GHTS(x$,i), ...

m File Numbers
The Interpreter also rounds off file numbers to integers.
EO-(fil eno), LOC(fil eno), LOF(fileno), ...

76

Chapter 6

Expressions and Operators

CONTENTS

B.1 OVEIVIEW ...ttt ettt ettt ettt ettt ettt et nre e e neennn e 78
6.2 OpErator PreCEUENCEeeeiiieeeiiii e siee ettt et e e et nneeeennaee e 79
(SR B O] o T=T = (o] £ TP 81
6.3.1 ArthmetiC OPEratOrSoeiiiiiiiiiee e 81
6.3.2 Relational OPEratorsScooviieiiiiieiiee ettt 82
6.3.3 LOQICAl OPEIatOrSceiuieieeitiieiiiie ittt 83

[1] The NOT OPEIAtOrcceeeiiiiieeceeiesiee e see et 83

[2] The AND OPEIALOrcoieieiieiiiieieeniieesiee et 84

[3] The OROPEIALONeieeieeeeeieeieeieetee e ee s 84

[4] The XOROPEIALOLcceeeeiiiiiesieeiesiee e siee e seeenee e seeeneeseeenees 84

6.3.4 FUNCHON OPEIALOrS.....c.uveieiriieiiiie ittt ettt 85
6.3.5 StrING OPEIALOISvviiieteiiitie ettt 85

77

6.1 Overview

An expression is defined as a combination of constants, variables, and other expressions
which are connected using operators.

There are two types of expressions--numeric expressions and string expressions.

BHT-BASIC has the following types of operators:

Operators Description

Arithmetic operator Performs arithmetic operations.

Relational operator Compares two values.

Logical operator Combines multiple tests or Boolean expressions
into a single true/false test.

Function operator Performs the built-in or user-defined functions.

String operator Concatenates or compares character strings.

78

Chapter 6. Expressions and Operators

6.2 Operator Precedence

When an expression contains more than one operator, BHT-BASIC performs the operations in
the standard precedence as shown below.

Precedence

1 Parentheses ()

The parentheses allow you to override operator precedence; that is, operations
enclosed with parentheses are first carried out.

For improving the readability of an expression, you can use parentheses to separate
two operators placed in succession.

2. Function operations

3. Arithmetic operations

Operations Arithmetic Operators Precedence
Negation _ 1
Multiplication and division * and / 2
Modulo arithmetic MOD 3
Addition and subtraction +and _ 4
4, Relational operations
=, <>, ><, <, >, <=, >=, =<, =>

5. L ogical operations

Operations Logical Operators Precedence
Logical negation NOT 1
Logical multiplication AND 2
Logical addition OR 3
Exclusive logical addition XOR 4
6. Sring operations

79

When more than one operator occurs at the same level of precedence, the BHT-BASIC
resolves the expression by proceeding from left to right.

a=4+5. 0/ 20*2-1

In the above example, the operation order is as follows;

5.0/ 20 (=0.25)
0.25%2 (=0.5)
4+0.5 (=4.5)
4.5-1 (=3.5)

80

6.3 Operators

6.3.1 Arithmetic Operators

Chapter 6. Expressions and Operators

Arithmetic operators include a negative sign (-) and operators for multiplication (*), division (/),

addition (+), and subtraction (-). They also include modulo operator MOD.

Operations Arithmetic Operators | Precedence Examples
Negation - 1 -a
Multiplication and division * and / 2 a*b, a/b
Modulo arithmetic MOD 3 a MOD b
Addition and subtraction +and — 4 a+b, a-b

m Modulo Operation (MCD)

The MOD operator executes the modulo operation; that is, it divides expr essi on 1

by expr essi on 2 (see the format below) and returns the remainder.

Syntax: expressi onl MOD expressi on2

Where one or more spaces or tab codes should precede and follow the MOD.

If these expressions include real values, the MOD first rounds them off to integers and
then executes the division operation. For example, the MOD treats expression 8 MOD
3. 4 as 8 MOD 3 so as to return the remainder "2".

m Overflow and Division by Zero

Arithmetic overflow resulting from an operation or division by zero will cause a run-time
error. Such an error may be trapped by error trapping.

81

6.3.2 Relational Operators

A relational operator compares two values. Depending upon whether the comparison is true or

false, the operator returns true (1) or false (0).
With the operation result, you can control the program flow.

The relational operators include the following:

Relational Operators Meanings Examples
= Equal to A=B
<> or >< Not equal to A <> B
< Less than A Greater than A>B
<=or=< Less than or equal to A<= B
>=or => Greater than or equal to A >= B

If an expression contains both arithmetic and relational operators, the arithmetic operator has

higher precedence than the relational operator.

82

Chapter 6. Expressions and Operators

6.3.3 Logical Operators

A logical operator combines multiple tests and manipulates Boolean operands, then returns
the results. Itis used, for example, to control the program execution flow or test the value of an
I NP function bitwise, as shown in the sample below.

| F d<200 AND f<4 THEN ...
WHI LE i >10 OR k<O ...

|F NOT p THEN ...

barcod% = | NP(0) AND &h02

Listed below are the four types of logical operators available.

Operations Logical Operators Precedence
Negation NOT 1
Logical multiplication AND 2
Logical addition OoR 3
Exclusive logical addition XOR 4

One or more spaces or tab codes should precede and follow the NOT, AND, OR, and XOR
operators.

In the logical expressions (or operands), the logical operator first carries out the type conver-
sion to integers before performing the logical operation. If the resultant integer value is out of
the range from -32768 to +32767, a run-time error will occur.

If an expression contains logical operators together with arithmetic and relational operators,
the logical operators are given lowest precedence.

[1] The NOT operator

The NOT operator reverses data bits by evaluating each bit in an expression and setting the
resultant bits according to the truth table below.

Syntax: NOT expression

Truth Table for NOT

Bit in Expression Resultant Bit
0 1
1 0

For example, NOT O = -1 (true).

The NOT operation for an integer has the returned value of negative 1's complement. The
NOT X, for instant, is equal to —(X+1).

83

[2] The AND operator

The AND operator ANDs the same order bits in two expressions on either side of the operator,
then sets 1 to the resultant bit if both of these bits are 1.

Syntax: expressi onl AND expression2

Truth Table for AND

Bitin Expressi on 1 Bitin EXpr essi on 2 Resultant Bit
0 0 0
0 1 0
1 0 0
1 1 1

[3] The OR operator

The OR operator ORes the same order bits in two expressions on either side of the operator,
then sets 1 to the resultant bit if at least one of those bits is 1.

Syntax: expressi onl OR expression2

Truth Table for OR

Bit in Expr essi on 1 Bit in Expr essi on 2 Resultant Bit
0 0 0
0 1 1
1 0 1
1 1 1

[4] The XOR operator

The XOR operator XORes the same order bits in two expressions on either side of the opera-
tor, then sets the resultant bit according to the truth table below.

Syntax: expressionl XOR expression2

Truth Table for XOR

Bitin Expressi on 1 Bitin EXpr essi on 2 Resultant Bit
0 0 0
0 1 1
1 0 1
1 1 0

84

Chapter 6. Expressions and Operators

6.3.4 Function Operators

The following two types of functions are available in BHT-BASIC, both of which work as func-
tion operators:

m Built-in Functions
Already built in BHT-BASIC, e.g., ABS and | NT.

m User-defined Functions

Defined by using DEF FN (in single-line form), DEF FN...END DEF (in block form),
SUB...END SUB, or FUNCTI ON...END FUNCTI ON statement.

6.3.5 Sring Operators

A character string operator may concatenate or compare character strings.

Listed below are the types of character string operators available.

Operations Character String Operators Examples
Concatenation | + (Plus sign) a$+". " +b$
Comparison = (Equal) a$=bs%

<>, ><(Notequal) a$<>b$, a$><b$
> <, =<, => <=, >=(Greaterorless) | a$>b$, a$=>b$

m Concatenation of Character Strings

The process of combining character strings is called concatenation and is executed
with the plus sign (+). The example below concatenates the character strings, a$ and

b$.

a$="Work1i" : b$ = "dat"
PRI NT a$+"."+b$

Wor k1. dat

85

m Comparison of Character Strings

The relational operators compare two character strings according to character codes
assigned to individual characters.
In the example below, the expression a1$<b1$ returns the value of true so as to out-
put -1.

al$="ABCO0O1"

b1$=" ABC002"

PRI NT al1$<bi1$

-1

86

Chapter 7
/O Facilities

7.1

7.2

7.3

7.4

CONTENTS

OULPUL t0 e LCD SCIEEN ...cocuveiieiiiieiiiie ettt et et e e e nnaee e
4 O R B 1Y o] = | A 0 | TP
[1] Fonts available on each BHTocociiiiiiiiiiiie e
[2] Switching the fONtSc.cooiiiiiiii e
7.1.2 Number of Characters and Coordinates on the LCDccceevnnee.
[1] BHT-3000......cccueitieiiiairieniee sttt siee et steeesaeeseneen
[2] BHT-4000.... ..ottt
[3] BHT-5000......cccuiiiiiiiiiiieniee ittt
[4] BHT-6000/BHT-6500.......cccccciiuiimirinirienienreeniieseeenessireesee s
[5] BHT-7000......cciiiiiiiiiiieeniee it
[6] BHT-7500......ccciiiiiiiiiiiieniie ittt s e e
7.1.3 Dot Patterns of FONESueiiiiiiiiiieeeeeen e
7.1.4 Mixed Display of Different Character Types or Different-size
Fonts
[1] Displaying ANK, Kaniji, and Condensed Kaniji in One Line......
[2] Displaying Standard- and Small-size Fonts on the
Same Screen
[3] Displaying Normal- and Double-width Characters on the
Same Screen
7.1.5 Displaying User-defined Characters.............ccccovvveiviieeiniiennnee e
T.1.6 VRAM .ottt
7.1.7 Displaying the System Status (BHT-4000/BHT-5000/BHT-6000/
BHT-6500)
[1] BHT-4000.... ..ottt s
[2] BHT-5000/BHT-6000/BHT-6500cccccriuiirimenriarienineenieenines
7.1.8 Other Facilities for the LCDc.coeviiiiiiie e

Input from the KeYDoardcooiiiiiiiiiiiie e
7.2.1 FUNCHON KBYS....iiiiiiiiiiiiiie ittt ettt
7.2.2 KeysStroKe Trappingoceeeirreeeiniieeeiiee ettt
7.2.3 Alphabet ENtry FUNCHONoooiiiiiiiee e
[1] BHT-3000/BHT-4000/BHT-6000/BHT-6500.........c.c.cccvernneannne
[2] BHT-5000/BHT-7000/BHT-7500 (32-key pad models)
[3] BHT-7000 (26-key pad model)........cccoecvreermrieniiieiiieeeiiieees
7.2.4 Other Facilities for the Keyboard.............cccoooveiiiiiiiieeciieece
[1] AULO-TEPEALeeeeeiiieeeiee ettt
[2] ShIftKEY oot

L T=T =T a o [S TT=T oL TR
7.3.1 TIMEr FUNCHONS.....ccii i e e e e eeans
7.3.2 BEEP Stat@mMeENtvvveeieiiiieiiieeeeeee et

Controlling and Monitoring the 1/OScoocvoiiiiieie e
7.4.1 Controlling by the OUT Statement.........cccoevueerieeriveeiieesieesieesienneens
7.4.2 Monitoring by the | NP FUNCHONcccoiiiieiieccee e
7.4.3 Monitoring by the WAI T Statement..........cccocveeeieneniene e

87

7.1 Output totheLCD Screen
7.1.1 Display Fonts

[1] Fontsavailableon each BHT

Listed below are the fonts available on each BHT series.

(V: Available)
Screen mode Font size BHT-| BHT-| BHT-| BHT-| BHT-| BHT-| BHT- Font type Dots
3000 | 4000 | 5000 | 6000 | 6500 | 7000 | 7500 yp (W x H)
Single-byte ANK* | Standard-size | v v v v v v |ANKchars | 6x8
mode
Small-size v v v v |ANKchars | 6x6
Single-byte ANK* | Standard-size v v |ANKchars | 12x 8
mode
(Double-width) | Small-size v v |ANKchars | 12x6
Two-byte Kanji | Standard-size v v v v v v Vv |Full-width | 16 x 16
mode Half-width 8x16
Small-size v v v v | Full-width | 12 x 12
Half-width 6x12
Two-byte Kanji | Standard-size v v | Full-width | 32 x 16
mode Half-width | 16 x 16
(Double-width)
Small-size v Vv |Full-width |24 x 12
Half-width | 12 x 12
Condensed two- v v Full-width | 12 x 16
byte Kanji mode Half-width 6x16

*ANK: Alphanumerics and Katakana

The ANK mode displays ANK characters listed in Appendices C1 and C2.
The two-byte Kanji mode displays the following characters:
» Half-width: Katakana and alphanumerics

 Full-width: JIS Levels 1 and 2 Kaniji, alphabets and symbols

M Half-width Kanji characters differ from ANK charactersin size.

88

Chapter 7. 1/O Facilities

[2] Switching thefonts

You may switch the screen mode and font size by using the statements below.
» SCREEN statement
« QUT statement

To specify the single-byte ANK mode, two-byte Kanji mode, or condensed two-byte Kanji
mode, use the SCREEN statement as listed below.

Specifies the single-byte ANK mode SCREEN 0
Specifies the two-byte Kanji mode SCREEN 1
Specifies the condensed two-byte Kanji mode SCREEN 2

To specify the normal- or double-width, use the SCREEN statement as listed below.

Specifies the normal-width SCREEN , 0 or SCREEN , 1
Specifies the double-width SCREEN , 2 or SCREEN , 3

To specify the standard- or small-size, use the OUT statement as listed below.

Specifies the standard-size OUT &H6080, 0
Specifies the small-size OUT &H6080, 1

7.1.2 Number of Characters and Coordinates on the
LCD

To locate characters on the coordinates of the LCD screen, use the LOCATE statement. To
obtain the current cursor position, use the CSRLI N and PGS functions.

[1] BHT-3000

Screen mode Single-byte ANK mode Two-byte Kanji mode

Columns x Lines 16 x4 Full-width: 6x 2
Half-width: 12 x 2

m Displaying Kanji Characters

The BHT-3000 has no Kaniji font, so it requires "Kanji Utility" to display Kanji characters. The
"Kaniji Utility" may handle up to 1024 Kanji characters.

Note that the following characters may be displayed without "Kanji Utility":
 Half-width alphanumerics and Katakana
 Full-width alphanumerics and Katakana

 Full-width Hiragana

89

m Locating Characterson the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode as shown below.

Single-byte ANK Mode (16 columns x 4 lines)

LOCATE 1,1

LOCATE 16,1

LOCATE 16, 4

Two-byte Kanji Mode (6 columns x 2 lines for full-width characters only,
12 columns x 2 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

LOCATE 1,1

'\LOCATE 12,3

s

LOCATE 12, 2

90

[2] BHT-4000

Chapter 7. 1/O Facilities

Single-byte i - Condensed two-byte
Screen mode ANK mode Two-byte Kanji mode Kanji mode
Columns x Lines 26 x 10 Full-width: 10 x5 Full-width: 13 x5

Half-width: 20 x 5

Half-width: 26 x 5

m Displaying Kanji Characters

To display characters in the condensed two-byte Kanji mode, the BHT-4000 condenses the
Kanji patterns of 16 x 16 dots designed for the two-byte Kanji mode. For statements on how to
condense, refer to Appendix C3.

m Locating Characterson the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode as shown below.

Single-byte ANK Mode (26 columns x 10 lines)

LOCATE 1,1 —»

1— LOCATE 26,1

+«— LOCATE 26, 10

91

Two-byte Kanji Mode 10 columns x 5 lines for full-width characters only,
20 columns x 5 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a

full-width character.

LOCATE 1,1—

LOCATE 1,9 —»r +«+—LOCATE 20, 9

LOCATE 1,2 —>»t é

1y
b niy)

EJ +— LOCATE 20, 2

92

Chapter 7. 1/O Facilities

Condensed Two-byte Kanji Mode (13 columns x 5 lines for full-width characters only,
26 columns x 5 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

(For the Kaniji patterns in the condensed two-byte Kanji mode, refer to Appendix C3.)

LOCATE 1,1 —»

LOCATE 1,9 —»r <«—LOCATE 26, 9

LOCATE 1,2—» <«—LOCATE 26, 2

\l
HHS
L4
my
JIN

93

[3] BHT-5000

Single-byte i - Condensed two-byte
Screen mode ANK mode Two-byte Kanji mode Kanji mode
Columns x 21x8 Full-width: 8x4 Full-width: 10 x 4
Lines Half-width: 16 x 4 Half-width: 21 x 4

m Displaying Kanji Characters

To display Kaniji characters, it is necessary to download the Kanji font file consisting of JIS
Level 1 and Level 2 font files to the BHT-5000 beforehand.

Even without those files, the half-width alphanumerics and Katakana may be displayed.

If in user programs you use Kanji characters whose fonts are not downloaded to the BHT-
5000, they will appear as "O" on the LCD.

To display characters in the condensed two-byte Kanji mode, the BHT-5000 condenses the
Kanji patterns of 16 x 16 dots designed for the two-byte Kanji mode. For statements on how to
condense, refer to Appendix C3.

m Locating Characterson the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode as shown below.

Single-byte ANK Mode (21 columns x 8 lines)

LOCATE 1, 1—»r +«+— LOCATE 21,1

«— LOCATE 21, 8

94

Chapter 7. 1/O Facilities

Two-byte Kanji Mode (* 8 columns x 4 lines for full-width characters only,
16 columns x 4 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

LOCATE 1,1 —»

LOCATE 1, 7—»r

<« LOCATE 16,7

\l

LOCATE 1,2 —» =) ﬁﬁ le— LOCATE 186, 2

95

Condensed Two-byte Kanji Mode (10 columns x 4 lines for full-width characters only,
21 columns x 4 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

(For the Kaniji patterns in the condensed two-byte Kanji mode, refer to Appendix C3.)

LOCATE 1,1 —»

\

LOCATE 1, 7 —» +«— LOCATE 21,7

A

<« L OCATE 21, 2

LOCATE 1,2 —»t ééfa

96

Chapter 7. 1/O Facilities

[4] BHT-6000/BHT-6500

Screen mode Single-byte ANK mode Two-byte Kanji mode
Font size Standard-size Small-size Standard-size Small-size
Columns x 16 x 10 16x8 Full-width: 6 x3 | Full-width: 8x4
Lines Half-width: 12 x 3 | Half-width: 16 x 4

m Displaying Kanji Characters

To display Kanji characters, it is necessary to download the Kanji font file consisting of JIS
Level 1 and Level 2 font files to the BHT-6000/BHT-6500 beforehand.

Even without those files, the half-width alphanumerics and Katakana may be displayed.

If in user programs you use Kanji characters whose fonts are not downloaded to the BHT-
6000/BHT-6500, they will appear as "O" on the LCD.

To display characters in the condensed two-byte Kanji mode, the BHT-6000/BHT-6500 con-
denses the Kaniji patterns of 16 x 16 dots designed for the two-byte Kanji mode. For state-
ments on how to condense, refer to Appendix C3.

m Locating Characterson the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode and the display font size as shown below.

Single-byte ANK Mode

Standard-size font (16 columns x 6 lines)

\
A

LOCATE 1,1—» «— LOCATE 16, 1

A

«— LOCATE 16, 6

97

Small-size font (16 columns x 8 lines)

LOCATE 1,1 —» 4— LOCATE 16, 1

4+— LOCATE 16, 8

Two-byte Kanji Mode

Standard-size font 6 columns x 3 lines for full-width characters only,
12 columns x 3 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character: Double columns represent an area for a
full-width character.

LOCATE 1,1 —»

\

%+ £ L LOCATE 12, 1

L1 4

Tf LOCATE 12,5

LOCATE 1,2 —»

LN
L1’4
iy
N

+4+— LOCATE 12, 2

cdiei f +— LOCATE 12, 4

98

Chapter 7. 1/O Facilities

Small-size font 8 columns x 4 lines for full-width characters only,
16 columns x 4 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown

below represents an area for a half-width character: Double columns represent an area for a
full-width character.

LOCATE 1,1 —IL

A

«——— LOCATE 16,1

A

«—— LOCATE 16, 7

LOCATE 1,2 —» é5~ ﬁéj 44— LOCATE 16, 2

+—LOCATE 16, 6

The small-size fonts of aphanumerics and a part* of the J'S Level 1 Kanji are con-
tainedinthe JSLevel 1 font file. For other characters whose small-size fonts are not
available, the BHT-6000/BHT-6500 condenses the flash-ROMed standard-size font
datafor display into the small-size of 12 x 12 dots. Some condensed characters might

not be legible, so you are recommended to load user-defined fonts (max. 32) for them
by using the KPLOAD statement.

*Kanji characters mainly used in the system messages

99

[5] BHT-7000

(1) Normal-width

Screen mode Single-byte ANK mode

Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size
Columns x 21x8 21x10 Full-width: 8 x4 | Full-width: 10 x5
Lines Half-width: 16 x4 | Half-width: 21 x5

(2) Double-width

Screen mode Single-byte ANK mode

Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size
Columns x 10x8 10x 10 Full-width: 4 x4 | Full-width: 5x5
Lines Half-width: 8 x4 | Half-width: 10 x 5

m Displaying Kanji Characters

To display Kanji characters, it is necessary to download Kanji font files listed below.

16-dot font file
12-dot font file

» To use standard-size fonts:

* To use small-size fonts:

Even without those files, the half-width alphanumerics and Katakana may be displayed.

Each of the 16-dot and 12-dot font files consists of JIS Level 1 and Level 2 font files.

100

Chapter 7. 1/O Facilities

m Locating Characterson the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode and the display font size as shown below.

Single-byte ANK Mode

Standard-size font 21 columns x 8 lines for normal-width,
10 columns x 8 lines for double-width

Nor mal - wi dt h
Doubl e-wi dt h
LOCATE 1,1 —mt {®— LCCATE 21, 1
Sv
AiBiG:DiE
ABiCiDE
J#——LOCATE 21, 8
Small-size font 21 columns x 10 lines for normal-width,
10 columns x 10 lines for double-width
Nor nmal - wi dt h

| Doubl e-wi dt h

LOCATE 1, 1 —~ 14— LOCATE 21,1

14— LOCATE 21, 10

101

Two-byte Kanji Mode

Standard-size font / 8 columns x 4 lines for full-width characters only,
4 columns x 4 lines for full-width characters in double-width mode only,
16 columns x 4 lines for half-width characters only,
8 columns x 4 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

Nor mal - wi dt h

Doubl e-wi dt h
2\
LOCATE 1, 1—mt v de—LocaTE 16,1
cidieff Nor nal - wi dt h
cidie f Doubl e- wi dt h
A
LOCATE 16, 7
Nor mal - wi dt h .
Doubl e- wi dt h
Y |
LOCATE 1,2 —mt /\ﬁa ﬁq de—LocaTE 16,2
4 -
. Doubl e-wi dt h
Nor nal - wi dt h cidieif c d e f
LOCATE 16, 6

102

Chapter 7. 1/O Facilities

Small-size font 10 columns x 5 lines for full-width characters only,

5 columns x 5 lines for full-width characters in double-width mode only,
21 columns x 5 lines for half-width characters only,
10 columns x 5 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

Nor mal - wi dt h
l Doubl e-wi t dh

>y
=
f

€

LOCATE 1, 1 —m 19— LCCATE 21,1

TN

Nor mal - wi dt h

14
i
™

Doubl e-wi dt h

19— LOCATE 21, 9

Nor mal - wi dt h

Doubl e- wi dt h
LOCATE 1, 2 —t ‘éEﬁﬁ Y Je—LoCATE 21, 2
cidef Nor mal - wi dt h
N d Doubl e-wi dt h
cdeif i
T
LOCATE 21,8

103

[6] BHT-7500

(1) Normal-width

Screen mode Single-byte ANK mode

Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size
Columns x 26 x 20 26 x 26 Full-width: 10 x 10 | Full-width: 13 x 13
Lines Half-width: 20 x 10 | Half-width: 26 x 13

(2) Double-width

Screen mode Single-byte ANK mode

Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size
Columns x 13x 20 13 x 26 Full-width: 5x 10 | Full-width: 6 x13
Lines Half-width: 10 x 10 | Half-width: 13 x 13

m Displaying Kanji Characters

To display Kanji characters, it is necessary to download Kanji font files listed below.

16-dot font file
12-dot font file

» To use standard-size fonts:

* To use small-size fonts:

Even without those files, the half-width alphanumerics and Katakana may be displayed.

Each of the 16-dot and 12-dot font files consists of JIS Level 1 and Level 2 font files.

104

Chapter 7. 1/O Facilities

m Locating Characterson the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode and the display font size as shown below.

Single-byte ANK Mode

Standard-size font 26 columns x 20 lines for normal-width,
13 columns x 20 lines for double-width

Nor mal - wi dt h
Doubl e-wi dt h

LOCATE 1,1 LCCATE 26, 1

00,

94— LCCATE 26, 20

Small-size font 26 columns x 26 lines for normal-width,
13 columns x 26 lines for double-width

Nor mal - wi dt h
Doubl e-wi dt h

LOCATE 1, 1— J—LOCATE 26, 1

-t

LOCATE 26, 26

105

Two-byte Kanji Mode

Standard-size font 10 columns x 10 lines for full-width characters only,
5 columns x 10 lines for full-width characters in double-width mode only,
20 columns x 10 lines for half-width characters only,
10 columns x 10 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

Nor nal - wi dt h
Doubl e-wi dt h
LOCATE 1,1 —t \é 44— LCCATE 20, 1
>
3y
V
=S
cidieif Nor mal - wi dt h
n d S | f Doubl e-wi dt h
44— LOCATE 20, 19
Nor mal - wi dt h

Doubl e-wi dt h

7
o
Ping

i

LOCATE 1, 2 —m 3 —— | OCATE 20, 2

cdef Nor mal - wi dt h

e:f Doubl e-wi dt h

44— LCCATE 20, 18

106

Chapter 7. 1/O Facilities

Small-size font 13 columns x 13 lines for full-width characters only,
6 columns x 13 lines for full-width characters in double-width mode only,
26 columns x 13 lines for half-width characters only,
13 columns x 13 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

Nor nal - wi dt h
| Doubl e-wi dt h
LOCATE 1, 1—mf * J@——LOCATE 26, 1
cdef-- Nor nal - wi dt h
D e Doubl e- wi dt h

19— LCCATE 26, 25

Nor mal - wi dt h
Doubl e-wi dt h
LOCATE 1,2—mF 'ﬁ la— LOcATE 26,2
- 3
cide fia: Nor rmal - wi dt h
cidie Doubl e-wi dt h
l&a———LOCATE 26, 24

107

7.1.3 Dot Patterns of Fonts

m Character fonts

In the figures below, "m" shows a display area for characters. Any character is displayed within
a set of the display areas.

"O" shows a delimiter area that separates characters from each other and contains no display
data. The corresponding dots are always off.

The double-width mode is supported by the BHT-7000/BHT-7500.
Small-size fonts are supported by the BHT-6000/BHT-6500/BHT-7000/BHT-7500.
The condensed two-byte Kanji mode is supported by the BHT-4000/BHT-5000.

Single-byte ANK Mode

Standard-size font

6 x 8 dots 12 x 8 dots (in double-width mode)
ooooog o o o o o o o
fjoooog fdoooooooooog
goooooog 000oooooooog
ooooog Ooo0doooooood
fjoooog fdoooooooooog
goooooog 000oooooooog
ooooog Ooo0dooooooog
ooooog 0000000oooog

Small-size font

6 x 6 dots 12 x 6 dots (in double-width mode)
ooooog oooooooooood
foooog [o o s
ooogoog [o o o o o
oooooo o o o
foooog [o o o s
ooooog o o o o o

108

Chapter 7. 1/0 Facilities

Two-byte Kanji Mode™

Standard-size font

Half-width Kaniji

Half-width Kaniji (in double-width mode)

8 x 16 dots 16 x 16 dots

o o o e oo o o o
oooooood 00oo00oooogooodd
dogoooood 000000oooooooodo
o o o o e 00oooogoooooooooo
oooooood 00oo00oooogooodd
dogoooood 000000oooooooodo
o o o o e 00oooogoooooooooo
oogoooood o o o o o
ooooooog 0000000oooooooodo
o o o o e 00ooO00dgoooooooooo

oooo

Dooooooooooocaod
ooooo0oooooooood
o o o o o o

Full-width Kanji Full-width Kanji (in double-width mode)

16 x 16 dots 32 x 16 dots

o o o o o o o [| o o o o o o o o o o
000000000oooooog I0000D00000000000000000000000000
| | e o o [o e [0000000000000 000000000O0ooooooOd
DO00D0DO00oooooooogd o o o o o o o o o e e
000000000oooooog I0000D00000000000000000000000000
| | e o o [o e [0000000000000 000000000O0ooooooOd
o o o o o o s 0000000000000 000000000000000000
I o o o o o I0000DD00000000000000000000000000
OOooooo0f0gooooood OD0D00O000000000000000000O00ConoooOgd
0000000000000000 0000000000000 000000000000000000
I o o o o o I0000DD00000000000000000000000000
OOooooo0f0gooooood OD0D00O000000000000000000O00ConoooOgd
0000000000000000 0000000000000 000000000000000000
I o o o o o I0000DD00000000000000000000000000
OOooooo0f0gooooood OD0D00O000000000000000000O00ConoooOgd
DOo0DDOoDOoooooong o o oo o o o s o o o o e e o e)

Small-size font

Half-width Kaniji Half-width Kaniji (in double-width mode)

6 x 12 dots 12 x 12 dots

oooood o o o o o o

ooooog Oooooooooooog

oooood o o o o e o i |

oooood 00000oooooog

oooooo 0o00oooooood

ooooog o e o e e e i |

oooood I o o e o o e e |

oooooo 0o00oooooood

ooooog o e o e e e i |

oooood I o o e o o e e |

oooooo 0o00oooooood

goooooo 00Oooooooooog

Full-width Kanji Full-width Kaniji (in double-width mode)

12 x 12 dots 24 x 12 dots

o o o o o o [| o o o o o o
000o0oooooog 000000000000000000000000
000000ooooogd 000000000000000000000000
ooOodoooooooog I 5 o o e o o o e
00000oooooog 000000000000000000000000
I Y o e o e [| I o o o o o e
[o o o o o [s o o o o o

oooog

Oooooooooooad oo oo o o
Jooooogoooog oo oo o o o
Ooooo0ocooood o o o o o 0
ODoooooooooaa o o o o o

*1 The BHT-7000/BHT-7500 fonts do not use the lowermost dot line of the letter frame.

109

Condensed two-byte Kanji Mode

Full-width Kanji Half-width Kaniji
12 x 16 dots 6 x 16 dots
Oooooooooooog goooog
[[o o [e e oooooo
000000000000 oooood
Ooooooooooog goooogd
[[o o [e e oooooo
000000000000 oooood
[o o o [e e) goooogd
[y | [[oooood
OOooooooogoog ooooog
00000000Ooooon oooooo
OIoO0doooooooo oooood
OOooooooogoog ooooog
00000000Ooooon oooooo
OIoO0doooooooo oooood
OOooooooogoog ooooog
Ooooooooooog oooooo

m Cursor shape

The LOCATE statement specifies the cursor shape--Underline cursor, full block cursor, or
invisible.

In the BHT-7000/BHT-7500, you may define and load the desired cursor shape with the

APLOAD or KPLOAD statement and then specify the user-defined cursor with the LOCATE
statement. In the double-width screen mode, the cursor will be displayed in double width.

Single-byte ANK Mode

Standard-size font (6 x 8 dots)

Underline cursor2 Full block cursor Invisible
ooooog ooooooD
oooooo ooooog
ooooog ooooog
ooooog ooooogd
ooooog 0oooog
oooooo oooooo
ooooog 0oooogd
ooooog ooooog

Small-size font (6 x 6 dots)

Underline cursor Full block cursor Invisible
ooooog oDooooo
ooooog [| o
ooooog oooooo
ooooog oDoooog
ooooog [| o
ooooog oooooo

"2 In the BHT-7500, the underline cursor of the standard-size font will be displayed not on the
lowermost dot line of the letter frame but on the 2nd dot line from the bottom. This is
because the BHT-7500 uses the lowermost dot line for showing the system status.

110

Chapter 7. 1/O Facilities

Two-byte Kanji Mode

Standard-size font (8 x 16 dots)

Underline cursor? Full block cursor Invisible
o o o o ooooooog
o o 0oooooog
o o [e
I o e ooooooog
o o 0oooooog
o o [e
I o e ooooooog
o o o [e o
o o o e I o e o
gooo0oooo o o o [|
o o o [e o
o o o e I o e o
gooo0oooo o o o [|
o o o [e o
o o o I o e o
o o o o o ooooooono
Small-size font (6 x 12 dots)

Underline cursor Full block cursor Invisible
oogoog oooooo
oogooog oooogoo
Jogooog 0ooooo
oogoog oooooo
oogooog oooogoo
Jogooog 0ooooo
oogoog oooooo
oogooog oooogoo
Jogooog 0ooooo
oogoog oooooo
oogooog oooogoo
dooooog oooooo

"2 In the BHT-7500, the underline cursor of the standard-size font will be displayed not on the
lowermost dot line of the letter frame but on the 2nd dot line from the bottom. This is

because the BHT-7500 uses the lowermost dot line for showing the system status.

111

7.1.4 Mixed Display of Different Character Types or
Different-size Fonts

[1] Displaying ANK, Kanji, and Condensed Kanji in One
Line
It is possible to mix-display the ANK characters, Kanji characters (both full-width and half-

width), and condensed Kanji characters (both full-width and half-width) in the same line on the
LCD screen, as shown in the example below.

CLS

SCREEN 0

LOCATE 1,1 : PRI NT "ABCDEFGHabcdef gh"
SCREEN 1

LOCATE 1,1 : PRINT "j& ="
SCREEN 2
LOCATE 1,1 : PRINT " [Eis"

If the display data is outputted to the same location more than one time as shown in the above
program, the BHT overwrites the old data with new data.

Eﬁ‘ﬁ $ abcdefgh

[2] Displaying Sandard- and Small-size Fonts on the Same
Screen

The BHT-6000/BHT-6500 can mix-display the standard- and small-size fonts of ANK charac-
ters and Kanji characters (both full width and half-width) on the same screen.

CLS

QUT &h6080, O 'Selects standard-size font
SCREEN 0

PRI NT " ABCDEFCGH';

QUT &h6080, 1 'Selects small-size font
PRI NT "abcdef gh”

QUT &h6080, O 'Selects standard-size font
SCREEN 1

LOCATE 1,2 :PRINT " juiye:"

QUT &h6080, 1 'Selects small-size font
PRI NT " /~";

ABCDEFGHabcdefgn

ZAE
iR

I

112

Chapter 7. 1/O Facilities

[3] Displaying Normal- and Double-width Characters on the
Same Screen

The BHT-7000/BHT-7500 can mix-display the normal- and double-width characters on the
same screen.

CLS

QUT &h6080, 0 ' Standard-size font

SCREEN 0, 0 : PRI NT "ANK" ' Normal-width in single-byte ANK mode
SCREEN 0, 2 : PRI NT "ANK" ' Double-width in single-byte ANK mode
SCREEN 1,0 : PRINT " g =" " Normal-width in two-byte Kanji mode
SCREEN 1,2 : PRINT " " ' Double-width in two-byte Kanji mode
LOCATE 1,1

OUT &h6080, 1 ' Small-size font

SCREEN 0,0 : LOCATE 14 : PRINT "ANK" ' Normal-width in single-byte ANK mode
SCREEN 0, 2 : LOCATE 14 : PRINT "ANK" ' Double-width in single-byte ANK mode
SCREEN 1,0 : LOCATE 14 : PRINT " = "' Normal-width in two-byte Kanji mode
SCREEN 1,2 : LOCATE 14 : PRINT " = "’ Double-width in two-byte Kanji mode

ANK ANK
ANK ANK

: EF
g g
s —— /4 = |
EEE

7.1.5 Displaying User-defined Characters

m Loading a user-defined font
The APLOAD or KPLOAD statement loads a user-defined font.

The APLOAD statement is capable of loading up to 32 single-byte ANK fonts to be displayed in
the single-byte ANK mode.

The KPLOAD statement is capable of loading up to 32 or 128 two-byte Kaniji fonts (depending
on the BHT series as listed below) in full width to be displayed in the two-byte Kanji mode or
condensed two-byte Kanji mode.

» 32: BHT-3000/BHT-4000/BHT-5000/BHT-6000/BHT-6500
+ 128: BHT-7000/BHT-7500

m Condensing/enlarging the defined font for display

If the condensed two-byte Kanji mode, small-size font, or double-width is specified, then the
BHT condenses or enlarges user-defined fonts loaded by the APLOAD or KPLOAD to display.
(For details about condensing, refer to Appendix C3.)

113

7.1.6 VRAM

The | NP function may read the VRAM data. The OUT statement writes data into the VRAM so
that graphics may be displayed on the LCD dotwise.

m Specifying an address bytewise

An address on the LCD may be specified bytewise by giving a port number in the OUT state-
ment and | NP function. The entry range of the port number is as follows:

Series Entry range of the port number
BHT-3000 10h to 18Fh
BHT-4000 10h to 64Fh
BHT-5000 10h to 40Fh
BHT-6000 10h to 24Fh
BHT-6500 10h to 24Fh
BHT-7000 10h to 40Fh
BHT-7500 10h to C7Fh

Port numbering system counts, starting from the top left corner of the LCD to the right bottom
corner. The figure below shows the port numbers available on the BHT-7000.

10h

90h

110h

190h

210h

290h

310h

390h

8Fh

10Fh

18Fh

20Fh

28Fh

30Fh

38Fh

40Fh

114

Chapter 7. 1/O Facilities

m Setting an 8-bit binary pattern

The data of an 8-bit binary pattern should be designated by bit 7 (LSB) to bit 0 (MSB). If the bit
is 1, the corresponding dot on the LCD will come ON.

QUT &h10, &80 'Set bit 7 only to 1

10h ; 8Fh
90h 3 10Fh
110h 3 18Fh
190h 3 20Fh
210h 3 28Fh
290h 3 30Fh
310h 3 38Fh
390h @ 40Fh

In the BHT-7500, you may set graphic data to the VRAM area assigned to the bottom dot line
of the LCD by using the OUT statement. The set data cannot be displayed on the LCD but can
be read out with the | NP function. Scrolling the screen will also display the data set on the
bottom dot line.

115

7.1.7 Displaying the System Satus (BHT-4000/BHT-
5000/BH T-6000/BHT-6500)

The BHT-4000 may display the voltage level icon and shifted key icon on the bottom line of the
LCD.

The BHT-5000/BHT-6000/BHT-6500 may display the shifted key icon and alphabet input icon
at the right end of the bottom line of the LCD.

For details about the icon shapes, refer to the BHT's User's Manual.

[1] BHT-4000

m Turning the system statusindication on or off

You may turn the system status indication on or off on the SET DISPLAY menu in System
Mode. The default is ON. (For the setting procedure, refer to the "BHT-4000 User's Manual.")
You may control the system status indication also by using the OUT statement in user pro-
grams. (Refer to Appendix D, "Il/O Ports.")

m Number of lines controllable when the system statusis displayed

Setting the system status indication to ON occupies the bottom line of the LCD, so the number
of lines controllable by user programs decreases by one line as listed below. (The number of
columns undergoes no change.)

Number of Lines Controllable

Screen Mode Character Type by User Programs
Single-byte ANK mode ANK characters 9 lines
Two-byte Kanji mode Full-width Kanji 4 lines

Half-width Kanji 4 lines
Condensed two-byte Full-width Kaniji 4 lines
Kanji mode Half-width Kanji 4 lines

116

Chapter 7. 1/O Facilities

m Notesrelating to the system status

Notes when the system statusis displayed

The following statements and functions will cause somewhat different operations when the
system status is displayed.

« CLS statement
The CLS statement clears the VRAM area assigned to the bottom line of the LCD but does not
erase the system status displayed.

» LOCATE statement

Even if you specify the bottom line of the LCD as the desired cursor position by using the
LOCATE statement, the cursor cannot move to the bottom line and it will move to the next to
the bottom line instead.

« QUT statement

If you send graphic data to the VRAM area assigned to the bottom line of the LCD by using the
QUT statement, the sent data will be written into that VRAM area but cannot be displayed on
the bottom line.

« | NP function
If you specify the VRAM area assigned to the bottom line of the LCD as an input port, the | NP
function reads one-byte data from that area.

Notes when displaying the system status with OUT statement

If the cursor is placed on any line except for the bottom line of the LCD: Specifying the system
status indication with the OUT statement overwrites the system status on the current data
shown on the bottom line. If Kanji characters are shown on the bottom line, the lower half of
the Kanji is overwritten with the system status but with the upper half remaining on the LCD.

If the cursor is placed on the bottom line of the LCD: Specifying the system status indication
with the OUT statement scrolls up the screen by one line together with the cursor and the sys-
tem status will appear on the new bottom line. (The number of columns does not change.)

Notes when erasing the system status with the OUT statement

Erasing the system status with the OUT statement displays the content of the VRAM area
(assigned to the bottom line of the LCD) on that part of the LCD.

117

[2] BHT-5000/BH T-6000/BH T-6500

m Turning the system statusindication on or off

You may turn the system status indication on or off on the SET DISPLAY menu in System
Mode. The default is ON. (For the setting procedure, refer to the "BHT’s User’'s Manual") You
may control the system status indication also by using the OUT statement in user programs.
(Refer to[Appendix D, "I/O Ports.")

m Notesrelating to the system status
Notes when the system statusis displayed

The following statements and functions will cause somewhat different operations when the
system status is displayed.

o CLS statement

The CLS statement clears the VRAM area assigned to the right end of the bottom line of the
LCD but does not erase the system status displayed.

» QUT statement

If you send graphic data to the VRAM area assigned to the right end of the bottom line of the
LCD by using the OUT statement, the sent data will be written into that VRAM area but cannot
be displayed on the bottom line.

* | NP function

If you specify the VRAM area assigned to the right end of the bottom line of the LCD as an
input port, the | NP function reads one-byte data from that area.

Notes when displaying the system status with OUT statement

Specifying the system status indication with the OUT statement overwrites the system status
on the current data shown at the right end of the bottom line of the LCD. If Kanji characters are
shown at the right end of the bottom line, the lower half of the Kaniji is overwritten with the sys-
tem status but with the upper half remaining on the LCD.

Notes when erasing the system status with the OUT statement

Erasing the system status with the OUT statement displays the content of the VRAM area
(assigned to the right end of the bottom line of the LCD) on that part of the LCD.

118

Chapter 7. 1/O Facilities

7.1.8 Other Facilitiesfor the LCD

m Setting national characters

Using the COUNTRY$ function displays currency symbols and special characters for coun-
tries in the screen mode below.

* Single-byte ANK mode: All BHT series
» Two-byte Kanji mode (half-width): BHT-7000/BHT-7500
Refer to Appendix C2, "National Character Sets."

m Highlighting characters
The SCREEN statement highlights characters.

Display SCREEN statement
Regular display Normal-width SCREEN , 0

Double-width SCREEN , 2 (See Note below.)
Highlighted display Normal-width SCREEN , 1

Double-width SCREEN , 3 (See Note below.)

Note: Supported by the BHT-7000/BHT-7500 only.

m Specifying the cursor shape
The LOCATE statement specifies the cursor shape.

Cursor shape LOCATE statement

Invisible LOCATE ,, 0

Underline cursor LOCATE , , 1

Full block cursor LOCATE , , 2

User-defined cursor LOCATE , , 255 (See Note below.)

Note: Supported by the BHT-7000/BHT-7500 only.
The shape of a user-defined cursor may be defined by using the APLOAD or KPLOAD
statement in the single-byte ANK mode or two-byte Kanji mode, respectively.

In the single-byte ANK mode, the cursor size will become equal to the size of single-byte
ANK characters; in the double-byte Kanji mode or condensed double-byte Kanji mode, it
will become equal to the size of the half-width characters in each mode.

119

7.2 Input from the Keyboard

7.2.1 Function Keys

Any of the following operations makes the pressed key act as a function key:

- Pressing one of the function keys. "

- Pressing one of the function keys while holding down the Shift key. 2

- Pressing one of the numeric keys while holding down the Shift key.

*1 Since each of the function keys is assigned its default value of a character code
or control code, pressing it enters the default value. New assignment is possible
with a KEY statement as described below.

"2 If pressed with the Shift key held down, not only the function keys but also

numeric keys serve as function keys.

For the keyboard layouts, key numbers, and key assignments, refer to Appendix E, "Key Num-
ber Assignment on the Keyboard."

m Assigning a character string to a function key

You can assign a desired character string (up to two characters) or a single control code to a
function key by using the KEY statement, as shown below.

- Example for characters
KEY 1, " AB"

- Example for a control code
KEY 2, CHR$(8) ‘ - Backspace

Where a backspace code is assigned to the function key numbered 2.

NULL Character or Sring Assignment

Assigning a NULL character or string to a function key makes the entry of that function key
invalid if pressed. In the example below, pressing the keys numbered 3 and 4 produces no
keyboard entry.

KEY 3,""
KEY 4, CHR$(0)

120

Chapter 7. 1/O Facilities

m Defining a function key asthe L CD backlight function on/off key

You can define a particular function key as the backlight function on/off key and set the length
of backlight ON-time by using the KEY statement, as shown below.

- Example for defining the key numbered 5 and setting 60 seconds.
KEY 5, "BL60"

M It isimpossible to assign both a character string and the backlight on/off function to a
—— samefunction key. For details, refer to KEY in Chapter 14.

m Defining a magic key

BHT-5000/BH T-6000/BHT-6500

You can define a magic key as the SF key, trigger switch, or battery voltage display key, as well
as assigning a character string, control code, ENT key, or backlight function on/off key to it. (In
the BHT-6000, the trigger switch function is assigned to both M1 and M2 keys by default; in the
BHT-6500, it is assigned to all of M1 to M4 keys by default.)

- Example for defining the M1 key as the SF key.
KEY 30, " SFT"

- Example for defining the M2 key as the trigger switch.
KEY 31, " TRG'

- Example for defining the M1 key as the battery voltage display key.
KEY 30, " BAT"

BHT-7000/BHT-7500

You can define a magic key as the SF key or trigger switch, as well as assigning a character
string, control code, ENT key, or backlight function on/off key to it. (The trigger switch function
is assigned to both M3 and M4 keys by default.)

7.2.2 Keystroke Trapping

You can trap the pressing of a particular key, by programming with the KEY ON, KEY OFF, and
ON KEY...GOSUB statements.

m If you specify a function key which has been defined as the LCD backlight function
on/off key, trigger switch, shift key, or battery voltage display key for keystroke trap-
ping, no keystroke trap takes place.

For details about the keystroke trapping, refer to Chapter 9, "Section 9.2, "Event Polling."

121

7.2.3 Alphabet Entry Function

The alphabet entry function allows you to enter alphabetic characters, a space, and symbols
from the BHT keyboard (keypad) during execution of a user program.

[1] BHT-3000/BH T-4000/BHT-6000/BHT-6500

To activate or deactivate the alphabet entry function, use OUT statement in a user program.

As shown below, three characters are assigned to each of 0-9 numerical keys and period key.
For example, A, B, and C are assigned to the 7 key. To designate one of the three assigned
characters, use the trigger switch.*

* In the BHT-6000/BHT-6500, use the M1 or M2 key when the trigger switch function is
assigned to the key.

BHT-3000 BHT-4000 BHT-6000/BHT-6500

95969 4 (s (o) (M) (M2)
(6]

4 e S5wo 6pgr JKL MNO PQR ABC ~ DEF _GHI
OO (a)(5) (e (7) (8] (9]
STU VWX YzZs JKL 'V'go P%R
1 s 2 vwx 3 vzsp 1 2 3 = [VWX] [YZs]
l l +x 1$% ENT m m [—3ﬁ

0+0 - iw ENT. 0) — £
CJ J CR 0] (-] EnT

m Alphabet Entry Procedure
(1) Activating the alphabet entry function with OUT statement

Issue the OUT statement as shown below in a user program.
aJr 5, 1

M By issuing the OUT statement which sets 1 or O to bit O of port 5, you can acti-
vate or deactivate the al phabet entry function, respectively.

Toenable: QOUT 5, &hl
To disable: QOUT 5, &hO

The default setting of the alphabet entry function is "deactivated."

122

(2) Entering alphabetic characters from the keypad

Chapter 7. 1/O Facilities

1) Find a target key which is assigned an alphabetic character to be inputted, and
then check the position of the character (Left, Center, or Right) relative to the three
characters assigned to the target key.

2) Designate the character position by using the trigger switch and then press the tar-

get key.

How to use the trigger switch

Pressing the trigger switch cycles through the shift guidance block Left],
[Center |, and [Right| on the LCD as shown below.

Left |Center|

[Right

=1

:

The shift guidance block will appear
on the top or bottom line, depending
upon the current cursor position.
That is, if the cursor lies on any of
the lower lines, the shift guidance
block will appear on the top line; if it
lies on any of the upper lines, the
block will appear on the bottom line.

The shift guidance block appears only while the trigger switch is held down.
Therefore, you should press the target key while holding down the trigger switch.

To enter an N character, for example, use the trigger switch to display the block
on the LCD. While displaying the , press the 5 key.

During the above entry operation, you can use the Clear, Backspace, and numeri-

cal keys as usual.

m Notes

 In the BHT-3000/BHT-4000, the alphabet entry function is available only in the single-

byte code (ANK) mode.

« For displaying the shift guidance block |Right| when the status indication is set to ON,
the BHT-4000/BHT-6000/BHT-6500 overwrites the status indication with the shift guid-

ance block.

» The activated or deactivated state of the alphabet entry function will be resumed. The
shift guidance block will not be resumed.

» User programs cannot distinguish between a character entered with the alphabet entry
function and a character generated by pressing a function key which has been assigned
the character by the KEY statement, if those characters are the same. (Refer to Subsec-

tion 7.2.1, "Function Keys.")

123

In the example below, the character "A" may be entered with the alphabet entry function
or may be generated by pressing the F1 key which has been assigned that character by
the KEY statement. The user program, however, cannot distinguish between them so
as to transfer control to the program step labelled FUNCL1 in both cases.

K$=I NPUT$ (1)

| F K$="A" THEN GOTO FUNC1 ENDI F

To prevent such a problem, assign any other character to the F1 key with the KEY
statement and then modify the judgement condition. For example, replace the charac-
ter assigned to the F1 key with the character "#", as shown below.

KEY 1, "#"

K$=1 NPUT$ (1)
| F K$="#" THEN GOTO FUNCL ENDI F

For details, refer to Chapter 14, KEY and ON KEY statements.

Note that the alphabet entry function does not influence the keystroke trapping which
identifies keys according to their key numbers.

= Alphabet Entry Example

Coding in a user program:

Qut 5,1 "Activating the al phabet
"entry function
| NPUT "dat a="; a$ "Waiting for keystrokes

Entering alphabet characters "ND" under the above user program:

1) Press the trigger switch.

data=?

Left

124

Chapter 7. 1/O Facilities

2) Hold down the trigger switch.

data=?

Center

3) Without releasing the trigger switch, press the 5 key.

data=? N

Center

4) Release the trigger switch.

data=? N

5) Hold down the trigger switch.

data=? N

Left

6) Without releasing the trigger switch, press the 8 key.

data=? ND

Left

125

7) Release the trigger switch.

data=? ND

8) Press the Enter key to complete the entry operation.

[2] BHT-5000/BH T-7000/BH T-7500 (32-key pad models)

The BHT-5000/BHT-7000/BHT-7500 with a 32-key pad supports the alphabet entry function
which can be activated by pressing the ALP key. To deactivate it, press the ALP key again.

To enter lowercase letters in the alphabet input mode, shift the keypad with the SF key. Letter
assignment to the keys is shown in Appendix E.

= BHT-5000
When the alphabet input function is activated, the icon

appears at the right end of the bottom line of the
LCD as shown at right if you have turned on the system
status indication in System Mode.

= BHT-7000/7500

When the alphabet entry system is selected, a bar
appears above the ALP as shown at right.

o) SF ALP

126

Chapter 7. 1/O Facilities

[3] BHT-7000 (26-key pad model)

In addition to the numeric entry from the keypad, the BHT-7000 with a 26-key pad supports
alphabet entry.

m Switching between the Numeric Entry System and Alphanumeric Entry Sys-
tem

To switch between the numeric entry system and alphanumeric entry system, use the OUT
statement in a user program as shown below.

QUT &h60B0, 0 ‘Switches to the numeric entry system*
QUT &h60B0, 1 ‘Switches to the alphanumeric entry system

*Selected when the BHT-7000 is cold-started.

To monitor the current key entry system, use the | NP function as shown below.
| NP(&h60B0)

m Switching between Numeric and Alphabet Entry M odesin the Alphanumeric
Entry System

In the alphanumeric entry system, you may switch between numeric and alphabet entry modes
as described below. The default, which is applied immediately after the BHT-7000 is switched
to the alphanumeric entry system, is the numeric entry mode.

» Pressing the SF key

Pressing the SF key toggles between the numeric and alphabet entry modes.

 Using the OQUT statement
Issue the QUT statement as shown below.

QUT &h60B1, 0 ‘Switches to the numeric entry mode
QUT &h60Bl1, 1 ‘Switches to the alphabet entry mode

To monitor the current entry mode, use the | NP function as shown below.
| NP(&h60B1)

127

s Alphabet Entry Procedure

(1) Switch to the alphanumeric entry system as follows:
Issue "OUT &h60BO0, 1"

(2) Switch to the alphabet entry mode as follows:
Press the SF key or issue "OUT &h60B1, 1"
The ALP status bar appears.

(3) Enter alphabet letters from the keypad as follows:

1) Press a numerical key to which the desired alphabet letter is assigned by the required
number of times until the desired alphabet letter appears, referring to the relationship
between keys and their assigned data given below.

To enter "T," for example, press the 1 key two times. At this stage, the "T" is high-
lighted but not established yet.

Keys Key data assigned
7 A,B,C,a b, c

D,E,Fde,f

G H,I,g h,i

J, K L jkl

M, N, O, m,n, 0

P,QRpQr

S, TUs tu

V, W, X, v,w, X

Y,Z,+,y,2

- %, $,\

.comma (,), /, space

o W NP O O O

2) Press any of the following keys to establish the highlighted character ("T" in this exam-
ple).

- If you press any one of the function keys (F1 to F8), BS, C, and magic keys (M1 to
M4), then the highlighted character ("T") will be established. The key data of both
the established key and the key you pressed now will be returned.

- If you press the ENT key, the highlighted character ("T") will be established and the
key data will be returned.

- If you press the SF key, the alphabet entry mode will be switched to the numeric
entry mode. The highlighted character will be ignored.

- If you press any other numerical key (e.g. "3" to which "Y" is assigned), the key data
of the highlighted character ("T") will be established and the key data will be
returned. At this state, the "Y" is not established yet.

128

Chapter 7. 1/O Facilities

When no key is ready to be established, pressing any of the function keys, BS, C,
ENT, and magic keys will return the key data of the pressed key.

(Example: If you press the 1, 1, 2, and 3 keys)
The key data of "T" and "V" will be returned. The "Y" is not established yet.

(Example: If you press the C, 1, 1, 1, and ENT keys)
The 18H and "U" will be returned.

129

7.2.4 Other Facilitiesfor the Keyboard

[1] Auto-repeat

The keys on the BHT series are not auto-repeat.

[2] Shift key

= BHT-3000

The Shift key can be switched to non-lock type or lock type by selecting NRM or ONE on Set
Resume screen in System Mode, respectively.

* Non-lock type The keypad will be shifted only when the Shift key is held down.

» Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

= BHT-4000

The Shift key can be switched to non-lock type or lock type by selecting Non Lock or One Time
on SET OTHERS menu in System Mode, respectively.

* Non-lock type The keypad will be shifted only when the Shift key is held down.

» Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

When the keys are shifted, the shift-key icon appears on the bottom line of the LCD if the
system status indication is set to on. (You can turn on the system status indication on the SET
DISPLAY menu in System Mode or by using the OUT statement.)

s BHT-5000/BH T-6000/BH T-6500

The Shift key can be switched to non-lock type or lock type by selecting Nonlock or Onetime on
shift key setting menu of the SET SYSTEM screen in System Mode, respectively.

* Non-lock type The keypad will be shifted only when the Shift key is held down.

» Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

When the keys are shifted, the shift-key icon appears at the right end of the bottom line of
the LCD if the system status indication is set to on. (You can turn on the system status indica-
tion on the SET DISPLAY menu in System Mode or by using the OUT statement.)

s BHT-7000/BHT-7500

The Shift key can be switched to non-lock type or lock type by selecting Nonlock or Onetime on
the SET KEY menu in System Mode, respectively.

* Non-lock type The keypad will be shifted only when the Shift key is held down.

» Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

When the keys are shifted, a bar appears above the SF in the status display.

130

Chapter 7. 1/O Facilities

7.3 Timer and Beeper

7.3.1 Timer Functions

The timer functions (TI MEA, TI MEB, and TI MEC) are available in BHT-BASIC for accurate
time measurement.

Use these timer functions for monitoring the keyboard waiting time, communications timeout
errors, etc.

TI MEA = 100 "10 sec
WAIT 0, &H10

BEEP

PRI NT "10sec."

TIMEC = 20 "2 sec
WAI T 0, &H41

BEEP

PRI NT "2sec. or Keyboard"

7.3.2 BEEP Satement

The BEEP statement sounds a beeper and specifies the frequency of the beeper.
The example below sounds the musical scale of do, re, mi, fa, sol, la, si, and do.

READ r eadDat %
WHI LE (readDat % >= 0)
TIMEA = 3
BEEP 2, ,,readDat %
WAI T 0, &10
READ r eadDat %
VAEND
DATA 523, 587, 659, 698, 783, 880, 987, 1046, -1

Specifying the frequency with value 0, 1, or 2 produces the special beeper effects; that is, the
low-, medium-, or high-pitched tone, respectively.

FORi% =0 TO 2

TIMEC = 20
BEEP, , ,i %
VWAI' T 0, &40

NEXT

Only if setting 0, 1, or 2 or making no specification to the frequency, you can adjust
the beeper volume on the LCD when powering on the BHT. (For the adjustment of
the beeper volume, refer to the BHT s User’s Manual.)

NOTE

131

7.4 Controlling and Monitoringthel/Os

7.4.1 Controlling by the OUT Satement

The OUT statement can control the input and output devices (I/Os) listed in Appendix D, I/O
Ports." The table below lists some examples.

QUT Statement

1/0 Devices

QuT 1, &02 Turns on the reading confirmation LED in green.
auT 1, &01 Turns on the reading confirmation LED in red.
QuT 1, &00 Turns off the reading confirmation LED.

QUT 3, &hXX (XX: 00 to 07) Sets the LCD contrast.

QUT 4, &00 Sets the Japanese message version.

QUT 4, &h0o1 Sets the English message version.

QUT 6, & XX (XX: 00 to FF) Sets the sleep timer.

7.4.2 Monitoring by thel NP Function

The | NP function monitors the input and output devices (I/Os) listed in Appendix D, "I/O Ports."
The table below lists some examples.

I NP Function I/0 Devices Value Meaning

I NP(0) AND &h01 Keyboard buffer status 1 Data present
0 No data

I NP(0) AND &h02 Bar-code buffer status 1 Data present
0 No data

| NP(0) AND &h04 Trigger switch status* 1 Being pressed
0 Being released

I NP(0) AND &h08 Receive buffer status 1 Data present
0 No data

I NP(0) AND &h10 Tl MEA function 1 Setto 0

I NP(0) AND &h20 TI MEB function 1 Setto 0

I NP(0) AND &h40 TI MEC function 1 Setto 0

* In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the | NP function can monitor
the trigger switch status only when the trigger switch function is assigned to any of

the magic keys.

132

Chapter 7. 1/O Facilities

7.4.3 Monitoring by the WAl T Statement

The WAI T statement monitors the input and output devices (1/0s) listed in Appendix D, "I/O
Ports." Unlike the | NP function, the WAI T statement makes the 1/O devices idle while no entry
occurs, thus saving power consumption and increasing the battery service life.

The table below lists some examples.

WAI T Statement I/O Devices
WAI T 0, &01 Keyboard buffer status
WAI T 0, & 02 Bar-code buffer status
VWAI T 0, &h04 Trigger switch status*
WAI T 0, &h08 Receive buffer status
WAI T 0, &10 Tl MEA function

WAI T 0, &20 Tl MEB function

VWAI T 0, &40 TI MEC function

* In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the WAI T function can monitor
the trigger switch status only when the trigger switch function is assigned to any of
the magic keys.

In a single WAI T statement, you can specify more than one 1/0 device if the same port number
applies. To monitor the keyboard buffer and the bar-code buffer with the single WAI T state-
ment, for example, describe the program as shown below.

OPEN "BAR " AS #10 CODE "A:"
WAI' T 0, &03

The above example sets the value of &h03 (00000011) to port O, indicating that it keeps waiting
until either bit 0 or bit 1 becomes ON by pressing any key or by reading a bar code.

133

Chapter 8

Files

8.1

8.2

8.3

8.4

CONTENS

FIlE OVEIVIEW ...ttt 133
8.1.1 Data Files and Device /O FileS.........cccecciiiiieeieiiiieie e 133
8.1.2 ACCESS MEthOUS ...ttt 133
DAta FIlES....eeiiieiieieee et e e ee e e 134
B.2. 1 OVEIVIEW ..ttt ettt ettt ettt ettt ne et 134
8.2.2 NaMING FilES ..couviiiiiiie e 134
8.2.3 Structure of Data FileS..........cccoeiiiiiieiciire e 135
8.2.4 Data File Management by Directory Information............c..ccccceeenee 135
8.2.5 Programming for Data Filesccccoiviiiiiiiiieecceec e 137
8.2.6 ADOUL DIIVESviiiiiiiiie ittt et 139
Bar COAE DEVICE..........eiiiieiiiiiii ettt 140
B.3.1 OVEIVIEW oiieiiiiiiie ettt et e e et ee e e e ettt e e e e e sntaeee e e e eeaneeas 140
8.3.2 Programming for Bar Code DEVICEccccovveeeiiiieniiiciiiee e 141
ComMmMUNICAtIONS DEVICEuviiiiiiiiiiiee et 144
8.4.1 Hardware Required for Data Communications...........cccccccveeriiveennne 144
[1] BHT-3000/BHT-4000/BHT-5000ccccommierimiiieeiniriinieneennea 144
[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500ccocvvevvernennen. 144
8.4.2 Programming for Data Communicationscccveevueeeenieeeneeeennnne 145
[1] BHT-3000/BHT-4000/BHT-5000ccccemirieriminieinniriineeneennea 145
[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500cocvveiviernrnnen. 145
8.4.3 Overview of Communications ProtoCols.............ccccevvveenirincenienne. 147
[1] BHT-ProtoCOlooiiiiiiiiiiiieciiie e 147

[2] BHT-Ir protocol (BHT-6000/BHT-6500/BHT-7000/
BHT-7500)eoiiiriiieiieeiie st 148
[3] Multilink protocol (BHT-5000 ONlY)cooveveeeiiiieiniieeiieeesniieeenes 149
8.4.4 File Transfer TOOISccccveiiiiiiiieiieee e 150
[1] Transfer ULIIY ..o 150
[2] Ir-Transfer ULIlity C ..ooooceveiiieeiiiiecicceeee e 150
[3] Ir-Transfer ULIlity B ..ooooceveiiieiiiieeecceeeee e 150
[4] Multilink Transfer Utility (BHT-5000 only)ccccoeiviveernineenne. 151

134

Chapter 8. Files

8.1 FileOverview

8.1.1 DataFilesand Devicel/O Files

BHT-BASIC treats not only data files but also bar code device 1/0s and communications device
I/Os as files, by assigning the specified hames to them.

File Type File Name Remarks

Data File fil enane. ext ensi on

dri venane: fil enane. ext ensi on (Applicable to the

BHT-5000/BHT-6000/
BHT-6500/BHT-7000/
BHT-7500)

Device I/O File BAR: Bar code device

Device I/O File Cavt Communications device

T Datafilesand user program files are stored in the user area of the memory.

TIP

8.1.2 Access Methods

To access data files or device /O files, first use the OPEN statement to open those files. Input
or output data to/from the opened files by issuing statements or functions to them according to
their file numbers. Then, close those files by using the CLOSE statement.

135

8.2 DataFiles

8.2.1 Overview

Like user programs, data files will be stored in the user area of the memory. The location of the
user area differs depending upon the BHT series as shown below.

BHT series Location of user area
BHT-3000/BHT-4000 A single drive (no drive specification)
BHT-5000/BHT-6000/BHT-6500 Drive A and drive B
BHT-7000/BHT-7500 Drive A and drive B*

* Drive B is provided for ensuring the compatibility with the BHT-5000/BHT-6000/BHT-6500.

The memory capacity available for data files differs depending upon BHT series as follows:

In the BHT-3000/BHT-4000, the memory space available for data files is (Memory space on the
single drive - Memory space occupied by user programs). In the BHT-7000/BHT-7500, it is
(Memory space on drive A - Memory space occupied by user programs). In the BHT-5000/
BHT-6000/BHT-6500, it is (Memory spaces on drives A and B - Memory space occupied by
user programs).

For the memory mapping, refer to Appendix F, "Memory Area." You may check the current
occupation of the memory with the FRE function.

8.2.2 Naming Files

The name of a data file generally contains f i | enane.ext ensi on. The fi | enane can
have one to eight characters; the ext ensi on can have one to three characters.

In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the fi |l enane.ext ensi on
should be preceded by the dr i venane. The dri venane is A: or B.. Ifthe dri venane is
omitted, the default A: applies.

The ext ensi on can be omitted. In such a case, a period should be also omitted. The fol-
lowing extensions cannot be used for data files:

Unavailable extensions for data files .PD3, .FN3, .EX3, and .FLD
Programs make no distinction between uppercase and lowercase letters for drive names, file
names, and extensions. They regard those letters as uppercase.

In the BHT-3000, the following file names cannot be used for data files since they are reserved
for Easy Pack:

Reserved File Names

PACK1. DAT
PACK2. DAT
PACK3. DAT
PACK4. DAT

136

Chapter 8. Files

8.2.3 Sructure of Data Files

m Record

A data file is made up of a maximum of 32767 records. A record is a set of data in a data
file and its format is defined by the FI ELD statement. The maximum length of a record is
255 bytes including the number of the character count bytes* (= the number of the fields).

* When transferring data files, the BHT-protocol/BHT-Ir protocol automatically prefixes a character
count byte in binary format to each data field.

m Field

A record is made up of 1 to 16 fields. Data within the fields will be treated as character
(ASCII) data.

Each field precedes a character count byte in binary format, as described above. Including
that one byte, the maximum length of a field is 255 bytes.

The following FI ELD statement defines a record which occupies a 28-byte memory area
(13 + 5 + 10 bytes) for data and a 3-byte memory area for three character count bytes.
Totally, this record occupies not a 28-byte area but a 31-byte area in the memory.

FI ELD #2,13 AS bardat$,5 AS keydat$, 10 AS dt$
"1+13+1+5+1+10=31 bytes

* When a data file is transmitted according to the BHT-protocol, the following conditions
should be also satisfied:

e The maximum length of a field is 254 bytes (99 bytes in the BHT-3000/BHT-4000)
excluding a character count byte.

8.2.4 Data File Management by Directory Informa-
tion

The Interpreter manages data files using the directory information stored in the system area of

the memory.

The directory information, for example, contains the following:

fil enane. ext ensi on

Informati on of Each Field (Field I ength)
Nunmber of Witten Records

Maxi mum Number of Regi strabl e Records

* Number of Written Records

Means the number of records already written in a data file, which the LOF function can
return.

If no record number is specified in the PUT statement, the Interpreter automatically
assigns a number of (the current written record number + 1) to the record.

PUT #1

137

* Maximum Number of Registrable Records

You may declare the maximum number of records registrable in a data file by using the
RECORD option in the OPEN statement, as shown below.

OPEN "wor k. DAT" AS #10 RECORD 50
FI ELD #10, 13 AS code$,5 AS price$

The above program allows you to write up to 50 records in the data file named
wor k.DAT.

If the statement below is executed following the above program, a run-time error will
occur.

PUT #10, 51

The maximum number of registrable records can be optionally specified only when you
make a new data file. If designated to the already existing data file, the specification will
be ignored without occurrence of a run-time error.

If the BHT-7000/BHT-7500 receives a file with the XFI LE statement, it will automatically
set the maximum number of registrable records to 32,767 for that file.

Other BHT series will make such setting only when it receives a file not existing in the
BHT with the XFI LE statement.

Specifying the maximum number of registrable records will not cause the Interpreter to
reserve the memory area.

138

Chapter 8. Files

8.2.5 Programming for Data Files

= |nput/Output for Numeric Data
- To write numeric data into a data file:

It is necessary to use the STR$ function for converting the value of a numeric expression
into a string.

To write -12.56 into a data file, for example, the field length of at least 6 bytes is required.
When using the FI ELD statement, designate the sufficient field length; otherwise, the data
will be lost from the lowest digit when written to the field.

- To read data to be treated as a numeric from a data file:

Use the VAL function for converting a string into a numeric value.

m Data Retrieval

The SEARCH function not only helps you make programs for data retrieval efficiently but
also makes the retrieval speed higher.

The SEARCH function searches a designated data file for specified data, and returns the
record number where the search data is first encountered. If none of the specified data is
encountered, this function returns the value 0.

m Deletion of Data Files
The CLFI LE or KI LL statement deletes the designated data file.

CLFI LE Erases only the data stored in a data file without erasing its directory informa-
tion, and resets the number of written records to O (zero) in the directory. This
statement is valid only to opened data files.

KI'LL Deletes the data stored in a data file together with its directory information.
This statement is valid only to closed data files.

« Program sample with the CLFI LE statement

OPEN "wor k2. DAT" AS #1
FI ELD #1,1 AS a$

CLFI LE #1

CLCOSE #1

» Program sample with the KI LL statement

CLOSE
KILL "wor k2. DAT"

139

m Restrictionson Input/Output of Data Files

No | NPUT#, LI NE | NPUT#, or PRI NT# statement or | NPUT$ function can access data
files. To access data files, use a PUT or GET statement.

m Drive Defragmentation (BHT-7000/BHT-7500 only)

During downloading in the BHT-7000/BHT-7500, a delay of a few seconds (response delay
from the BHT) may occur according to the user area condition.

To eliminate the delay, defragment the drive for the size required for downloading before-
hand. Doing so will also reduce the device open time in communications. Defragmentation
before downloading is recommended.

If there is no specified size of the empty area in the drive, it is necessary to defragment the
whole empty area.

In complicated write operation, any of the following symptoms may be caused in units of a
few seconds. If such occurs frequently, defragment the drive.

- The beeper sound is prolonged.

- Keys do not work.

- No bar code entry is possible.

- Switching the LCD screen is delayed.

- No data can be received.

- Timeout by the TI MEA/ TI MEB/ TI MEC is delayed.

The OUT statement may defragment the drive. In the OUT statement, you may specify the
size of the empty area to be defragmented in units of 4 kilobytes, starting with 4 kilobytes
up to the maximum size of the user area.

During drive defragmentation, user programs will be halted. Upon completion of defrag-
mentation, they will resume operation.

In the OQUT statement, you may also select whether a bar graph showing the progress of
defragmentation will be displayed on the LCD. The bar graph, if selected, will disappear
after completion of defragmentation and the previous screen will come back.

For details about defragmentation with OUT statement, refer to Appendix D, "I/O Ports," D5.

140

Chapter 8. Files

8.2.6 About Drives

The BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 has logical drives.

s BHT-5000/BH T-6000/BH T-6500

Drive A and drive B are defined on the RAM and flash ROM, respectively. Accordingly, the file
access is partially different between drive A and drive B as listed below.

File access operation To drive A To drive B
Download XFI| LE statement Same as left.
Create New with OPEN statement Run-time error (43h)
Open Open with OPEN statement Same as left.

Read CET statement Same as left.

Write PUT statement Run-time error (43h)
Close CL OSE statement Same as left.

Clear CLFI LE statement Run-time error (43h)
Delete KI LL statement Same as left.*

* The BHT deletes data actually when next downloading takes place. To delete data, the BHT-
5000/BHT-6000 (System version 2.00 or later)/BHT-6500 uses an empty area of drive A by
64 kilobytes. The BHT-6000 (System version earlier than 2.00) uses it by 128 kilobytes. If
there is no such space in drive A, a run-time error (44h) will occur.

= BHT-7000/BHT-7500
Drive B is provided for ensuring compatibility with the BHT-5000/BHT-6000/BHT-6500.

If you specify drive name "B:" preceding a filename.extension and open an existing file, the
BHT will open the file as a read-only file. Executing the PUT statement to the read-only file, a
run-time error (43h) will result.

If you specify drive name "A:" or omit a drive name, the BHT will open the file as a read/write
file.

The XFI LE and KI LL statements will ignore drive names "A:" and "B:."

The table below lists the file access details relating to drives.

File access operation To drive A To drive B
Download XFI LE statement Same as left.
Create New with OPEN statement Run-time error (43h)
Open Open with OPEN statement Same as left.

Read CET statement Same as left.

Write PUT statement Run-time error (43h)
Close CLCOSE statement Same as left.

Clear CLFI LE statement Run-time error (43h)
Delete KI LL statement Same as left.

141

8.3 Bar Code Device

8.3.1 Overview

m Openingthe Bar Code Deviceby OPEN" BAR: " Satement

The OPEN "BAR: " statement opens the bar code device. In this statement, you may spec-
ify the following bar code types available in the BHT. The BHT can handle one of them or
their combination.

Available Bar Code Types Default Settings

Universal product codes EAN-13*

EAN-8 . g
UPC-A* No national flag specified.
UPC-E

Interleaved 2 of 5 (ITF) No read data length specified.
No check digit.

Standard 2 of 5 (STF)** No read data length specified.
No check digit. Short format of the
start/stop characters supported.

Codabar (NW-7) No read data length specified.
No check digit.

No start/stop character.

Code 39 No read data length specified.
No check digit.

Code 93 No read data length specified.

Code 128*** No read data length specified.

* Reading wide bars

The EAN-13 and UPC-A bar codes may be wider than the readable area of the bar-code
reading window.

BHT-3000: Such wider bars can be read by the double-touch reading feature. Read first
the right (or left) half of the bar code together with the center bar and then read the
remaining half. The system combines the split data into one bar code. For activation/
deactivation of the double-touch reading feature, refer to the "BHT-3000 User’'s Manual."

BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500: Such wider bars can
be read by long-distance scanning. Pull the bar-code reading window away from the bar
code so that the entire bar code comes into the illumination range. (No double-touch
reading feature is supported.)

** The STF can be read by the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500.

*** |n the BHT-5000/BHT-6500/BHT-7000/BHT-7500, specifying the Code 128 makes it pos-
sible to read not only the Code 128 but also the EAN-128.

142

Chapter 8. Files

m Specifying Optionsin the OPEN" BAR: " Satement

You may also specify several options as listed below for each of the bar code types in the
OPEN" BAR " statement.

Options

- Check digit (only for ITF, Codabar, Code 39, and STF)
- Read data length

- Start/stop character (only for Codabar and STF)

- Start character flag (only for universal product codes)

- Supplemental code (only for universal product codes. Not supported by the BHT-
3000)

m Bar Code Buffer

The bar code buffer stores the inputted bar code data. It will be occupied by one operator
entry job and can contain up to 40 characters in the BHT-3000 and 99 characters in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.

You can check whether the bar code buffer stores bar code data, by using any of the EOF,
I NP, and LOC functions, and the WAI T statement.

Any of the | NPUT# and LI NE | NPUT# statements, and the | NPUT$ function reads bar
code data stored in the buffer into a string variable.

8.3.2 Programming for Bar Code Device

m Code Mark

The MARK$ function allows you to check the code type and the length of the inputted bar
code data.

This function returns a total of three bytes: one byte for the code mark (denoting the code
type) and two bytes for the data length.

m Multiple Code Reading

You may activate the multiple code reading feature which reads more than one bar code
type while automatically identifying them, by designating the desired bar code types follow-
ing the CODE in the OPEN" BAR: " statement.

143

m Read Mode of the Trigger Switch

In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to
the following magic keys by default:

BHT-6000: M1 and M2 keys

BHT-6500: M1, M2, M3, and M4 keys

BHT-7000/BHT-7500: M3 and M4 keys
In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, you may assign the trigger
switch function to other keys by using the KEY statement.

You may select the read mode of the trigger switch by using the OPEN" BAR: " statement.

Read Mode g:\i’?lneﬁf‘R'
Auto-off Mode (Default) OPEN" BAR: F" ...
Momentary Switching Mode OPEN" BAR: M' ...
Alternate Switching Mode OPEN" BAR: A" ...
Continuous Reading Mode OPEN" BAR: C' ...

To check whether the trigger switch is pressed or not, use the | NP function or the WAI T
statement, as shown below.

trig% = I NP(0) AND &h04
If the value of the t r i g%is 04h, the trigger switch is kept pressed; if 00h, it is released.

m Generation of Check Digit

Specifying a check digit in the OPEN" BAR: " statement makes the Interpreter automati-
cally check bar codes. If necessary, you may use the CHKDGT$ function for generating a
check digit of bar code data.

144

Chapter 8. Files

s Controlling the Reading Confirmation LED and Beeper (Vibrator) at the
Time of Scanning for Confirmation of Successful Reading
(BHT-5000/BH T-6000/BH T-6500/BH T-7000/BH T-7500)

By using the OPEN" BAR: " statement, you can control:

» whether the reading confirmation LED should light in green or not (Default: Light in
green)

» whether the beeper should beep or not (Default: No beep)
The BHT-6500/BHT-7000/BHT-7500 may control the vibrator also.

when a bar code is read successfully.

Controlling the reading confirmation LED

If you have activated the reading confirmation LED (in green) in the OPEN" BAR: " state-
ment, the OUT statement cannot control the LED via output port 1 when the bar code
device file is opened. (For details about settings of bits 0 and 1 on output port 1, refer to
Appendix D.)

If you have deactivated the reading confirmation LED in the OPEN" BAR: " statement, the

QUT statement can control the LED via output port 1 even when the bar code device file is

opened. (For details about settings of bits 0 and 1 on output port 1, refer to Appendix D.)

This way, you can control the reading confirmation LED, enabling that:

 a user program can check the value of a scanned bar code and turn on the green LED
when the bar code has been read successfully.

(For example, you can make the user program interpret bar code data valued from 0 to
100 as correct data.)

 auser program can turn on the red LED the moment the bar code has been read.

Controlling the beeper (vibrator)

If you activate the beeper in the OPEN" BAR: " statement, the BHT will beep when it reads
a bar code successfully.

In the BHT-6500/BHT-7000/BHT-7500, you may choose beeping only, vibrating only, or
beeping & vibrating on the LCD screen or by setting the output port in the OUT statement.

145

8.4 Communications Device

8.4.1 Hardware Required for Data Communications

[1] BHT-3000/BH T-4000/BH T-5000

The following hardware is required for communications between the BHT and the host com-
puter:

» Optical communications unit (CU-3000/CU-4000/CU-5000) and its interface cable
or
« Direct-connect interface cable

For the communications specifications, refer to the "BHT’s User's Manual."

[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

The following hardware is required for communications between the BHT and the host com-
puter:

» Optical communications unit (CU-6000/CU-7000) and its interface cable
or
« Direct-connect interface cable

For the communications specifications, refer to the "BHT'’s User's Manual."

Using Ir-Transfer Utility E allows the BHT to directly communicate with the IR port-integrated
host computer or an external IR transceiver. For details about IR port-integrated computers
and external IR transceivers available, refer to the "Ir-Transfer Utility E Guide."

146

Chapter 8. Files

8.4.2 Programming for Data Communications

Setting the Communications Parameters

Use the OPEN" COM " statement to set the communications parameters.

[1] BHT-3000/BH T-4000/BH T-5000

Communications Parameters Effective Setting Default
Transmission speed (bps) HS™, 384002, 19200, 9600, 4800, 2400, 1200, 600, or 300 9600
Parity None, even, or odd None
Character length 7 or 8 bits 8 bits
Stop bit length 1 or 2 bits 1 bit
RS/CS control Yes or no No
Timeout detection Yes or no No

RS control™ ON (1) or OFF (0) ON (1)
ER control™ ON (1) or OFF (0) ON (1)

*1 The HS (High Speed) is available only in file transmission between the BHT-4000 and host
computer by using Transfer Utility. It requires the RS-232C interface specially connected.
Refer to the "BHT-4000 User’s Manual."

*2 The 38400 bps is available in the BHT-3000/BHT-4000/BHT-5000. Note that in the BHT-
3000/BHT-4000, the direct-connect interface port should be selected.

*3 The RS control is supported in the BHT-4000/BHT-5000.
*4 The ER control is supported when the direct-connect interface is selected in the BHT-4000.

[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

m For optical interface

Communications Parameters Effective Setting Default

Transmission speed (bps) 115200, 57600, 38400, 19200, 9600, or 2400 9600

Parameters other than the transmission speed are fixed (Character length = 8 bits, Parity =
None, Stop bit length = 1 bit), since the physical layer of the optical interface complies with the
IrDA-SIR 1.0.

147

m For direct-connect interface

Communications Parameters Effective Setting Default

Transmission speed (bps) 1152001, 576001, 38400, 19200, 9600, 4800, 2400, 1200, 9600
600, or 300

Parity™? None, even, or odd None

Character length"? 7 or 8 hits 8 bits

Stop bit length™ 1 or 2 bits 1 bit

1 The 115200 bps and 57600 bps are available in the BHT-7000/BHT-7500.

*2 The parity, character length, and stop bit length are fixed to none, 8 bits, and 1 bit, respec-

tively, if the BHT-Ir protocol is selected.

148

Chapter 8. Files

8.4.3 Overview of Communications Protocols

The BHT series supports the three communications protocols—BHT-protocol, BHT-Ir protocol,
and multilink protocol for file transmission, as listed below. Using the XFI LE statement, the
BHT may upload or download a file according to any of these protocols.

* BHT-protocol : Al BHT series
e BHT-Ir protocol : BHT-6000/BHT-6500/BHT-7000/BHT-7500
e Multilink protocol : BHT-5000

[1] BHT-protocol

All BHT series supports the BHT-protocol.
This protocol is used also in System Mode or Easy Pack.

For the communications specifications of the BHT-protocol, refer to the BHT User's Manual.

m Primary station and secondary station
The primary station and the secondary station should be defined as below.
* When uploading data files
Primary station: BHT
Secondary station: Host computer
* When downloading data files
Primary station: Host computer
Secondary station: BHT

m Protocol functions

In the BHT-protocol, using the following protocol functions may modify a transmission
header or terminator in a send data:

For a header: SOHS$ or STX$
For a terminator: ETX$

m Field length that the BHT-protocol can handle

When the BHT-3000/BHT-4000 transmits files according to the BHT-protocol, each field
length should be a maximum of 99 bytes. The BHT-5000/BHT-6000/BHT-6500/BHT-
7000/BHT-7500 may transmit files having the field length of up to 254 bytes.

In file transmission, the host computer should also support the same field length as the
BHT. The MS-DOS-based Transfer Utility supports the field length of up to 99 bytes;
the Windows-based Transfer Utility supports up to 254 bytes.

149

[2] BHT-Ir protocol (BHT-6000/BHT-6500/BHT-7000/BHT-
7500)

In addition to the BHT-protocol, the BHT-6000/BHT-6500/BHT-7000/BHT-7500 supports the
BHT-Ir protocol.

If you select the BHT-Ir protocol by using the OUT statement (Port No. &h6060) or in System
Mode, you can upload or download a data file with the XFI LE statement.
The BHT-Ir protocol is used also in System Mode or Easy Pack Pro.

For the communications specifications of the BHT-Ir protocol, refer to the "BHT-6000 User’s
Manual," "BHT-6500 User’'s Manual," "BHT-7000 User’'s Manual," or "BHT-7500 User's Man-
ual.”

m Primary station and secondary station
The primary station and the secondary station should be defined as below.
* When uploading data files
Primary station: BHT-6000/BHT-6500/BHT-7000/BHT-7500
Secondary station: Host computer
* When downloading data files
Primary station: Host computer
Secondary station: BHT-6000/BHT-6500/BHT-7000/BHT-7500

m Protocol functions

In the BHT-Ir protocol, you cannot change the values of the headers and terminator with
the protocol functions in BHT-BASIC.

150

Chapter 8. Files

[3] Multilink protocol (BHT-5000 only)

In addition to the BHT-protocol, the BHT-5000 may support the multilink protocol which is used
for file transmission between the host computer and more than one BHT-5000 (placed on the
multilinked CU-5003s), provided that Multilink Protocol System (MLTU3.EX3) is downloaded to
the BHT-5000 beforehand.

To transfer files by using the multilink protocol, you need Multilink Transfer Utility (MLTU3.EXE)
to be run in the host computer and the CU-5003(s). For details, contact your nearest dealer.

If you download the Multilink Protocol System to the BHT-5000 and select the multilink protocol
by using the OQUT statement (Port No. &h6060) or in System Mode, then you can upload or
download files according to the multilink protocol with the XFI LE statement.

The multilink protocol is used also in System Mode.

m Madter station and slave station
The master station and the slave station should be defined as below.
Master station: Host computer
Slave station: BHT-5000

m Primary station and secondary station
The primary station and the secondary station should be defined as below.
* When uploading data files
Primary station: BHT-5000
Secondary station: Host computer
* When downloading data files
Primary station: Host computer
Secondary station: BHT-5000

m Protocol functions

In the multilink protocol, you cannot change the values of the headers and terminator
with the protocol functions in BHT-BASIC.

151

8.4.4 FileTransfer Tools

[1] Transfer Utility

Transfer Utility is optionally available in two versions: MS-DOS—-based and Windows-based. It
supports the BHT-protocol and allows you to upload or download user program files and data
files between the host and the BHT, when invoked by the XFI LE statement.

This utility can also transfer user program files and data files to/from System Mode.

M If you have modified transmission headers or terminator to any other character codes
—— by using the protocol functions, Transfer Utility is no longer available.

For computers and Windows version which are available for Transfer Utility and the operating
procedure of Transfer Utility, refer to the "Transfer Utility Guide."

[2] Ir-Transfer Utility C

Ir-Transfer Utility C is optionally available in two versions: MS-DOS-based and Windows-
based. It supports the BHT-Ir protocol and allows you to upload or download user program
files and data files between the host and the BHT-6000/BHT-6500/BHT-7000/BHT-7500, when
invoked by the XFI LE statement. Ir-Transfer Utility C handles IrDA SIR-compliant communi-
cations via the communications unit CU.

This utility can also transfer user program files and data files to/from System Mode.

For computers and Windows versions which are available for Ir-Transfer Utility C and the oper-
ating procedure of Ir-Transfer Utility C, refer to the "Ir-Transfer Utility C Guide."

[3] Ir-Transfer Utility E

Ir-Transfer Utility E is optional Windows-based software. It supports the BHT-Ir protocol and
allows you to upload or download user program files and data files between the host and the
BHT-6000/BHT-6500/BHT-7000/BHT-7500, when invoked by the XFI LE statement. Ir-Trans-
fer Utility E handles IrDA SIR-compliant communications via the IR port integrated in a com-
puter or an external IR transceiver.

This utility can also transfer user program files and data files to/from System Mode.

For computers and Windows versions which are available for Ir-Transfer Utility E and the oper-
ating procedure of Ir-Transfer Utility E, refer to the "Ir-Transfer Utility E Guide."

152

Chapter 8. Files

[4] Multilink Transfer Utility (BHT-5000 only)

Multilink Transfer Utility is optional MS-DOS-based software. It supports the multilink protocol
and allows you to upload or download user program files and data files between the host and
the BHT-5000 (placed on the multilinked CU-5003s), when invoked by the XFI LE statement.

This utility can also transfer user program files and data files to/from System Mode.

For computers available for Multilink Transfer Utility and the operating procedure of Multilink
Transfer Utility, refer to the "Multilink Transfer Utility Guide."

153

Chapter 9
Event Polling and Error/Event Trapping

9.1
9.2

9.3

9.4

CONTENTS
OVBIVIEW ...ttt ettt ettt b ettt ettt ettt ebn e e sbe e s e b e nnne e 155
EVENT POIING ...eeii ettt 156
[1] Programming SAMPIEccceeeiiiiiniiiieiiiee e e reee e 156
[2] I/O devices capable of being monitored by the event polling.. 157
(=TT o I £ T o] o1 T IR PP P PPV OUPPPUPPPPRIN 158
[1] OVEIVIEW .ottt 158
[2] Programming for trapping €rrorscocveeeriveesieeesieeeesieeenns 159
Event (of Keystroke) Trappingccuueiiieieiiiieiiee e 160
[1] OVEIVIEW ..t 160
[2] Programming for trapping keystrokescccccccvvviieeinnenne. 160

154

Chapter 9. Event Polling and Error/Event Trapping

9.1 Overview

BHT-BASIC supports event polling and two types of trapping: error trapping and event trap-
ping.
— Event polling
— Trapping Error trapping
[Event (of keystroke) trapping

s Event Polling
Makes programs monitor the input devices for occurrence of events.

m Error Trapping

Traps a run-time error and handles it by interrupt to transfer control to the error-handling rou-
tine.

If a run-time error occurs when this trapping ability is disabled, the Interpreter will terminate the
current user program while showing the error message.

m Event (of Keystroke) Trapping

Traps a particular keystroke (caused by pressing any of the specified function keys) and han-
dle it by interrupt to transfer control to the event-handling routine.

155

9.2 Event Polling

[1] Programming sample

The program below shows the event polling example which monitors the bar code reader and
the keyboard for occurrence of events.

This example uses the EOF and | NKEY$ functions to check the data input for the bar code
reader and the keyboard, respectively.

OPEN "BAR " AS #1 CODE "A"
| oop
WAIT O, 3
| F NOT EOF(1) THEN
GOSUB bar cod
ENDI F
k$=1 NKEY$
I F k$<>"" THEN
GOSUB keyin
ENDI F
GOTO0 | oop
bar cod
BEEP
LI NE | NPUT #1,dat$
PRI NT dat $
RETURN
keyin

RETURN

156

Chapter 9. Event Polling and Error/Event Trapping

[2] I/O devices capable of being monitored by the event poll-
ing

Listed below are the 1/0 devices which the event polling can monitor.

1/0 Devices Monitor Means Events

Keyboard I NKEY$ function Input of one character
from the keyboard

Bar code reader EOF or LOC function Presence/absence of bar
code data input or the
number of read characters
(bytes)

Receive buffer EOF, LOC, or LOF function Presence/absence of
receive data or the num-
ber of received charac-
ters (bytes)

Timer TI MEA, Tl MEB, or TI MEC function Timer count-up

= Monitoring with the | NP Function

Combining the | NP function with the above functions enables more elaborate programming for
event polling.

For the | NP function, refer to Appendix D, "I/O Ports."

157

9.3 Error Trapping

[1] Overview

If a run-time error occurs during program running, error trapping makes the program cause an
interrupt upon completion of the machine statement so as to transfer control from the current
program to the error-handling routine which has been specified by a label.

If a run-time error occurs when this trapping ability is disabled, the Interpreter will terminate the
current user program while displaying the error message as shown below.

Error message sample:

ERL=38A4 ERR=34

The above message indicates that a run-time error has occurred at address 38A4h and its
error code is 34h. Both the address and error code are expressed in hexadecimal notation.

The address is a relative address and corresponds to the address in the program list outputted
by the Compiler. According to this address indication, you can pinpoint the program line where
the run-time error has occurred.

The error code 34h (52 in decimal notation) means that the user program attempted to access
a file not opened. (Refer to Appendix A1, “Run-time Errors.")

The ERL and ERR functions described in an error-handling routine will return the same values,
38A4h and 34h, respectively.

NOTE If an error occurs during execution of user-defined functions or sub routines so that

—— theerror is trapped and handled by the error-handling routine, then do not directly
pass control back to the main routine having the different stack level by using the
RESUME statement. The return address from the user-defined functions or subrou-
tines will be left on the stack, causing a run-time error due to stack overflow.

To prevent such a problem, once transfer control to the routine which caused the
interrupt in order to match the stack level and then jump to any other desired routine.
(Refer to Chapter 3, Section 3.1, "Program Overview.")

158

Chapter 9. Event Polling and Error/Event Trapping

[2] Programming for trapping errors

To trap errors, use the ON ERROR GOT O statement in which you should designate the error-
handling routine (to which control is to be transferred if a run-time error occurs) by the label.

ON ERROR GOTO err01

(Main routine)

END

err01

(Error-handling routine)

PRI NT"*** error ***"
PRI NTERR, HEX$(ERL)
RESUVE NEXT

If a run-time error occurs in the main routine, the above program executes the error-handling
routine specified by label err01 in the ON ERROR GOT O statement.

In the error-handling routine, the ERL and ERR functions allow you to pinpoint the address
where the error has occurred and the error code, respectively.

NOTE

According to the error location and error code, you should troubleshoot the program-
ming error and correct it for proper error handling.

The RESUME statement may pass control from the error-handling routine back to any specified

statement as listed below.

RESUME Statement Description

RESUME or RESUME 0 Resumes program execution with the statement
that caused the error.

RESUVME NEXT Resumes program execution with the statement
immediately following the one that caused the
error.

RESUME | abel Resumes program execution with the statement

designated by | abel .

159

9.4 Event (of Keystroke) Trapping

[1] Overview

If any of the function keys previously specified for keystroke trapping is pressed, event trapping
makes the program cause an interrupt so as to transfer control from the current program to the
specified event-handling routine.

This trapping facility checks whether any of the function keys is pressed or not between every
execution of the statements.

[2] Programming for trapping keystrokes

To trap keystrokes, use both the ON KEY..GOSUB and KEY ON statements. The ON
KEY...GOSUB statement designates the key number of the function key to be trapped and the
event-handling routine (to which control is to be transferred if a specified function key is
pressed) in its label. The KEY ON statement activates the designated function key.

This trapping cannot take effect until both the ON KEY...GOSUB and KEY ON statements have
been executed.

The keystroke of an unspecified function key or any of the numerical keys cannot be trapped.

The following program sample will trap keystroke of function keys F1, F2, and F3 (these keys
are numbered 1, 2, and 3, respectively).

ON KEY (1) GOSUB subl
ON KEY (2) GOSUB sub2
ON KEY (3) GOSUB sub3
KEY (1) ON
KEY (2) ON
KEY (3) ON

(Main routine)

END

subl
(Event-handling routine 1)
RETURN

sub2
(Event-handling routine 2)
RETURN

sub3

(Event-handling routine 3)
RETURN

160

Chapter 9. Event Polling and Error/Event Trapping

The RETURN statement in the event-handling routine will return control to the statement imme-
diately following that statement where the keyboard interrupt occurred.

Even if a function key is assigned a null string by the KEY statement, pressing the function key
will cause a keyboard interrupt when the KEY ON statement activates that function key.

If function keys specified for keystroke trapping are pressed during execution of the following
statements or functions relating keyboard input, this trapping facility operates as described
below.

Statements or Functions Keystroke Trapping

I NPUT statement Ignores the entry of the pressed key and
causes no interrupt.

LI NE | NPUT statement Same as above.
| NPUT$ function Same as above.
| NKEY$ function Ignores the entry of the pressed key, but

causes an interrupt.

161

Chapter 10
Sleep Function

CONTENTS
10.1 SIEEP FUNCLONeiiiiiie ittt ee et e e e e e sateeeenneee s

162

Chapter 10. Sleep Function

10.1 Sleep Function

The BHT supports the sleep function that automatically interrupts program execution if no
event takes place within the specified length of time in the BHT, thereby minimizing its power
consumption. Upon detection of any event, the BHT in the sleep state immediately starts the
interrupted user program.

By using the OUT statement, you may set the desired length of time to the sleep timer within
the range from 0 to 25.5 seconds in increment of 100 ms. The default is 1 second.

When setting the sleep timer, the OUT statement also copies (assigns) the set value to its inter-
nal variable. The sleep timer immediately starts counting down the value assigned to the inter-
nal variable, -1 per 100 ms. If the value becomes 0, the BHT goes into a sleep.

Note that the sleep time will not count in any of the following cases. When the BHT exits from
any of them, the value preset to the sleep timer will be assigned to the internal variable again
and the sleep timer will start counting.

» While a communications device file is opened by an OPEN" COM " statement.

« During execution of a SEARCH, DATES, or TI MES$ function

« When a Tl MEA, Tl MEB, or TI MEC function returns a nonzero value.

« When the bar code device file is opened by the OPEN " BAR: " statement under any of the
following conditions:

- With the continuous reading mode specified

- With the momentary switching mode or auto-off mode specified, and with the trigger switch
held down

- With the alternate switching mode, and with the illumination LED (laser beam in the BHT-
6500/BHT-7500) being on

* When any key is held down.

* When the LCD backlight is on.

* When the beeper is beeping.

» When the vibrator is working. (BHT-6500/BHT-7000/BHT-7500 only)
* When the BHT is updating data on the screen.

* When the BHT is writing data into a data file.

* When a register variable is undergoing change.

163

Chapter 11

Resume Function

CONTENTS

11.1 RESUME FUNCHON......uiiiiiiiiiitiiiiieie et e e e e e e e e e e e e e e e

164

Chapter 11. Resume Function

11.1 Resume Function

The resume function automatically preserves the current status of a running application pro-
gram (user program or Easy Pack) when the BHT is powered off, and then resumes it when
the BHT is powered on. That is, even if you unintentionally turn off the BHT or the automatic
powering-off function turns off the BHT, turning on the BHT once again resumes the previous
status of the program to allow you to continue the program execution.

The resume function is effective also during data transmission in execution of an application
program, but a few bytes of data being transmitted may not be assured.

NOTE Even if you become disoriented with the operation during execution of an application

—— program so as to power off the BHT when the resume function is enabled, the BHT
cannot escape you from the current status of the program. Thisis because the resume
function will not initialize the variables or restart the BHT. (You can disable the
resume function in System Mode.)

The resume function does not work after execution of System Mode or any of the following
commands:

-« END
+ PONAER OFF
« POAERO

In preparation for maintenance or inspection jobs involving execution of System
Mode (which will disable the resume function), store important information con-
tained in user programs by using files or register variables, preventing your current
operation jobs from getting crippled.

165

Chapter 12
Power-related Functions

CONTENTS

12.1 Low Battery WArINGccoeereieeiiieeiieeeniieesieeesitee e s snreessieeesneeee e

12.2 Prohibited Simultaneous Operation of the Beeper*, lllumination LED
(Laser Source**), and LCD Backlight

12.3 WaKeUP FUNCHON ...ttt e e eaee

12.4 Remote Wakeup Function (BHT-7000/BHT-7500)cccccveirveernieeeenne

[2] OULNE ..o
[2] Remote wakeup Operationcccccceevieeeenueneinieesneeee e
[3] Remote wakeup Programccceeeoveearrreenieeesieeessneeennes

166

Chapter 12. Power-related Functions

12.1 Low Battery Warning

= BHT-3000

If the battery voltage is below the specified level when the BHT-3000 is powered on, the
"Battery voltage has lowered" message appears on the LCD.

If the battery voltage drops while the BHT-3000 is in operation, the beeper beeps three
times every 10 seconds.

If you keep using the BHT-3000 without battery replacement after the above warning, the
BHT-3000 displays the "Replace the batteries" message on the LCD and turns itself off
automatically.

Refer to the "BHT-3000 User’'s Manual."

= BHT-4000

If the output voltage of the Ni-Cd battery cartridge or dry battery cartridge drops below the
specified level, the BHT-4000 displays the "Charge the battery!!" message, beeps five
times, and then turns itself off automatically.

Refer to the "BHT-4000 User's Manual."

= BHT-5000

If the output voltage of the Ni-MH battery cartridge or dry battery cartridge drops below the
specified level, the BHT-5000 displays the "Charge the battery!" message or "Replace the
batteries" message, respectively, beeps five times, and then turns itself off automatically.

Refer to the "BHT-5000 User's Manual."

m BHT-6000/BHT-6500

If the output voltage of the battery cartridge drops below a specified lower level limit when
the BHT-6000/BHT-6500 is in operation, the BHT displays the Level-1 message "Battery
voltage has lowered." on the LCD and beeps three times. After that, it will resume previous
regular operation.

If the battery output voltage drops further, the BHT-6000/BHT-6500 displays the Level-2
message "Charge the battery!" or "Replace the batteries!" (when driven by Ni-MH battery
cartridge or dry batteries, respectively), beeps five times, and then turns itself off automati-
cally.

Refer to the "BHT-6000 User’s Manual" or "BHT-6500 User’'s Manual."

s BHT-7000/BHT-7500

If the output voltage of the battery cartridge drops below a specified lower level limit when
the BHT-7000/BHT-7500 is in operation, the BHT displays the Level-1 message "Battery
voltage has lowered." on the LCD and beeps three times. After that, it will resume previous
regular operation.

If the battery output voltage drops further, the BHT-7000/BHT-7500 displays the Level-2
message "Charge the battery!" or "Replace the batteries!" (when driven by the lithium-ion
battery cartridge or dry battery cartridge, respectively), beeps five times, and then turns
itself off automatically.

Refer to the "BHT-7000 User’s Manual" or "BHT-7500 User’'s Manual."

167

12.2 Prohibited Simultaneous Oper a-
tion of the Beeper*, Illumination
LED (Laser Source**), and LCD
Backlight

(* Beeper and vibrator in the BHT-6500/BHT-7000/BHT-7500)
(** Laser source in the BHT-6500/BHT-7500)

= BHT-3000

The BHT-3000 is so designed that the beeper, illumination LED, and LCD backlight will not
work simultaneously to save power consumption at peak load. There are priority orders
among them; that is, the beeper has the highest priority, the illumination LED has the next
priority, and the LCD backlight has the lowest priority. To beep the beeper when the LCD
backlight is on, for example, the BHT-3000 turns off the LCD backlight once and then
beeps.

= BHT-5000

The BHT-5000 is so designed that the beeper and illumination LED will not work simulta-
neously to save power consumption at peak load. There is a priority order between them;
that is, the beeper has the priority over the illumination LED. To beep the beeper at the
time of bar code scanning, for example, the BHT-5000 turns off the illumination LED when
beeping.

= BHT-6000

The BHT-6000 is so designed that the illumination LED and the LCD backlight will not work
simultaneously to save power consumption at peak load. There is a priority order between
them; that is, the illumination LED has the priority over the LCD backlight.

s BHT-6500/BHT-7000/BHT-7500

The BHT-6500/BHT-7000/BHT-7500 is so designed that the beeper (and vibrator), illumina-
tion LED (laser source in the BHT-6500/BHT-7500), and LCD backlight will not work simul-
taneously to save power consumption at peak load. There are priority orders among them;
that is, the beeper (and vibrator) has the highest priority, the illumination LED (laser source)
has the next priority, and the LCD backlight has the lowest priority.

168

Chapter 12. Power-related Functions

12.3 Wakeup Function

= BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500
The wakeup function allows you to turn on the BHT from "OFF" at the wakeup time (of the
system clock) specified in user programs.

To set the wakeup time by using the TI ME$ function:

(1) Set 1 to hit 2 on port 8. Switches the TI ME$ function to the setting of the
wakeup time.

(2) Setthe wakeup time by using the Tl MES$ function.
(3) Set 1 to bit 0 on port 8. Activates the wakeup function.

To confirm the wakeup time preset:

(1) Set 1 to bit 2 on port 8. Switches the TI ME$ function to the setting of the
wakeup time.

(2) Retrieve the wakeup time by using the TI MES$ function.

s~ If you set or retrieve the system time or wakeup time by using the TIMES$ func-

NOTE

—— tion, the value of bit 2 on port 8 will be automatically reset to zero.

When bit 2 on port 8 is zero, you can set or retrieve the current system time by
using the TIMES function.

By reading the value of bit 1 on port 8 in user programs, you may confirm theini-
tiation option of the BHT. If thishitis 1, the BHT isinitiated by the wakeup func-
tionandif O, it isinitiated by the PW key.

169

12.4 Remote Wakeup Function
(BHT-7000/BHT-7500)

[1] Outline

The remote wakeup function allows you to remotely power on the BHT and run the specified
user program (hereafter referred to "remote wakeup program") by sending the specified mes-
sage from the host computer to the BHT via the CU.

Developing user programs utilizing the remote wakeup at both the host computer and BHT
enables you to automatically maintain the master system or update user programs.

To use the remote wakeup between the BHT and host computer, the following is required:

» Optical communications unit CU-7001 (The CU-7002 does not support the remote
wakeup.)

* CU interface cable

[2] Remote wakeup operation

m AttheBHT

(1) Power off the BHT and put it on the CU.
The BHT will enter into the charge state* (i.e., into sleep). (For details about charging, refer
to the "BHT-7000 User's Manual" or "BHT-7500 User's Manual.")
*Charge state: Charging or charged-up state
(2) Upon receipt of any data via the IR port, the BHT wakes up and becomes ready to receive
data.
If no data comes in within the specified time (described in [3], m Setting the remote
wakeup), the BHT will go back to step (1).

(3) If the BHT receives any data, it will check the data. If the BHT detects a “WAKE” character
string™ in the data, it will proceed; if not, the BHT will go back to step (1).

(4) The BHT will send the following response to the host computer depending upon whether or
not a remote wakeup program exists in the BHT and whether the remote wakeup function
is activated or deactivated.

Remote wakeup Remote wakeup Response message .
. Proceeds to:
program function from the BHT
Exists Activated ACK +"0" + ID"2 (5)
Deactivated ACK +"2" + 1D D
Not exist Activated ACK +"1" + 1D D
Deactivated ACK +"1" + 1D D

*1 Since the BHT in the charge state is in sleep, it will not receive the 1st “WAKE” character
string normally. To wake up the BHT, you need to send a “WAKE” character string at
lease two times, for example, send “WAKEWAKE” or “WAKEWAKEWAKE.”

*2|D is a 6-byte numeric string referring to the lower 6 digits of the BHT serial number.

170

Chapter 12. Power-related Functions

(5) The BHT will exit from the sleep state and execute the remote wakeup program developed
by the user.

m At thehost computer

(1) The host computer sends a “WAKE” character string to the BHT at least two times.

(2) Upon receipt of "ACK + "0" + ID" from the BHT, the host computer should conduct transac-
tions with the remote wakeup program in the BHT.

Upon receipt of "ACK + "1" + ID" or "ACK + "2" + ID" from the BHT, the host computer
should proceed to the corresponding error processing.

m Transmission control sequence
If in the BHT a remote wakeup program exists and the remote wakeup is activated:

Host computer BHT
Sends 1st time "WAKE" In charge state
\l/ \ (|n s|eep)
N \L
Sends 2nd time "WAKE" Ready-to-receive
\ \L Handled by the BHT
N system program
Detects "WAKE" and
\L sends its response
ACK +"0" + D | ¢
/ Starts the remote
wakeup program

Receives response
Conducts transactions \ Conducts transactions

with the remote with the host program
wakeup program

171

If in the BHT no remote wakeup program exists:

Host computer

Sends 1st time

Sends 2nd time

\

Receives response

\

Proceeds to the
error processing

"WAKE"

1

"WAKE"

ACK+"1"+1D

BHT

| -

In charge state
(in sleep)

\

Ready-to-receive

\

Detects "WAKE" and_|
sends its response

é

If in the BHT the remote wakeup is deactivated:

Host computer

Sends 1st time

\

Sends 2nd time

\

Receives response

\

Proceeds to the
error processing

"WAKE"

1

"WAKE"

ACK +"2"+ID

BHT

In charge state
(in sleep)

\

Ready-to-receive

\

Detects "WAKE" and_|
sends its response

172

Handled by the BHT
system program

Handled by the BHT
system program

Chapter 12. Power-related Functions

[3] Remote wakeup program

m Filename
The BHT may handle the file named "BHTRMT.PD3" as a remote wakeup program.

Upon receipt of data containing a “WAKE” character string in the ready-to-receive state, the
BHT checks whether the BHTRMT.PD3 file exists. If the file exists, the BHT will start the
remote wakeup operation described in [2].

m Settingsfor remote wakeup

To use the remote wakeup function, make the following I/O port settings with the OUT or WAI T
statement or | NP function beforehand (refer to Appendix D, “I/O Ports," D5):

(1) Activate the remote wakeup function

You may activate/deactivate the remote wakeup function as listed below. The default is 0
(Deactivate).

Port No. Bit No. R/W Specifications

60F0h 0 R/W 0: Deactivate the remote wakeup
1: Activate the remote wakeup

(2) Set the transmission speed to be applied for remote wakeup

Set the transmission speed to be applied when activating the remote wakeup as listed
below. The defaultis 1 (9600 bps).

Port No. Bit No. R/W Specifications

60F1h 7-0 R/W 1: 9600 bps 2: 19200 bps
3: 38400 bps 4: 57600 bps
5: 115200 bps

(3) Set the timeout for ready-to-receive state

Set the timeout length during which the BHT will wait for a “WAKE” character string after
receiving any data via the CU and becoming ready to receive. The default is 3 (seconds).

Port No. Bit No. R/W Specifications

60F3h 7-0 R/W 1 to 255 seconds. Specification of 0
will not change the current setting.

173

(4) Set the BHT station ID to be used in the BHT response message

Set a 6-byte numeric string referring to the lower 6 digits of the BHT serial number as a sta-
tion ID which will be used in the response message to the host. To write and read the set-
ting, use the extension function SYSTEM.FN3 (Functions #3 and #4). For details, refer to
Chapter 16, "Extended Functions."

Once made in a user program, the above settings will be retained even after termination the
user program.

The remote wakeup activation/deactivation and the transmission speed for remote wakeup
may be set in System Mode. For details, refer to the "BHT-7000 User’'s Manual" or "BHT-7500
User’s Manual."

m Start of aremote wakeup program

When a remote wakeup program starts, the resume function of the most recently running user
program becomes disabled regardless of the resume setting made in System Mode. Also in
other user programs chained from the remote wakeup program with the CHAI N statement, the
resume function will remain disabled.

Accordingly, after termination of the remote wakeup program, any other user program will per-
form a cold start.

To enable the resume function of a user program running after the termination of the remote
wakeup program and its chained-to programs, use the extension function SYSTEM.FN3
(Function #1). For details, refer to Chapter 16, "Extension Functions."

m End of aremote wakeup program

The remote wakeup program and its chained-to programs may be either normally terminated
or interrupted as follows:

» Normally terminated
when the program is ended with END, POAER OFF or PONER O statement.
* Interrupted

when the program is ended by pressing the PW key, with automatic powering-off func-
tion, low battery power-off or any other factor when the resume function is disabled.

If the resume function is made enabled, the remote wakeup program or its chained-to program
will be neither normally terminated nor interrupted since it will resume the operation in the next
powering-on.

174

Chapter 12. Power-related Functions

m Checking the execution record of remote wakeup

When starting, a user program (including a remote wakeup program) may check via the 1/0
ports whether the BHT remotely woke up at the last powering on and its operation was nor-
mally ended. (Refer to Appendix D, "I/O Ports," D5.)

Making use of the execution record, you may display an alarm message.

Port No. Bit O Bit 1 Specifications
60F2h 0 0 At the last powering on, the BHT did not remotely
0 1 wake up.*
1 0 At the last powering on, the BHT remotely woke
up and its operation was interrupted.
1 1 At the last powering on, the BHT remotely woke

up and its operation was normally ended.

* This means that the BHT was cold-started, driven by System Mode or initialized.

175

Chapter 13
L CD Backlight Function

CONTENTS
13.1 LCD Backlight FUNCHONcciuiiiiiiiiiiiiie it

176

Chapter 13. LCD Backlight Function

13.1 LCD Backlight Function

The BHT has an LCD backlight function. Pressing the trigger switch* while holding down the
Shift key activates or deactivates the backlight function. The default length of backlight ON-
time (ON-duration) is 3 seconds.

By using a KEY statement, you can select the backlight function on/off key instead of the com-
bination of the trigger switch* and Shift key, as well as modifying the ON-duration of the back-
light.

For details about the KEY statement, refer to KEY in Chapter 14.

(*In the BHT-6000/BHT-6500/BHT-7000/BHT-7500,

[The backlight function is OFF] the magic key works as a trigger switch.)

when you power on the
BHT.

—
-l

A
Backlight OFF

Press the trigger switch*
while holding down the Shift key.

on/off key specified by KEY

Or, press the backlight function
statement.

Y

Backlight ON

Press the trigger switch*
A while holding down the Shift key.

Or, press the backlight function
on/off key specified by KEY
statement.

If no key is pressed for
at least 3 seconds:

Press any key except for the
backlight function on/off key.

Y

Backlight OFF
(The backlight function is ON.)

Press the trigger switch*
while holding down the Shift key.

[Or, press the backlight function]

on/off key specified by KEY
statement.

177

In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, you can control the backlight
function by using the OUT statement as described below.

Setting 1 to port 6020h with the OUT statement activates the LCD backlight function and turns
on the backlight. If no key is pressed for the time length preset to port 6021h (default time: 5
seconds), the backlight goes off but the backlight function remains activated.

Setting 0 to port 6020h deactivates the LCD backlight function and turns off the backlight if lit.

When the backlight function is activated with the OUT statement, the backlight function on/off
key and ON-duration specified by the KEY statement will be ignored.

deactivated when the BHT
is powered on.

A

[The backlight function is]

Backlight OFF

With the OQUT statement,
set 1 to port 6020h.

Y

Backlight ON

With the QUT statement,

A
If no key is pressed set 1 to port 6020h.

for the time length
preset to port 6021h,
the backlight goes off.

Press any key.

Y
Backlight OFF

The backlight function
remains activated. With the OUT statement,
set 1 to port 6020h.

178

Chapter 14
Satement Reference

CONTENTS

APLOADooiiieeiiiee e 180 LET oo 258
BEEP ..o 185 LINE INPUT ...ooiiiiiiiiiieeceeee 260
CALL o 188 LINE INPUT # ..o 263
CHAIN e 192 LOCATE ..oiiiiiciienee e 265
CLFILE ..ooiiiiiiiieeeceec e 194 ON ERROR GOTOccceevvriririinieinene 268
CLOSE ...ooiieiieeeee e 196 ON...GOSUB and ON...GOTO 269
CLS e 197 ON KEY...GOSUBcceeciieriieeiinenne 271
COMMON ..o 198 OPEN oot 273
CONST i 200 OPEN "BAR:" ..ot 275
CURSORooiiieiieniiiiieeiee e 201 OPEN "COM:" ..o 287
DATA ot 202 OUT it 293
DECLAREcooiiiiiiiiceee e 203 POWERoooiiiiiiiiierieceeec e 295
DEF FN (Single-line form) 205 PRINT e 297
DEF FN...END DEF (Block form) 209 PRINT # oo 300
DEFREGoooiiiiiiiiiieece e 213 PRINT USINGcccoviiiiiiiieeeieeee 302
DIM Lottt 217 PRIVATE ..o 306
END ..o 219 PUT e 309
ERASEcoiiiiiiieeee e 220 READ ...ttt 311
FIELD .ooiiiiiiieieee e 221 REM oo 313
FOR..NEXT ..ot 223 RESTOREooiiiieiiiiieeieeeeeee 314
FUNCTION...END FUNCTION 225 RESUMEcoooiiiiiiiieiee e 315
GET it 230 RETURN ..ot 317
GLOBAL ..ottt 232 SCREEN.......cciiiiiieicc e 318
GOSUB ..ot 234 SELECT...CASE...END SELECT 320
GOTO i 236 SUB...END SUBcccooeiiiiiiiieieen 322
IF...THEN...ELSE...END IF 237 WAIT e 326
INPUT oo 239 WHILE..WENDccoeoviiiiiiieeiiieeen, 328
INPUT # oo 242 XFILE oo 330
KEY it 244 BINCLUDEoooviiiiiieeenieeec e 335
KEY ON and KEY OFFcccccveenee. 249 Additional Explanation for Statements 337
KILL et 251

KPLOADooiiiiiiiiiee e 253

179

Chapter 14. Statement Reference

ANK Pattern LOAD 1/O statement

Loads a user-defined font in the single-byte ANK* mode []
1000/
|000|

*ANK: Alphanumeric and Katakana

Syntax:
Syntax 1 (Loading a user-defined font):
APLOAD char acode, f ont ar r aynane
Syntax 2 (Loading a user-defined cursor. Valid in the BHT-7000/BHT-7500):
APLOAD char acode, cur sor arraynamne

Parameter:
char acode

* For user-defined font A numeric expression which returns a value
from 128 (80h) to 159 (9Fh).

 For user-defined cursor A numeric expression which returns a value 0.
fontarrayname and cursorarrayname

An array integer variable name.
Do not specify parentheses () or subscripts which represent a gen-
eral array as shown below; otherwise, it will result in asyntax error.

APLOAD &HB0, cp%) ‘error
APLOAD &HB0, cp%5) 'error

NOTE

Description:
m Loading a user-defined font

APLQAD loads a user-defined font data defined by f ont ar r aynan® to the user
font area specified by char acode.

« To display user-defined fonts loaded by the APLOAD, you use the PRI NT state-
ment in the single-byte ANK mode. If you attempt to display an undefined charac-
ter code, a space character will appear.

» The loaded user-defined fonts are effective during execution of the user program
which loaded those fonts and during execution of the successive user programs
chained by the CHAI N statement.

180

« If you issue more than one APLQAD statement specifying a same character code,
the last statement takes effect.

« Only when the Interpreter executes the APLOAD statement, it refers to the array
data defined by f ont ar r aynane. So, once a user program has finished load-
ing the user font, changing the data in the array or deleting the array itself (by the
ERASE statement) will not affect the already loaded user font.

 An array integer variable--a work array, register array, or common array--for f on-
t ar r aynamne should be declared by the DI M DEFREG or COMMON statement,
respectively.

DI M cp0% 5)
DEFREG cp19% 5)
COVVON cp2% 5)

The array variable should be one-dimensional and have at least six elements.
Each element data should be an integer and stored in the area from the 1st to 6th
elements of the array.

e In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the small-size font is
selected, user-defined fonts loaded by the APLOAD will be condensed into small
size (6 dots wide by 6 dots high) for display. For the generating procedure of the
small-sized user-defined fonts, refer to Appendix C3., "Display Mode and Letter
Size."

* Also in the double-width screen mode of the BHT-7000/BHT-7500, user-defined
fonts loaded by the APLOAD will be effective, but the dot pattern of each loaded
font will be doubled in width by the system.

m Loading a user-defined cursor (BHT-7000/BHT-7500)

APLQAD loads a user-defined cursor data defined by cur sor ar r ayname to the
user font area specified by char acode.

 To display a user-defined cursor loaded by the APLOAD, you specify 255 to the
cursorswi tch in the LOCATE statement in the single-byte ANK mode.
(LOCATE , , 255)

» The loaded user-defined cursors are effective during execution of the user pro-
gram which loaded those cursors and during execution of the successive user
programs chained by the CHAI N statement.

« Only when the Interpreter executes the APLOAD statement, it refers to the array
data defined by cur sor arraynane. So, once a user program has finished
loading the user cursor, changing the data in the array or deleting the array itself
(by the ERASE statement) will not affect the already loaded user cursor.

181

Chapter 14. Statement Reference

» The cursor size will differ depending upon the display font currently selected, as

shown below.

Display font

Size (W x H)

No. of elements

Standard-size

6 x 8 dots

012345
LsB OOOOOO
ooooad
Oo00oc
O000O0o0
ooooad
Oo00od
O000O0o0
MsSBOOOOOMO

6

Small-size

6 x 6 dots

o
I
N
w
N
a1

LSB

O0O000ooon
Ooooooono
Oo0000oono
O00O0O0ooo
OO00O0Oooono
OOooOoOoooo

MSB

* An array integer variable--a work array, register array, or common array--for cur -
sor arr aynane should be declared by the DI M DEFREG or COVMON state-

ment, respectively.
DI M cp0% 5)
DEFREG cpl% 5)
COVMON cp2% 5)

The array variable should be one-dimensional and have at least six elements.
Each element data should be an integer and stored in the area from the 1st to 6th

elements of the array.

* If you specify cur sor ar r aynane exceeding the allowable cursor size (height:
no. of bits, width: no. of elements), the excess will be discarded.

182

« In the double-width screen mode, user-defined cursors loaded by the APLOAD
will be doubled in width when displayed, as shown below.

When the standard-size font is selected:

Cursor loaded

In double-width screen mode

012345
Lse OO OO
Uoogond
Uoogond
Uoogood
o000
OOoO0ononf
OO0000ono
MSBOJOO OO

Oooo0oooooogd
uooooooooogd
uhoooooooogd
Oo0o0ocoooood
MSBOOOOOOOOOOOnO

When the small-size font is selected:

Cursor loaded

In double-width screen mode

012345 01234567 891011
LsB LJUOOOII LsSB OO OO0OO00OO00
Uooood Oooooooodood
Uooood Oooooooodood
LOoOoondt OOoooooooOonn
LOoOoonot (I
O0o0oooc O0000000oonond
odoon Oooooaoodoon
MSB JO0O0O00 MSB JOOO0O00000000O
Syntax errors:
Error code and message Meaning

error 71: Syntax error

« Nofontarraynane or cur sor -
arr aynane is defined.

- fontarraynanme or cursorar-
raynamnme has an array string vari-
able.

- fontarraynane or cursorar-
r ayname includes parentheses ().

- fontarraynane or cursorar-
r aynane includes subscripts.

Run-timeerrors:

Chapter 14. Statement Reference

Error code Meaning

05h Parameter out of the range
(+ char acode is out of the specified range.)
(= The array structure is not correct.)

08h Array not defined

Example:

O O
O O
O O
O []

O (|
O (|
O (|
O O

Reference:
Statements:

DI M cp% 5)

cp% 0) =&H00

cp% 1) =&H08

cp% 2) =&H1C

cp% 3) =&H3E

cp% 4) =&H7F

cp% 5) =&H00
APLOAD &H80, cp%
PRI NT CHR$(&H80)

Array Elements
cp%(0) cp%(1) cp%(2) cp%(3) cp%(4) cp%(5) Bit in each array element

O

oOoOw® =]

m| . m| 0(LSB)

OOom®"=a
D......
OooOooooao
o o WN PP

7(MSB)

COMON, DEFREG, DIM KPLOAD, PRI NT, and SCREEN

184

I/O statement

BEEP

Drives the beeper or vibrator. (The vibrator is provided in the BHT-6500/BHT-7000/BHT-7500
to which vibrator-related descriptions given below should apply.)

Syntax:
BEEP[ondur ati on[, of fdurati on[, repetiti oncount
[, frequency]]]]
Parameter:
onduration, offduration, andrepetitioncount
Numeric expressions, each of which returns a value from 0 to 255.
frequency
A numeric expression which returns a value from 0 to 32767.
Description:

BEEP sounds the beeper or drives the vibrator during the length of time specified by
ondur at i on at the intervals of the length of time specified by of f dur at i on by
the number of repetitions specified by r epet i ti oncount.

The beeper sounds at the pitch of the sound in Hz specified by f r equency.

» The unit of ondur at i on and of f dur at i on is 100 msec.
» Defaults:

ondur ati on and of fdurati on: 1 (100 msec.)
repetitioncount: 1

frequency: 4337 Hz* (BHT-3000/BHT-6000)
3213 Hz* (BHT-4000)
4200 Hz* (BHT-5000)
2711 Hz* (BHT-6500)
2793 Hz* (BHT-7000/BHT-7500)
(*Same as when 2 is set to f r equency)

« Note that specification of 0, 1, or 2 to f r equency produces the special beeper
effects as listed below.

Specification to BHT-3000/ BHT-4000 BHT-5000 BHT-6500 BHT-7000/ Tone Statement

frequency BHT-6000 BHT-7500 example
0 1033 Hz 1015 Hz 1015 Hz 986 Hz 698 Hz Low- BEEP ,,,0
pitched
1 2168 Hz 1752 Hz 2142 Hz 1807 Hz 1396 Hz Medium- BEEP ,,, 1
pitched
2 4337 Hz 3213 Hz 4200 Hz 2711 Hz 2793 Hz High- BEEP ,,,2
pitched

185

Chapter 14. Statement Reference

In the BHT-6500/BHT-7000/BHT-7500, specification of 0, 1, or 2 to f r equency
drives the beeper or vibrator depending upon the settings made on the "LCD con-
trast & beeper volume adjustment and the beeper & vibrator switching" screen.

If 0, 1, or 2 is set to f r equency (or if the f r equency option is omitted), then
you can adjust the beeper volume on the LCD when powering on the BHT. (For
the adjustment procedure, refer to the BHT User’'s Manual.)

In the BHT-7000/BHT-7500, you may change the beeper volume with the OUT
statement. (For details, refer to Appendix D, "I/O Ports," D5.)

If you set a value other than 0, 1, and 2 to f r equency, the beeper volume is
automatically set to the maximum and not adjustable.

In the BHT-3000/BHT-6000/BHT-6500, specification of any of 3 through 61 to
f requency deactivates the beeper; in the BHT-4000/BHT-5000, any of 3
through 260 deactivates the beeper; in the BHT-7000/BHT-7500, any of 3 through
39 deactivates the beeper or vibrator.

In the BHT-4000, specification of 5001 or greater to f r equency automatically
sets the frequency to 5000 Hz.

Specification of zero to ondur at i on deactivates the beeper.

Specification of a value except for zero to ondur at i on and specification of zero
to of f dur at i on keep beeping.

Specification of a value except for zero to ondur ati on and of f durati on
and specification of zero to r epet i t i oncount deactivate the beeper.

For your reference, the relationship between the frequencies and the musical
scale is listed below.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

do 130 Hz 261 Hz 523 Hz 1046 Hz 2093 Hz 4186 Hz
do# 138 277 554 1108 2217
re 146 293 587 1174 2349
re# 155 311 622 1244 2489
mi 164 329 659 1318 2637
fa 174 349 698 1396 2793
fa# 184 369 739 1479 2959
sol 195 391 783 1567 3135
sol# 207 415 830 1661 3322
la 220 440 880 1760 3520
la# 233 466 932 1864 3729
Si 246 493 987 1975 3951

186

» The BEEP statement does not suspend execution of the subsequent statement

until the beeper completes sounding or vibrating. Instead, the execution of the
subsequent statement proceeds immediately.

If a second BEEP statement is encountered while the BHT is still beeping or
vibrating by a first BEER, the first BEEP is cancelled and the new BEEP statement
executes.

In the BHT-3000, if the beeper starts sounding for warning you of the low battery
during beeping programmed by the BEEP, then the warning beep overrides the
programmed beeping.

In the BHT-6000/BHT-6500/BHT-7000/BHT-7500 also, if low battery warning
operation starts during beeping or vibrating programmed by the BEEP, then the
warning operation overrides the programmed beeping or vibrating. Upon comple-
tion of the warning operation, the beeper or vibrator resumes working as pro-
grammed.

Syntax errors:

Error code and message Meaning

error 71: Syntax error The number of parameters or commas
(,) exceeds the limit.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

Example:

BEEP bon% bof f % count % hel z%
BEEP bon% bof f % count %
BEEP bon% bof f %, hel z%
BEEP bon% , count % hel z%
BEEP , bof f % count % hel z%
BEEP bon% bof f %

BEEP bon% , count %

BEEP , bof f % count %

BEEP bon%, , hel z%

BEEP , boff %, hel z%

BEEP , , count % hel z%

BEEP bon%

BEEP , bof f %

BEEP , , count %

BEEP , ,, hel z%

BEEP

187

Chapter 14. Statement Reference

Flow control statement

CALL

Calls an FN3 or SUB function.

Syntax:
Syntax 1 (Calling an FN3):
CALL "[drivenane:]fil ename" functionnunber [data
[,data]...]
Syntax 2 (Calling a SUB):
CALL functionnane [(real paraneter[,real paraneter.])]

Parameter:
[drivenane:]fil enane

A string expression.
functi onnunber

An integer constant.
dat a

A string variable or a numeric variable.
functi onname

Real function name.
r eal par anet er

A numeric expression or a string expression.
Description:
m Calling an extension library (FN3 function)

CALL calls a function specified by f uncti onnunber from a file specified by
"“[drivenane:]fil ename" and assigns the parameter specified by dat a to
the called function.

For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the dri venanme
may be A: or B: . If the dri venane is omitted, the default A: applies.

188

fil enane is the name of an FN3 function. The extension of the file names is
fixed to .FN3. (For the FN3 functions, refer to Chapter 16, "Extended Functions"
or the "BHT-BASIC Extension Library Manual.")

functi onnunber is the function number of an FN3 specified by "[dri ve-
nane:] fil ename".

dat a is a variable for the function number of the FN3 (that is, it is used as an
argument to the FN3 function).

When specifying an array to dat a, add a pair of parentheses containing nothing
as shown below.
Example: CALL " _xxx.FN3" 1 DATA ()

When calling a function (specified by f unct i onnumnber) that returns a string
variable:

BHT-5000/BHT-6000/BHT-6500

Reserve a storage area for a returned string variable by using a variable declara-
tion statement (DI M COVMON, or DEFREG). (If the string length is omitted in the
variable declaration statement, the default in the statement will take effect.) And
assign arbitrary data of the string length required for a return value to the variable.

If the string length of a returned value is greater than the assigned string length, a
run-time error will result.
(Example 1) If a return value is a fixed-length string, e.g. 8-character length:
DI M QUTPUTY] 8] 'Reserves a storage area of 8 characters.
OQUTPUT$=" " 'Assigns 8 spaces.

(Example 2) If a return value is a variable-length string of a maximum of N char-
acters:

DI M QUTPUTS$[N| 'Reserves a storage area of a max. of N chars.
QUTPUT$=" ... " 'Assigns N spaces.
QUTPUT$="" ‘or assign
FOR 1%1 TO N 'amax. of N chars of spaces
QUTPUT$=QUTPUT$+"" 'to the variable by loop.
NEXT | %
BHT-7000/BHT-7500

Reserve a storage area for a returned string variable by using a variable declara-
tion statement (DI M COMMON, or DEFREG). (If the string length is omitted in the
variable declaration statement, the default in the statement will take effect.)
Unlike the BHT-5000/BHT-6000/BHT-6500, the BHT-7000/BHT-7500 does not
require to assign arbitrary data of the string length required for a return value to
the variable.

If the string length of a returned value is greater than the string length reserved by
a variable declaration statement, a run-time error will result.

(Example 1) If a return value is a fixed-length string, e.g. 8-character length:
DI M QUTPUTS] 8] 'Reserves a storage area of 8 characters.

(Example 2) If a return value is a variable-length string of a maximum of N char-
acters:

DI M QUTPUT$[N 'Reserves a storage area of a max. of N chars.

189

Chapter 14. Statement Reference

—— To use FN3 functions except extended functions given in Chapter 16, you

M need to download the extension programs from an extension library sold
separately. (The BHT-BASIC Extension Library is supported by the BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.)

m Calling a user-defined function (SUB function)

This statement calls a user-defined function specified by f unct i onnane. You
may omit CALL when calling a SUB function.

« functi onnane should be a user-defined function defined by SUB...END SUB
statement.

» The number of r eal par anet er s should be equal to that of dummy parame-
ters, and the types of the corresponding variables used in those parameters
should be identical.

« If you specify a global variable in r eal par anet er when calling a user-defined
function, the user-defined function cannot update the value of the global variable.

This is because all r eal par anet er s are passed not by address but by value.
(So called "Call-by-value")

m Before any call to a SUB function, you need to place definition of the SUB
—— function or declaration of the SUB function by using the DECLARE state-
ment in your source program.

Syntax errors:

Error code and message Meaning
error 3: "' mssing No double quote precedes or follows
[drivenane:]fil enane.
error 68: M smatch » The number of r eal paraneters is
not equal to that of the dummy parame-
ters.

e A dummy parameter was an integer
variable in defining a function, but
r eal par anet er is areal type in call-
ing the function. (If a dummy parameter
was a real variable in defining a function
and real paraneter is an integer
type in calling, then no error occurs.)

error 71: Syntax error e [drivenane:]fil enanme is not
enclosed in double quotes.

» The function specified by f unct i on-
nane has not been defined.

190

Run-timeerrors:

Error code Meaning

02h Syntax error
("[drivename:]fil enane" is in incorrect syntax or the
extension is not .FN3.)

05h Parameter value out of range
(In calling an FN3 function, the number of parameters exceeds
16.)

07h Insufficient memory space
(You nested calling statements of a user-defined function to
more than 10 levels.)

1Fh functi onnunber out of the range

35h File not found

FOh Mismatch parameter number

Flh Mismatch parameter type

F2h Insufficient string variable storage area

Reference:
Statements: DECLARE and SUB...END SUB

191

Chapter 14. Statement Reference

Flow control statement

CHAIN

Transfers control to another program.

Syntax:
CHAIN "[drivenane:] progranfil enane”
Parameter:
“[drivenane:] progranfil enane"
A string expression.
Description:

CHAI N transfers control to a program specified by "[dri venane:] pr ogr am
fil enane". Thatis, it terminates the current running program (1st program) and
closes all of the files being opened. Then, itinitializes environments for the chained-
to user program (2nd program) specified by "[dri venane:] progranfi |l e-
nanme" and executes it.

For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the dri venanme
may be A: or B: . If the dri venane is omitted, the default A: applies.

"[drivenane:] progranfil enane” is an executable object program
compiled by the Compiler and has the extension .PD3, as shown below. The
extension .PD3 cannot be omitted.

CHAI N "progl. PD3"

You should download an executable object program (2nd program) to the BHT
before the CHAI N statement is executed.

You can pass variables from the current program to the chained-to program (2nd
program) with the COMMON statement.

User-defined fonts loaded by the APLOAD or KPLQOAD statement and the setting
values assigned by the KEY statement or COUNTRY$ function remain effective in
chained-to programs.

The ON ERROR GOT Ostatement cannot trap errors (while showing the error code

07h which means "Insufficient memory space") happened during initialization of
environments for chained-to programs.

192

Syntax errors:

Error code and message Meaning

error 3: '"’ mssing No double quote precedes or follows
[drivenane:] progranfil e-
nane.

error 71:. Syntax error [drivenane:] progranfil e-

nane is not enclosed in double quotes.

Run-timeerrors:

Error code Meaning

02h Syntax error
([drivenane:] progranfil enane"isin incorrect sytax
or the extension is not .PD3.)

07h Insufficient memory space
(The 1st program uses too many variables.)

35h File not found
(The file specified by "[dr i venane:] progranfi | ename"
does not exist.)

41h File damaged

Reference:

Statements: APLOAD, COVMON, and KPLOAD

193

Chapter 14. Statement Reference

ClLear FILE File 1/O statement

CLFILE

Erases the data stored in a data file.

Syntax:
CLFILE [#]fil enunber
Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
Description:

CLFI LE erases data in the data file specified by fi | enunber and resets the
number of written records in the directory to zero.

e The memory area freed by CLFI LE can be used for other data files or user pro-
gram files.

» User programs can no longer refer to the erased data.
» CLFI LE cannot erase data in files stored in drive B.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error fil enunber is missing.

Run-timeerrors:

Error code Meaning

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type

(You specified f i | enunber of a file other than data files.)
3Ah File number out of the range
43h Not allowed to access the data in drive B.

194

Example:

OPEN "master.Dat" AS #1

FI ELD #1, 20 AS bar$, 10 AS ky$
CLFI LE #1

CLCSE #1

195

Chapter 14. Statement Reference

‘File 1/0 statement

CLOSE

Closes file(s).

Syntax:
CLOSE [[#]filenunber[,[#]filenunber...]]
Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
Description:

CLOSE closes file(s) specified by f i | enunber (s).
* The file number(s) closed by the CLOSE statement becomes available for a sub-
sequent OPEN statement.

« If no file number is specified, the CLOSE statement closes all of the opened data
files and device 1/O files.

» Specifying the unopened file number causes neither operation nor a run-time
error.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error fil enunber is missing.

Run-timeerrors:

Error code Meaning

3Ah File number out of range

Reference:

Statements: END and OPEN

196

ClLear Screen I/0 statement

CLS

Clears the LCD screen.

Syntax:
CLS

Description:

CLS clears the liquid crystal display (LCD) screen and returns the cursor to the
upper left corner of the screen.

» The CLS statement does not affect the screen mode (the single-byte ANK mode,
two-byte Kanji mode, and condensed two-byte Kanji mode) or the character
attribute (normal or highlighted), but it turns off the cursor.

* In the BHT-4000/BHT-5000/BHT-6000/BHT-6500, execution of the CLS state-
ment when the system status is displayed on the LCD clears the VRAM area
assigned to the system status area of the LCD but does not erase the system sta-
tus displayed.

197

Chapter 14. Statement Reference

Declarative statement

COMMON

Declares common variables for sharing between user programs.

Syntax:

COVWON commonvari abl e[, cormonvari abl e. . .]

Parameter:

commonvari abl e

A non-array integer variable, a non-array real variable, a non-array string
variable, an array integer variable, an array real variable, or an array string
variable.

Description:

COMMON defines common variables for sharing them when one program chains to
another.

Common variables defined by COMMON keep effective as long as programs
chained by the CHAI N statement are running.

A COVIVON statement can appear anywhere in a source program.

All of the variable name, type, quantity, and definition order of the common vari-
ables used in the current program should be identical with those in the chained-to
programs. If not, variables having indefinite values will be passed.

Up to two-dimensional array variables can be defined. You can specify a sub-
script ranging from 0 to 254 for an array variable.

The total variable data size which can be passed between chained programs is 6
kilobytes including work variables.

The size of an array data is equal to the element size multiplied by the number of
elements.

You can specify the maximum string length within the range from 1 to 255 to a
string variable.

The default length of a non-array string variable is 40.
The default length of an array string variable is 20.

198

Syntax errors:

Error code and message Meaning

error 5: Variable nane A same variable name is double
redefinition declared in a program.

error 73: | nproper The length of a string variable is out of
string length the range from 1 to 255.

Run-timeerrors:

Error code Meaning

07h Insufficient memory space
(The COMVION statement defines too much data.)

Example:
COMVON a% b, ¢$, d% 2, 3), e(4), f $(5)

Reference:

Statements: CHAI N

199

Chapter 14. Statement Reference

Declarative statement

CONST

Defines symbolic constants to be replaced with labels.

Syntax:
CONST const nanme = expr

Parameter:

const name
A label, identifier, or string expression of a maximum of 10 characters con-
sisting of alphanumerics and period (.).

expr
A string constant
Description:
CONST replaces a label, identifier or a character string specified by const nane
with a string constant defined by expr before compiling.

e expr may contain labels defined by other CONST declarations. However, calling
those labels each other (recursively) will result in an error.

» A CONST statement can appear anywhere in your source program. However, it
will take effect from a program line following the CONST declaration.

200

I/O statement

CURSOR

Turns the cursor on or off.

Syntax:

CURSOR { ON| OFF}

Description:

When a user program is initiated, the cursor is set to OFF. CURSOR ONturns on the
cursor for keyboard entry operation by the | NKEY$ function. CURSOR OFF turns
off the cursor.

In the BHT-3000/BHT-4000/BHT-5000, the cursor size depends upon the screen
mode (the single-byte ANK mode, two-byte Kanji mode, or condensed two-byte
Kanji mode). In the single-byte ANK mode, the cursor appears as 6 dots wide by
8 dots high; in the two-byte Kanji mode, it appears as 8 dots wide by 16 dots high;
in the condensed two-byte Kanji mode, it appears as 6 dots wide by 16 dots high.
(Note that the condensed two-byte Kanji mode is supported by the BHT-4000/
BHT-5000.)

In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the cursor size depends upon
the screen mode (the single-byte ANK mode or two-byte Kanji mode), the display
font size (standard-size or small-size), and the character attribute (normal-width
or double-width). If the standard-size font is selected, the cursor appears as 6
dots wide by 8 dots high in the single-byte ANK mode, and as 8 dots wide by 16
dots high in the two-byte Kanji mode. If the small-size font is selected, the cursor
appears as 6 dots wide by 6 dots high in the single-byte ANK mode, and as 6 dots
wide by 12 dots high in the two-byte Kanji mode.

The cursor shape specified by the most recently executed LOCATE statement
takes effect.

After execution of LOCATE, , 0 which makes the cursor invisible, even the CUR-
SOR ON statement cannot display the cursor. To display the cursor, it is neces-
sary to make the cursor visible by using the LOCATE statement.

Syntax errors:

Error code and message Meaning
error 71: Syntax error Specification other than ON and OFF is
described.

Reference:

Statements: APLOAD, | NPUT, KPLOAD, LI NE| NPUT, and LOCATE

Functions: | NKEY$ and | NPUT$

201

Chapter 14. Statement Reference

Declarative statement

DATA

Stores numeric and string literals for READ statements.

Syntax:
DATA literal[,literal...]
Parameter:
literal
A numeric or string constant.
Description:

DATA stores numeric and string literals so that READ statements can assign them
to variables.

» A DATA statement can appear anywhere in a source program.

A string data should be enclosed with a pair of double quotation marks (*).

* You may have any number of DATA statements in a program. The READ state-
ment assigns data stored by DATA statements in the exact same order that those
DATA statements appear in a source program.

» Using the RESTORE statement can read a same DATA statement more than
once.

* You can specify more than one | i t er al in a program line (within 512 charac-
ters) by separating them with commas (,).

» You can describe DATA statements also in included files.

Syntax errors:

Error code and message Meaning
error 3:’"" mssing No double quote precedes or follows a
string data.
Reference:

Statements: READ, REM and RESTORE

202

User-defined function declarative statement

DECLARE

Declares user-created function FUNCTION or SUB externally defined.

Syntax:
Syntax 1 (Defining a numeric FUNCTION):

DECLARE FUNCTI ON f uncnarne
[(dumypar amet er [, dumyparaneter...])]

Syntax 2 (Defining a character FUNCTION):

DECLARE FUNCTI ON funcnane [(dumrypar anet er
[, dumyparaneter...])][[stringl ength]]

Syntax 3 (Defining a SUB):
DECLARE SUB subnane[(dumrypar anet er
[, dumyparameter...])]

Parameter:
f uncnane
» For numerics
f uncnane% Integer function name
f uncnane Real function name
* For strings
funcnane$ Character function name
subnane

Real function name.

dunmypar anet er

A non-array integer variable, a non-array real variable, or a non-array string
variable.

stringlength

An integer constant having a value from 1 to 255.

203

Chapter 14. Statement Reference

Description:
DECLARE defines a user-created function defined in other source program files.
» Declaration of a user-defined function should appear preceding a calling state-
ment of the user-defined function in your source program.

- funcnane, subnane, and dumypar anmet er should be declared in the
same way as the function names and real parameters defined in the original func-
tions (defined in other source program files).

* You cannot make double definition to a same function name.

» The DECLARE statement should not be defined in the block-structured state-
ments (FOR..NEXT, | F..THEN..ELSE..END |F, SELECT...CASE...END
SELECT, WH LE..V\END, DEF FN...END DEF, FUNCTI ON...END FUNCTI ON,

and SUB.. END SUB), in the error-handling routine, event-handling routine, or in
the subroutines.

Syntax errors:

Error code and message Meaning
error 64: Function You made double definition to a same
redefinition function name.
error 71: Syntax error e stringlength is out of the
range.

« stringl engt h is not an integer
constant.

Reference:
Statements: FUNCTI ON...END FUNCTI ONand SUB. . . END SUB

204

DEFine FuNction User-created function definition statement

DEF FN (Single-line form)

Names and defines a user-created function.

Syntax:
Syntax 1 (Defining a numeric function):

DEF FNf uncti onnane[(dunmypar anet er [, dummypar anet er
...])]=expression

Syntax 2 (Defining a string function):
DEF FNf uncti onname[(dumrypar anet er
[, dumyparaneter...])] [[stringlength]]=expression

Syntax 3 (Calling the function):
FNf uncti onnane[(real paraneter[,real paraneter ...])]

Parameter:
functi onnane
* For numerics

functi onnane% Integer function name
functi onnane Real function name

* For strings

functi onnanme$ Character function name
where the FN can be in lowercase.

dumypar anet er

A non-array integer variable, a non-array real variable, or a non-array string
variable.

stringlength
An integer constant having a value from 1 to 255.
expressi on andr eal par anet er

A numeric or string expression.

205

Chapter 14. Statement Reference

Description:

m Creating a user-defined function

DEF FN creates a user-defined function.

Definition of a user-defined function should appear preceding a calling statement
of the user-defined function in a source program.

You cannot make double definition to a same function name.

The DEF FN statement should not be defined in the block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, | F...THEN
..ELSE...END | F, SELECT...CASE..END SELECT, SUB..END SUB and
VWHI LE..VIEND), in the error-handling routine, event-handling routine, or in the
subroutines.

DEF FN functions cannot be recursive.

The type of functi onname should match that of the function definition
expr essi on.

In defining a character function, you can specify the maximum st ri ngl engt h
for a return value. If its specification is omitted, the default value of 40 characters
takes effect.

dummypar anet er, which corresponds to the variable having the same name in
the function definition expr essi on, is a local variable valid only in that
expr essi on . Therefore, if a variable having the same name as dumypa-
r anet er is used outside DEF FN statement or used as a dunmy par anet er
of any other function in the same program, it will be independently treated.

expr essi on describes some operations for the user-defined function. It
should be within one program line including definition described left to the equal
sign.

expr essi on can call other user-defined functions. You can nest DEF FN state-
ments to a maximum of 10 levels.

If variables other than dummypar amet er (s) are specified in expr essi on,
they will be treated as global variables whose current values are available.

st ri ngl engt h should be enclosed with a pair of square brackets [].

m Calling a user-defined function

FNf unct i onnane calls a user-defined function.

The number of r eal par anet er s should be equal to that of dunmy par ane-
t er s, and the types of the corresponding variables used in those parameters
should be identical.

If you specify a global variable in r eal par anet er when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all r eal par anet er s are passed not by address but by value.
(So called "Call-by-value")

206

Syntax errors:

m When defining a user-defined function

Error code and message

Meaning

error

error

error

error

error

61:

64:

65:

66:

71:

Cannot use DEF
FN in control
structure

Functi on
redefinition

Function defi -
niti ons exceed
200

Argunent s
exceed 50

Syntax error

The DEF FN statement is defined in
block-structured statements such as
FORand | F statements.

You made double definition to a same
function name.

« functi onnan® is an integer func-
tion name, but expr essi on is a
real type. (If functi onnane is a
real function name and expr es-
si on is an integer type, then no
error occurs.)

« stringlength is out of the
range.

« stringl ength is not an integer
constant.

m When calling a user-defined function

Error code and message

Meaning

error

error

68:

69:

M smat ch
argunment type
or number

Functi on
undefi ned

» The number of the real parameters is
not equal to that of the dummy
parameters.

- dunmypar anet er was an integer
variable in defining a function, but
r eal par amet er is a real type in
calling the function. (If dunmmypa-
raneter was a real variable in
defining a function and real pa-
ranet er is an integer type, then no
error occurs.)

Calling of a user-defined function pre-
cedes the definition of the user-created
function.

207

Run-timeerrors:

Chapter 14. Statement Reference

Error code Meaning
07h Insufficient memory space

(You nested DEF FN statements to more than 10 levels.)
OFh String length out of the range

(The returned value of the st ri ngl engt h exceeds the allow-
able range.)

Example:
m Example 1

m Example 2

DEF FNadd(a% b% =a%-b%
PRI NT FNadd(3, 5)

DEF FNappend$(a$, b$) [80] =a$+b$
PRI NT FNappend$(" 123", "AB")

123AB

208

DEFine FuNction...END DEFine User-created function definition statement

DEF FN...END DEF (Block form)

Names and defines a user-created function.

Syntax:
Syntax 1 (Defining a numeric function):

DEF FNf uncti onnane[(dunmypar anet er [, dummypar anet er
D

Syntax 2 (Defining a character function):

DEF FNchar af uncti onnane[(dummypar anet er [, dunmypar amne-
ter...])] [[stringlength]]

Syntax 3 (Exiting from the function block prematurely):
EXIT DEF

Syntax 4 (Ending the function block):
END DEF

Syntax 5 (Assigning a returned value):
FNf uncti onname = gener al expr essi on

Syntax 6 (Calling a function):
FNf uncti onnane[(real paraneter[,real parameter ...])]

Parameter:
Same as for DEF FN (Single-line form).

209

Chapter 14. Statement Reference

Description:

m Creating a user-defined function

DEF FN...END DEF creates a user-defined function. The function definition block
between DEF FN and END DEF is a set of some statements and functions.

Definition of a user-defined function should appear preceding a calling statement
of the user-defined function in a source program.

You cannot make double definition to a same function name.

This statement block should not be defined in the block-structured statements
(DEF EN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, I F...THEN...
ELSE..END | F, SELECT...CASE...END SELECT, SUB...END SUB and VHI LE
..\\END), in the error-handling routine, event-handling routine, or in the subrou-
tines.

DEF FN...END DEF functions can be recursive.

In defining a character function, you can specify the maximum st r i ngl engt h.
If its specification is omitted, the default value of 40 characters takes effect.

dunmypar amet er, which corresponds to the variable having the same name in
the function definition block, is a local variable valid only in that block. Therefore,
if a variable having the same name as durmy par anet er is used outside DEF
FN...END DEF statement block or used as a dummrypar amet er of any other
function in the same program, it will be independently treated.

In user-defined functions, you can call other user-defined functions. You can nest
DEF FN...END DEF statements to a maximum of 10 levels.

When using the DEF FN...END DEF together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, | F...THEN...
ELSE...END | F, SELECT...CASE...END SELECT, SUB...END SUB and WHI LE
..AEND), you can nest them to a maximum of 30 levels.

If variables other than dummy par anet er (s) are specified in the function defini-
tion block, they will be treated as global variables whose current values are avail-
able.

EXI T DEF exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

The block-format DEF FN statement should be followed by END DEF which ends
the function block and returns control to the position immediately after the state-
ment that called the user-defined function.

Using Syntax 5 allows you to assign a return value for a function. The type of
functi onnane should match that of a return value. If no return value is
assigned to f unct i onnamne , the value 0 or a null string will be returned for a
numeric function or a character function, respectively.

210

m Calling a user-defined function

FNf unct i onnane calls a user-defined function.

« The number of r eal par anet er s should be equal to that of dummrypar ame-
t ers, and the types of the corresponding variables used in those parameters
should be identical.

« If you specify a global variable in r eal par anet er when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all r eal par anet er s are passed not by address but by value.
(So called "Call-by-value")

Syntax errors:

m When defining a user function

Error code and message

Meaning

error

error

error

error

error

59:

60:

61:

64:

71:

I ncorrect use
of DEF FN...
EXI T DEF. .. END
DEF

I nconpl ete
control struc-
ture (DEF FN
... END DEF)

Cannot use DEF
FN in control
structure

Functi on
redefinition

Syntax error

« The EXI T DEF statement is speci-

fied outside the function definition
block.

« The END DEF statement is specified

outside the function definition block.

END DEF is missing.

The DEF FN. .. END DEF statement
is defined in other block-structured
statements such as FOR and | F state-
ment blocks.

You made double definition to a same
function name.

« functi onnane is an integer func-

tion name, but gener al expr es-
sion is a real type. (If
functionnane is a real function
name and gener al expr essi on
is an integer type, then no error
occurs.)

stringlength
range.

is out of the

stringl ength is not an integer
constant.

The function name is assigned a
value outside the function definition
block.

211

Chapter 14. Statement Reference

m When calling a user-defined function

Error code and message Meaning

error 68: M snatch « The number of the real parameters is
argunment type not equal to that of the dummy
or nunber parameters.

e dumrypar anet er was an integer
variable in defining a function, but
r eal par amet er is a real type in
calling the function. (If dunmmypa-
raneter was a real variable in
defining a function and real pa-
ranet er is an integer type, then no
error occurs.)

error 69: Function Calling of a user-defined function pre-
undefi ned cedes the definition of the function.

Run-timeerrors:

Error code Meaning

07h Insufficient memory space
(You nested DEF FN statements to more than 10 levels.)

0Dh END DEF out of the DEF FN block

OFh String length out of the range
(The returned value of st ri ngl engt h exceeds the allowable
range.)

Example:

DEF FNappend$(a$, b% [128]
Cg=""
FOR i%1 TO b%
C$=Cs+a$
NEXT
FNappend$=C$
END DEF
PRI NT FNappend$("AB", 3)

ABABAB

212

DEFine REGister Declarative statement

DEFREG

Defines register variables.

Syntax:
DEFREG regi sterdefinition[,registerdefinition ...]

Parameter:

regi sterdefinition
non- arraynumneri cvari abl e [=numeri cconst ant]

DEFREG n1%=10
DEFREG n2=12.5

arraynuneri cvari abl e(subscri pt)
[=nurericinitial val uedefinition]

DEFREG n3(5, 6)

non-arraystringvariabl e[[stringl ength]]
[=stringconstant]

DEFREG s1$="abc123"
DEFREG s2$[6] ="abc123"

arraystringvari abl e(subscript)[[stringl ength]]
[=stringinitialval uedefinition]

DEFREG s2$(1, 3) [16]

subscri pt
For one-dimensional:i nt eger const ant
DEFREG n49% 3)

For two-dimensional:i nt eger const ant , i nt eger const ant
DEFREG n5% 4, 5)

Where i nt eger const ant is a value from 0 to 254.

213

Chapter 14. Statement Reference

nunericinitial val uedefinition

For one-dimensional:
numeri cconstant[, nuneri cconstant...]}

DEFREG n69% 3) ={ 9, 8, 7, 6}

For two-dimensional:
{{nunericconstant[, nurmericconstant...]}, {nuner-
i cconstant[, nunericconstant...]} ...}

DEFREG n7(1, 2)={{10, 11, 12}, {13, 14, 15} }

stringinitialval uedefinition

For one-dimensional:
{stringconstant[, stringconstant...]}

DEFREG s3$(3)={"a", "bc", "123"," 45"}

For two-dimensional:
{{stringconstant[,stringconstant...]}, {string-
constant[,stringconstant...]} ...}

DEFREG s4$(1, 1)={{"a","b"},{"c","1"}}

stringlength
An integer constant from 1 to 255.

Description:
DEFREGdefines non-array or array register variables.
» A DEFREG statement can appear anywhere in a source program.
» Up to 2-dimensional array variables can be defined.

» For both non-arraystringvariabl e and arraystringvari abl e,
the string length can be specified.

* Defaults:
st ri ngl engt h for non-array variables: 40 characters
stri ngl engt h for array variables: 20 characters

» The memory area for register variables is allocated in user program files in the
memory. Register variables, therefore, are always updated. An uploaded user
program, for example, contains the updated register variables if defined.

» The total number of bytes allowable for register variables is 64 kilobytes.

* You can specify an initial value to an array variable by enclosing it with a pair of
braces {}. No comma (,) is allowed for terminating the list of initial values.

If the number of the specified initial values is less than that of the array elements
or if no initial value is specified, then the Compiler automatically sets a zero (0) or
a null string as an initial value for a numeric variable or a string variable of the
array elements not assigned initial values, respectively.

214

Syntax errors:

Error code and message

Meaning

error

error

error

error

error

error

error

error

error

6:

71:

73:

74:

75:

77

83:

84:

90:

Vari abl e nane
redefinition

Syntax error

| mpr oper
string length

| npr oper array
el enent nunber

Qut of space
for register
variabl e area

Initial string

too |l ong

")’ mssing
"]’ mssing
"{’ mssing

A same register variable name is dou-
ble declared in a program.

e stringl engt h is not an integer
constant.

e The number of the specified initial
values is greater than that of the
array elements.

» The list of initial values is terminated
with a comma.

* The type of the specified variable
does not match that of its initial
value. (Note that a real variable can
have an integer constant as an initial
value.)

e subscri pt is not an integer con-
stant.

stringl engt h is out of the range.

subscri pt is out of the range.

Definition by DEFREG exceeds the
register variable area.

» The dimension of the specified array
variable does not match that of its ini-
tial value.

» The number of initial value elements
for the specified register string vari-
able is greater than its string length.

No closing parenthesis follows sub-
scri pt.

No closing square bracket follows
stringl ength.

No opening brace precedes the initial
value.

215

Example

Chapter 14. Statement Reference

Example 1: Valid DEFREG statements

DEFREG
DEFREG
DEFREG
DEFREG
DEFREG
DEFREG
DEFREG
DEFREG
DEFREG

a, e$

b=100, c(10), d$(2, 4) [10]
bps$="19200"

a% 2) ={ 1, 2}

a% 2)={1,, 3}

a% 2) ={,, 3}

bog 1, 1) ={{},{1, 2}}
bo 1, 1)={, {1, 2}}

bo¢ 1, 1) ={{1, 2}}

Example 2: Position of elements in an array
DEFREG a% 1, 1) ={{1},{, 3}}
The elements of the above array have the following initial values:
a%0,0):1
a%o0,1):0
a%1,0):0
a%1,1):3

DEFREG b$(1,1)[3]={,{"123"}}
The elements of the above array have the following initial values:
b$(0,0):""
b$(0,1):""
b$(1,0):"123"
b$(1,1):""

Example 3: DEFREG statements causing syntax errors

DEFREG
DEFREG
DEFREG

c%2)=(1, 2, 3, 4}
dug2)={1,2,}
eo/‘(lr 1):{{1}1{112}}

DEFREG fo 1, 1) ={{1, 2},}

Reference:

Statements: DI M

216

DIMension Memory control statement

DIM

Declares and dimensions arrays; also declares the string length for a string variable.

Syntax:
DI M arraydecl arati on[, arraydecl arati on. . .]

Parameter:

arraydecl arati on
nunericvariabl e (subscript)

DI M nl1% 12)
DI M n2(5, 6)

stringvariabl e (subscript)[[stringlength]]

DI M s13$(2)

DI M s23$(2, 6)

DI M s3$(4) [16]
DI M s4$(5, 3) [30]

subscri pt
For one-dimensional: i nt eger expr essi on

For two-dimensional: i nt eger expressi on,
i nt eger expressi on

Where i nt eger expr essi on is a numeric expression which returns
a value from O to 254.

stringlength
An integer constant which has a value from 1 to 255 which indicates the
number of characters.
Description:
DI Mdeclares array variables and dimensions the arrays that a program will utilize.

« A DI Mstatement can appear anywhere before the first use of the array in a
source program. However, when possible, you should place all your DI Mstate-
ments together near the beginning of the program and should not place them in
the program execution loops in order to prevent errors.

» Up to 2-dimensional array variables can be declared.

217

Chapter 14. Statement Reference

* In declaring an array string variable, you can specify the string length. If its speci-
fication is omitted, the default value of 20 characters takes effect.

* If no subscript is specified for a string variable, the Compiler automatically regards
the string variable as a non-array string variable so that the default for a non-array
string variable, 40 characters, takes effect.

Syntax errors:

Error code and message Meaning
error 7: Variable nane The array declared with DI Mhad been
redefinition already declared with DEFREG
error 71:. Syntax error « stringlength is out of the
range.
« stringl ength is not an integer
constant.
error 72: Variabl e nane « A same variable name is double
redefinition declared inside a same DI M state-
ment.

» A same variable name is used for a
non-array variable and array vari-

able.
error 78: Array synbol s More than 30 variables are declared
exceed 30 for inside one DI Mstatement.
one DI M st at e-
ment

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)

Reference:

Statements: DEFREGand ERASE

218

Flow control statement

END

Terminates program execution.

Syntax:
END

Description:
END terminates program execution and sounds the beeper for a second.

» An END can appear anywhere in a source program.

« When an END statement occurs, all of the files being opened become closed, and
then the following operation takes place depending upon whether or not any appli-
cation program (user program or Easy Pack) has been selected as an execution
program (to be run when the BHT is powered on) in System Mode.

« If any application program has been selected, the BHT turns off the power
after three seconds from the message indication of the "Program end."

 If an execution program has not been selected, control passes to System
Mode.

(For System Mode, refer to the BHT User's Manual.)

219

Chapter 14. Statement Reference

Memory control statement

ERASE

Erases array variables.

Syntax:
ERASE arrayvari abl enane[, arrayvari abl enane. . .]
Parameter:
arrayvari abl enane
An array numeric or array string variable.
Description:

ERASE erases an array variable(s) specified by ar r ayvar i abl enane and frees
the memory used by the array.

- arrayvari abl enane is the name of an array variable already declared by
the DI Mstatement. If it has not been declared by DI M the ERASE statement will
be ignored.

« After erasing the name of an array variable with ERASE, you can use that name
to declare a new array variable with the DI Mstatement.
- arrayvari abl enane should not include subscripts or parentheses () as
shown below.
DM a(3), bl%5, 10), c$(3)[20]
ERASE a, b1%c$

« ERASE cannot erase a register variable declared by the DEFREG statement, a
common variable declared by the COMMON statement, or a non-array string vari-
able.

Syntax errors:

Error code and message Meaning

error 71: Syntax error You attempted to erase a register vari-
able declared by DEFREG a common
variable by COVMON, or a non-array
string variable.

Reference:

Statements: DEFREGand DI M

220

File 1/0 statement

FIELD

Allocates string variables as field variables.

Syntax:
FIELD [#]fil enunber,fieldw dth AS fiel dvari abl e
[,fieldwidth AS fieldvariable...]
Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
fieldw dth
A numeric expression which returns a value from 1 to 254.
fieldvariable
A non-array string variable.
Description:

FI ELD declares the length and field variable of each field of a record in a data file.

« fil enunber is the file number of a data file opened by the OPEN statement.
« fi el dwi dt h is the number of bytes for a corresponding field variable.
* You can assign a same field variable to more than one field.

» There is no difference in usage between a field variable and a general variable
except that no register variable, common variable, or array variable can be used
for a field variable.

« A record can contain up to 16 fields. The total number of bytes of all fi el d-
Wi dt hs plus the number of fields should not exceed 255.

« If a FI ELD statement executes for an opened file having the number of fields or
field width unmatching that of the FI ELD specifications except for field variables,
a run-time error will occur.

« If more than one Fl ELD statement is issued to a same file, the last one takes
effect.

221

Syntax errors:

Chapter 14. Statement Reference

Error code and message Meaning

error 71:. Syntax error fil enunber is missing.

Run-timeerrors:

Error code Meaning
05h Parameter out of the range
(fi el dwi dt h out of the range)
34h Bad file name or number
(You specified f i | enunber of an unopened file.)
36h Improper file type
(You specified f i | enunber of a file other than data files.)
3Ah File number out of the range
3Ch FI ELD overflow
(A FI ELD statement specifies the record length exceeding 255
bytes.)
3Dh A Fl ELD statement specifies the field width which does not
match one that specified in file creation.
Example:
fileNunber% = 4
OPEN "Datafile.dat" AS #fil eNumber %
FI ELD #f il eNunber % 20 AS code39$,
16 ASitf$,5 AS kyin$
Reference:
Statements: CLFI LE, CLOSE, GET, OPEN and PUT

222

FOR..

Flow control statement

NEXT

Defines a loop containing statements to be executed a specified number of times.

Syntax:
FOR controlvariable = initialvalue TO final val ue [STEP
i ncrenent]
NEXT [control vari abl e]

Parameter:

control vari abl e

i ni

Description:

A non-array humeric variable.

tialvalue, finalvalue, and increnent

Numeric expressions.

FOR...NEXT defines a loop containing statements (which is called "body of a loop")
to be executed by the number of repetitions controlled by i niti al val ue,
final val ue,andi ncrenent.

m Processing procedures

1)
)

®)

The Interpreter assigns i ni ti al val ue tocontrol vari abl e.

The Interpreter checks terminating condition; that is, it compares the value of
control vari abl e against the f i nal val ue.

- When the value of i ncr enment is positive:

If the value of control vari abl e is equal to or less than the fi nal -
val ue, go to step (3). If it becomes greater the f i nal val ue, the program
proceeds with the first line after the NEXT statement (the loop is over).

- When the value of i ncr enment is negative:

If the value of cont r ol vari abl e is equal to or greater than the f i nal -
val ue, go to step (3). If it becomes less than the f i nal val ue, the pro-
gram proceeds with the first line after the NEXT statement (the loop is over).

The body of the loop executes and the NEXT statement increases the value of
control vari abl e by the value of i ncr ement . Then, control returns to
the FOR statement at the top of the loop. Go back to step (2).

223

Chapter 14. Statement Reference

» The default value of i ncr enent is 1.
» You can nest FOR...NEXT statements to a maximum of 10 levels.

« When using the FOR...NEXT statement together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, | F..THEN
...ELSE..END | F, SELECT...CASE..END SELECT, SUB..END SUB and
WHI LE.. VIEND), you can nest them to a maximum of 30 levels.

« Asame cont r ol vari abl e should not be reused in a nested loop. Otherwise,
a run-time error will occur when the NEXT statement for an outer FOR...NEXT
loop executes.

» Nested loops should not be crossed. Shown below is a correctly nested sample.

FOR i %1 TO 10
FOR j %2 TO 100
FOR k%3 TO 1000
NEXT k%
NEXT j %
NEXT i %
FOR | %1 TO 3

NEXT | %

Syntax errors:

Error code and message Meaning

error 26: Too deep nesting.

error 52: I ncorrect use NEXT without FOR.
of FOR..NEXT

error 53: I nconpl ete Incomplete pairs of FOR and NEXT.
control struc-
ture

error 54: I ncorrect FOR control vari abl e for FOR is dif-

i ndex vari abl e ferent from that for NEXT.

error 88: 'TO missing TOf i nal val ue is missing.

Run-timeerrors:

Error code Meaning
01h NEXT without FOR

07h Insufficient memory space
(Too deep nesting.)

224

User-defined function statement

FUNCTION...END FUNCTION

Names and defines user-created function FUNCTION.

Syntax:

Syntax 1 (Defining a numeric function):
FUNCTI ON funcnane [(dummypar anet er
[, dunmyparanmeter...])]

Syntax 2 (Defining a character function):
FUNCTI ON funcnane [(dummypar aneter
[, dumyparameter...])][[stringlength]]

Syntax 3 (Existing from the function block prematurely):
EXI T FUNCTI ON

Syntax 4 (Ending the function block):
END FUNCTI ON

Syntax 5 (Assigning a returned value):
f uncnane = general expression

Syntax 6 (Calling a function):
funcnane[(real paraneter[,real paraneter...])]

Parameter:
f uncnane
* For numerics

f uncnanme% Integer function name
f uncnane Real function name

* For strings
funcnanme$ Character function name
dunmypar anet er

A non-array integer variable, a non-array real variable, or a non-array string vari-
able.

stringlength
An integer constant having a value from 1 to 255.
r eal paramet er

A numeric or string expression.

225

Chapter 14. Statement Reference

Description:
m Creating a user-defined function
FUNCTI ON...END FUNCTI ONcreates a user-defined function. The function defini-

tion block between FUNCTI ON and END FUNCTI ON is a set of some statements
and functions.

* You cannot make double definition to a same function name.

» This statement block should not be defined in the block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, | F...THEN
...ELSE...END | F, SELECT...CASE..END SELECT, SUB..END SUB and
VWHI LE..VIEND), in the error-handling routine, event-handling routine, or in the
subroutines.

FUNCTI ON...END FUNCTI ON functions can be recursive.

« In defining a character function, you can specify the maximum st ri ngl engt h.
If its specification is omitted, the default value of 40 characters takes effect.

« dumrypar amet er, which corresponds to the variable having the same name in
the function definition block, is a local variable valid only in that block. Therefore,
if a variable having the same name as dummrypar amet er is used outside
FUNCTI ON...END FUNCTI ON statement block or used as a dunmypar ane-
t er of any other function in the same program, it will be independently treated.

* In user-defined functions, you can call other user-defined functions. You can nest
FUNCTI ON...END FUNCTI| ON statements to a maximum of 10 levels.

e When using the FUNCTI ON...END FUNCTI ON together with block-structured
statements (DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON,
| F...THEN...ELSE...END | F, SELECT...CASE...END SELECT, SUB...END SUB
and WHI LE.. VEND), you can nest them to a maximum of 30 levels.

« If variables other than dummypar amnet er (s) are specified in the function defini-
tion block, they will be treated as local variables whose current values are avail-
able only in that function definition block, unless PRIVATE or GLOBAL is
specified.

EXI T FUNCTI ON exits the function block prematurely and returns control to the
position immediately after the statement that called the user-defined function.

» Using Syntax 5 allows you to assign a return value for a function. The type of
f uncnan®e should match that of a return value. If no return value is assigned to
f uncnane , the value 0 or a null string will be returned for a numeric function or
a character function, respectively.

m Calling a user-defined function
f uncnane calls the function.

« The number of r eal par anet er s should be equal to that of dummrypar amne-
t ers, and the types of the corresponding variables used in those parameters
should be identical.

226

« If you specify a global variable in r eal par anet er when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all r eal par anet er s are passed not by address but by value.
(So called "Call-by-value")

m Before any call to aFUNCTI ON...END FUNCTI QN, you need to place def-
— — inition of the FUNCTI ON function or declaration of the FUNCTI ON by the
DECLARE statement in your source program.

A function nameis defined globally. If more than one same function name
exists in a same project, therefore, a multiple symbol definition error will
occur when files will be linked. The same error will occur also if the
FUNCTI ON...END FUNCTI ON defines a user-created function in a file to
be included and more than one file in a same project reads that included
file

Syntax errors:
m When defining a user function

Error code and message Meaning

error 64: Function You made double definition to a same
redefinition function name.

error 71: Syntax error - funcnane is an integer function

name, but gener al expr essi on
is a real type. (If funcnane is a
real function name and gener al -
expressi on is an integer type,
then no error occurs.)

e stringlength is out of the
range.

e stringl ength is not an integer
constant.

e The function name is assigned a
value outside the function definition

block.
error 95: I ncorrect use » The EXI T FUNCTI ON statement is
of FUNCTI ON, specified outside the function defini-
EXI T FUNGC- tion block.
TION, or END « The END FUNCTI ON statement is
FUNCTI ON specified outside the function defini-
tion block.

227

Chapter 14. Statement Reference

Error code and message

Meaning

error 96:

error 97:

I nconpl et e
control struc-
ture (FUNC
TION. .. END
FUNCTI ON)

Cannot use
FUNCTI ON i n
control struc-
ture

END FUNCTI ONis missing.

The FUNCTI ON...END FUNCTI ON
statement is defined in other block-
structured statements such as FOR
and | F statement blocks.

m When calling a user-defined function

Error code and message

Meaning

error 68:

error 69:

M smat ch ar gu-
ment type or
nunber

Functi on unde-
fined

The number of the real parameters is
not equal to that of the dummy
parameters.

dumrypar anet er was an integer
variable in defining a function, but
r eal par anet er is a real type in
calling the function. (If dumrypa-
raneter was a real variable in
defining a function and r eal pa-
r anmet er is an integer type, then no
error occurs.)

Calling of a user-defined function pre-
cedes the definition of the user-defined
function.

Run-timeerrors:

Error code Meaning
07h Insufficient memory space

(You nested FUNCTI ON statements to more than 10 levels.)
OFh String length out of the range

(The returned value of st ri ngl engt h exceeds the allowable

range.)

228

Example:

File 1 File 2
DECLARE FUNCTI ON add(X, y) FUNCTI ON add(X, Y)
A=1: B=2 add=X+Y
PRI NT " TEST" END FUNCTI ON
C=add(A B)
PRI NT C
TEST
3
Reference:

Statements: DECLARE

229

Chapter 14. Statement Reference

GET

File 1/0 statement

Reads a record from a data file.

Syntax:

CET [#] fil enunber[, recordnunber]
Parameter:

fil enunber

A numeric expression which returns a value from 1 to 16.

recor dnunber

A numeric expression which returns a value from 1 to 32767.

Description:

CET reads the record specified by r ecor dnunber from the data file specified by
fil enunber and assigns the data to the field variable(s) specified by the FI ELD
statement.

fil enunber is the file number of a data file opened by the OPEN statement.

If a data file having no record is specified, a run-time error will occur.

The first record in a data file is counted as 1.

If no recor dnunber is specified, the GET statement reads a record whose

number is one greater than that of the record read by the preceding GET state-
ment.

If no r ecor dnunber is specified in the first GET statement after opening of a
file, the first record (numbered 1) in the file will be read.

r ecor dnunber should be equal to or less than the number of written records.
If it is greater, a run-time error will occur.

If a GET statement without r ecor dnunber is executed after occurrence of a
run-time error caused by an incorrect record number in the preceding GET state-
ment, then the new GET statement reads the record whose record humber is one
greater than that of the latest record correctly read.

If a GET statement without r ecor dnunber is executed after execution of the
preceding GET statement specifying the last record (the number of the written
records), then a run-time error will occur.

230

Syntax errors:

Error code and message Meaning

error 71:. Syntax error fil enunber is missing.

Run-timeerrors:

Error code Meaning

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type

(You specified f i | enunber of a file other than data files.)
3Ah File number out of the range
3Eh A PUT or GET statement executed without a FI ELD statement.
3Fh Bad record number

(No record to be read in a data file.)

Example:
GET #fil No, Recor dNo
GET #4
GET #3, 100

Reference:

Statements: FI ELD, OPEN, and PUT

231

Chapter 14. Statement Reference

Declarative statement

GLOBAL

Declares one or more work variables or register variables defined in a file, f—
to be global. []
Syntax:

GLOBAL var nane [, varnane...]
Parameter:

var nane

nunericvariable [(subscript)]
stringvariable [(subscript)[stringlength]]

subscri pt
For one-dimensional: i nt eger const ant
For two-dimensional: i nt eger const ant , i nt eger const ant

Where i nt eger const ant is a numeric expression which returns a value
from O to 254.

stringlength
An integer constant from 1 to 255.

Description:
GLOBAL allows variables declared by var name to be referred to or updated in
other programs.

« If a same variable name as specified inside the GLOBAL statement is already
declared in your file, the GLOBAL statement will result in an error.
« Up to 30 variables can be declared inside one GLOBAL statement.

* You may declare non-array variables and array variables together inside one
GLOBAL statement.

232

Syntax errors:

Error code and message Meaning
error 7: Variable nane The array declared with GLOBAL
redefinition statement had been already declared
with DEFREG statement.
error 71:. Syntax error « stringlength is out of the
range.
« stringl ength is not an integer
constant.
error 72: Variabl e nane e A same variable name is double
redefinition declared inside a same GLOBAL
statement.

» A same variable name is used for a
non-array variable and array vari-

able.
error 78: Array synbol s More than 30 variables are declared
exceed 30 for inside one GLOBAL statement.
one DIM PRI -
VATE, or GO
BAL st at enent
Run-timeerrors:
Error code Meaning
05h Parameter out of the range
07h Insufficient memory space

(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)

Reference:
Statements: DI Mand PRI VATE

233

Chapter 14. Statement Reference

Flow control statement

GOSUB

Branches to a subroutine.

Syntax:

GOSUB | abel

Description:
GOSUB callls a subroutine specified by | abel .

Within the subroutine itself, you use a RETURN statement which indicates the log-
ical end of the subroutine and returns control to the statement just after the
GOSUB that called the subroutine.

You may call a subroutine any number of times as long as the Interpreter allows
the nest level and other conditions.

Subroutines can appear anywhere in a source program. However, you should
separate subroutines from the main program by any means such as by placing
subroutines immediately following the END or GOTO statement, in order to pre-
vent the main part of the program from falling into those subroutines.

A subroutine can call other subroutines. You can nest GOSUB statements to a
maximum of 10 levels.

When using the GOSUB statement together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, | F...THEN
...ELSE...END | F, SELECT...CASE..END SELECT, SUB..END SUB, and
WHI LE.. VIEND), you can nest them to a maximum of 30 levels.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error « | abel has not been defined.
| abel is missing.

234

Run-timeerrors:

Error code Meaning

03h RETURN without GOSUB statement

07h Insufficient memory space
(Too deep nesting)

Reference:

Statements: RETURN

235

Chapter 14. Statement Reference

Flow control statement

GOTO

Branches to a specified label.

Syntax:
GOTO | abel

Description:
GOTOunconditionally transfers control to a label specified by | abel .

* In an | F statement block, you can omit GOTO immediately following THEN or
ELSE, as shown below.

IF a=0 THEN Lbl 1 ELSE Lbl 2
END | F

« OTO allows you to branch anywhere in your program. However, you should
branch only to another line in a program module or subroutine at the same pro-
gram level. Avoid transferring control to a DEF FN block or other blocks at the dif-
ferent program level.

* You can use GO TOinstead of GOTQO

Syntax errors:

Error code and message Meaning

error 71: Syntax error | abel has not been defined.
« | abel is missing.

236

Flow control statement

IF...THEN...ELSE...END IF

Conditionally executes specified statement blocks depending upon the evaluation of a condi-
tional expression.

Syntax:
Syntax 1:

| F condi tional expressi on THEN
st at enent bl ock1l

[ELSE
st at enent bl ock2]

END | F

Syntax 2:

| F condi tional expression ELSE
st at enent bl ock

END | F

Parameter:
condi ti onal expression

A numeric expression which evaluates to true or false.

Description:
| F statement block tests whether condi t i onal expr essi on is true or false. If
the condition is true (not zero), st at ement bl ock which follows THEN is exe-
cuted; if it is false (zero), st at enent bl ock which follows ELSE is executed.
Then, program control passes to the first statement after END | F.

» You can omit either THEN block or EL SE block.

» | F statement block should terminate with END | F which indicates the end of the
block.

* | F statement blocks can be nested. When using the | F statement block together
with other block-structured statements (DEF FN...END DEF, FOR...NEXT, FUNC-
T1 ON...END FUNCTI ON, | F...THEN...ELSE...END | F, SELECT...CASE...END
SELECT, SUB...END SUB, and VHI LE.. V\END), you can nest them to a maxi-
mum of 30 levels.

237

Chapter 14. Statement Reference

* A block-structured | F statement block has the following advantages over a sin-
gle-line | F statement (which is not supported in BHT-BASIC):

- More complex conditions can be tested since an | F statement block can con-
tain more than one line for describing conditions.

- You can describe as many statements or statement blocks as you want.

- Since it is not necessary to put more than one statement in a line, you can
describe easy-to-read programs according to the logical structure, making cor-
rection and debugging easy.

» You can use ENDI F instead of END| F.

Syntax errors:

Error code and message Meaning

error 26: Too deep nesting.

error 50: I ncorrect use THEN is missing.
of IF...THEN
...ELSE...END
I F

error 51: I nconpl ete END | F is missing.
control
structure

Example:

k$=I NKEY$

| F k$<>"" THEN
PRI NT k$;

END | F

Reference:

Statements: DEF FN...END DEF, FOR..NEXT, ON...GOSUB, ON..GOTQ,
SELECT...CASE...END SELECT, and WHI LE..V\END

238

I/O statement

INPUT

Reads input from the keyboard into a variable.

Syntax:
INPUT [;]["prompt"{,]|;}]variable
Parameter:
" pronpt"
A string constant.
vari abl e
A numeric or string variable.
Description:

When execution reaches an | NPUT statement, the program pauses and waits for
the user to enter data from the keyboard while showing a prompting message spec-
ified by " pronpt ".

After typing data, the user must press the ENT key. Then, the | NPUT statement
assigns the typed data to var i abl e.

o "pronpt" isaprompting message to be displayed on the LCD.

« The semicolon (;) or comma (,) after " pr onpt " has the following meaning:

If "pronpt" is followed by a semicolon, the | NPUT statement displays the
prompting message followed by a question mark and a space.

I NPUT "data= "; a$

data= ?

If" pronpt " is followed by a comma, the statement displays the prompting mes-
sage but no question mark or space is appended to the prompting message.

| NPUT "data= ", a$

dat a=

« The cursor shape specified by the most recently executed LOCATE statement
takes effect.

239

Chapter 14. Statement Reference

Even after execution of the CURSOR OFF statement, the | NPUT statement dis-
plays the cursor.

Data inputted by the user will echo back to the LCD. To assignittovari abl e, it
is necessary to press the ENT key.

Pressing the ENT key causes also a line feed. If | NPUT is followed by a semico-
lon (;) in an | NPUT statement, however, line feed is suppressed.

If you type no data and press the ENT key, an | NPUT statement automatically
assigns a zero or a null string to var i abl e that is a numeric or string, respec-
tively.

When any echoed back data is displayed on the LCD, pressing the Clear or BS
key erases the whole displayed data or a most recently typed-in character of the
data, respectively. If no data is displayed, pressing the Clear orpBSpkey pro-
duces no operation.

Notes for entering numeric data:

The effective length of numeric data is 12 characters. The 13th typed-in literal
and the following will be ignored.

Valid literals include 0 to 9, a minus sign (-), and a period (.). They should be in
correct numeric data form. If not, | NPUT statement accepts only numeric data
from the first literal up to correctly formed literal, as valid data. If no valid data is
found, the | NPUT statement automatically assigns a zero (0) to var i abl e.

A plus sign (+) can be typed in, but it will be ignored in evaluation of the typed-in
data.

Notes for entering string data:

The effective length of string data is the maximum string length of vari abl e.
Overflowed data will be ignored.

The sizes of prompting message literals, echoed back literals and cursor depend
upon the screen mode (the single-byte ANK mode, two-byte Kanji mode, or con-
densed two-byte Kanji mode). In the single-byte ANK mode, they appear in sin-
gle-byte code size; in the two-byte Kanji or condensed two-byte Kanji mode, they
appear in half-width character size. (Note that the condensed two-byte Kaniji
mode is supported by the BHT-4000/BHT-5000.)

In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, not only the screen mode but
also the display font size determines the sizes of prompting message literals, ech-
oed back literals, and cursor. If the standard-size font is selected, they appear in
standard size; if the small-size font is selected, they appear in small size.

In the BHT-7000/BHT-7500, in addition to the screen mode and display font size,
the character width (normal-width or double-width) determines those sizes. If the
double-width is selected, they appear in double width.

240

Syntax errors:

Error code and message Meaning

error 71: Syntax error * Neither a comma (,) nor semicolon (;)
follows " pronpt ".

e "pronpt" is not a string constant.

Run-timeerrors:

Error code Meaning

06h The operation result is out of the allowable range.
(Numeric var i abl e is out of the range.)

Reference:
Statements: LI NE | NPUT and LOCATE

Functions: | NKEY$ and | NPUT$

241

Chapter 14. Statement Reference

File 1/0 statement

INPUT #

Reads data from a device /O file into specified variables.

Syntax:
I NPUT #fil enunber, vari abl e[, variable...]
Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
vari abl e
A numeric or string variable.
Description:

I NPUT # reads data from a device 1/O file (a communications device file or bar
code device file) specified by f i | enunber and assignsitto vari abl e.

- fil enunber is a number assigned to the device 1/O file when it was opened.
» Reading data from a communications device file:

An | NPUT # statement reads data fields separated by CR codes or commas (,)
and assigns them to var i abl e.

If more than one var i abl e is specified in an | NPUT # statement, the program
waits until all of the specified var i abl es receive data.

If an | NPUT # statement reads data longer than the allowable string length, it
ignores only the overflowed data and completes execution, causing no run-time
error.

» Reading data from a bar code device file:
An | NPUT # statement reads the scanned data into the 1st vari abl e.

If more than one variable is specified in an | NPUT # statement, the program
ignores the 2nd and the following var i abl es.

If an | NPUT # statement reads data longer than the allowable string length, it
ignores only the overflowed data and completes execution, causing no run-time
error.

In the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the
maximum number of digits has been omitted in the read code specifications of the
OPEN " BAR: " statement (except for the universal product codes), then the
| NPUT # statement can read bar codes of up to 99 digits. To read bar codes of
40 digits or more, you should define a sufficient string variable length beforehand.

242

 Notes for entering numeric data:

Valid characters include 0 to 9, a minus sign (-), and a period (.). They should be
in correct numeric data form. If not, | NPUT # statement accepts only numeric
data from the first character up to correctly formed character, as valid data. If no
valid data is found, the | NPUT # statement automatically assigns a zero (0) to
vari abl e.

If the | NPUT # statement reads alphabetical characters with a numeric variable,
it automatically assigns a zero (0) to vari abl e. For reading of Code 39 bar
codes that may encode alphabetical characters, therefore, special care should be
taken.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error fil enunber is missing.

Run-timeerrors:

Error code Meaning

06h The operation result is out of the allowable range.
(Numeric var i abl e is out of the range.)

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type
(You specified fi | enunber of a file other than device /O
files.)
3Ah File number out of the range
Example:
| NPUT #fil eNo, dat$
Reference:

Statements: CLOSE, LI NEI NPUT#, OPEN"BAR ",and OPEN"COM "

Functions: | NPUT$

243

Chapter 14. Statement Reference

KEY

I/O statement

Assigns a string or a control code to a function key; also defines a function key as the LCD
backlight function on/off key. This statement also defines a magic key as the trigger switch,
shift key, or battery voltage display key.

Syntax:

Syntax 1 (Assigning a string or a control code to a function key):
KEY keynunber, stringdata

Syntax 2 (Defining a function key as the backlight function on/off key):
KEY backl i ght keynunber, ondurati on

Syntax 3 (Defining a magic key as the battery voltage display key. Valid in the BHT-

KEY nmagi ckeynunber, " BAT"

5000/BHT-6000/BHT-6500):

(Battery voltage display key)

Syntax 4 (Defining a magic key as the trigger switch or shift key. Valid in the BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500):

KEY magi ckeynunber, " TRG' (Trigger switch)

KEY magi ckeynunber, " SFT" (Shift key)
Parameter:

keynunber

(BHT-3000/BHT-4000)

(BHT-5000 with 32-key pad)
(BHT-5000 with 26-key pad)
(BHT-6000)

(BHT-6500)

(BHT-7000 with 32-key pad/BHT-7500)
(BHT-7000 with 26-key pad)

stringdata

A numeric expression which returns a
value from 1 to 29.

A numeric expression which returns a
value from 1 to 46.

A numeric expression which returns a
value from 1 to 34.

A numeric expression which returns a
value from 1 to 31, 33, and 34.

A numeric expression which returns a
value from 1 to 31 and 33 to 38.

A numeric expression which returns a
value from 1 to 31 and 33 to 50.

A numeric expression which returns a
value from 1 to 31 and 33 to 38.

A string expression which returns up to two characters or a control code.

244

backl i ght keynunber

(BHT-3000/BHT-4000) A numeric expression which returns
a value from 0 to 29.

(BHT-5000 with 32-key pad) A numeric expression which returns
a value from O to 46.

(BHT-5000 with 26-key pad) A numeric expression which returns
a value from 0O to 34.

(BHT-6000) A numeric expression which returns
a value from 1 to 31, 33, and 34.

(BHT-6500) A numeric expression which returns

a value from 1 to 31 and 33 to 38.

(BHT-7000 with 32-key pad/BHT-7500) A numeric expression which returns
a value from 1 to 31 and 33 to 50.

(BHT-7000 with 26-key pad) A numeric expression which returns
a value from 1 to 31 and 33 to 38.

ondur ati on
Keyword BL and a string expression which returns a value from 0 to 255. (BLO

to BL255)
magi ckeynunber
(BHT-5000/BHT-6000) 30 or 31
(BHT-6500/BHT-7000 with 26-key pad) 30, 31, 35, or 36
(BHT-7000 with 32-key pad/BHT-7500) 30, 31, 47, 48
Description:

m Assigning a string or a control code to a function key

KEY in syntax 1 assigns a string or a control code specified by st ri ngdat a to a
function key specified by keynunber. Pressing the specified function key gener-
ates the assigned string data or control code and then passes it to the user program
as if each character is keyed in directly from the keyboard.

» keynunber is a key number assigned to a particular function key. (Refer to
Appendix E, "Key Number Assignment on the Keyboard.")

« In the BHT-5000, specifying 32 to keynumnber assigns the trigger switch. In the
BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32 will be
ignored.

« stringdat a is a character code ranging from 0 (00h) to 255 (FFh). (For the
character codes, refer to Appendix C, "Character Sets.")

« If you specify more than two characters to st ri ngdat a, only the first two char-
acters are valid.

» stringdat a inputted by pressing the specified function key may be read to the

user program by | NPUT or LI NE | NPUT statement or | NKEY$ or | NPUT$
function.
Note that | NKEY$ or | NPUT$ (1) function can read only the first one character
of the assigned two. The second character remains in the keyboard buffer and
can be read by the | NPUT or LI NE | NPUT statement or | NKEY$ or | NPUT$
function.

245

Chapter 14. Statement Reference

« If pressed together with the Shift key, any numerical key can operate as a function
key.

« If you issue more than one KEY statement specifying a same function key, the last
statement takes effect.

« If a null string is assigned to a function key, pressing the function key produces no
key entry. To make a particular function key invalid, you specify a null string to
st ri ngdat a as shown below.

KEY 1,""
KEY 2, CHR$(0)
KEY 3, CHR$(&h0)

m Defining a function key as the LCD backlight function on/off key

KEY in syntax 2 defines a function key specified by backl i ght keynunber as
the backlight function on/off key and sets the length of backlight ON-time specified
by ondur at i on. (Refer to Chapter 13, "LCD Backlight Function.")

« backl i ght keynunber is a key number assigned to a particular function key.
(Refer to Appendix E, "Key Number Assignment on the Keyboard.")

Pressing the specified backlight function on/off key activates or deactivates the
backlight function.

+ In the BHT-3000/BHT-4000/BHT-5000, specifying zero (0) to backl i ght key-
nunmber restores the default (which is the combination of the trigger switch and
shift key).

* In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying a
zero (0) or 32 to backl i ght keynunber will be ignored.

* In the BHT-3000/BHT-4000/BHT-5000, pressing the trigger switch while holding
down the shift key functions as the backlight on/off control key by default. In the
BHT-6000/BHT-6500/BHT-7000/BHT-7500, pressing the M1 key (key number 33)
while holding down the shift key functions as the backlight on/off control key by
default.

« If pressed together with the Shift key, any numerical key can operate as a function
key.

« ondur at i on is the length of time in seconds from when the backlight is turned
on to automatic turning-off. Pressing the trigger switch or any key (except for the
backlight function on/off key) while the backlight is on resets the counter of
ondur at i on to the specified time length and restarts counting down.

Specification of BLO disables the backlight function. Specification of BL255
keeps the backlight on.

« A function key defined as the LCD backlight function on/off key cannot be used to
enter string data.

246

« If you issue more than one KEY statement, the last statement takes effect. That
is, if you define more than one key as the backlight function on/off key as shown
below, only the function key numbered 8 operates as the backlight function on/off
key and the length of backlight ON-time is 15 seconds.

KEY 5, " BL40"
KEY 8, "BL15"

m Defining a magic key as the trigger switch, shift key, or battery voltage display

key

* In the BHT-5000/BHT-6000/BHT-6500, KEY in syntax 3 defines a magic key as
the trigger switch, shift key, or battery voltage display key as well as assigning
string data.

KEY 30, "TRG' M1 key as the trigger switch
KEY 31, "SFT" M2 key as the shift key
KEY 30, "BAT" SF+M1 keys as the voltage display key

* In the BHT-7000/BHT-7500, KEY in syntax 3 defines a magic key as the trigger
switch or shift key as well as assigning string data. (It cannot define a magic key
as the battery voltage display key.)

NOTE

KEY 30, "TRG' M1 key as the trigger switch
KEY 31, "SFT" M2 key as the shift key

If you issue KEY statements specifying a same function key, only the last
KEY statement takes effect.

The description below, for example, makes the function key numbered 3
operate as the backlight function on/off key and the length of backlight
ON-time is 100 seconds.

KEY 3,"a"
KEY 3, "BL100"

The description below assigns string data"a" to the function key numbered
3. The default backlight function on/off key (in the BHT-3000/BHT-4000/
BHT-5000, the combination of the trigger switch and shift key; in the
BHT-6000/BHT-6500/BHT-7000/BHT-7500, the combination of M1 key
and shift key) will be restored.

KEY 3, "BL100"
KEY 3,"a"

The description below defines the magic key M1 as the trigger switch.
The default battery voltage display key (combination of the ENT key and
shift key) will be restored.

KEY 30, " BAT"
KEY 30, " TRG'

247

Chapter 14. Statement Reference

Syntax errors:

Error code and message Meaning

error 71:. Syntax error « keynunber is missing.
« stringdat a is missing.
« backl i ght keynunber is miss-
ing.

« stringdat a is a numeric expres-
sion.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(keynunber, backl i ght keynunber, or nmagi ckey-
nunber is out of the range.)

Example:
Syntax 1:
KEY 1,"a"
KEY 2,"F" +CHR$(13)
KEY 3,""
Syntax 2:
KEY 1, "BL60"
Reference:

Statements: KEY OFF, KEY ON, and ON KEY...GOSUB

248

I/O statement

KEY ON and KEY OFF

Enables or disables keystroke trapping for a specified function key.

Syntax:

KEY (keynumber){ON OFF}

Parameter:

keynunber

Description:

(BHT-3000/BHT-4000)

(BHT-5000 with 32-key pad)
(BHT-5000 with 26-key pad)
(BHT-6000)

(BHT-6500)

(BHT-7000 with 32-key pad/BHT-7500)

(BHT-7000 with 26-key pad)

m KEY ON

KEY ON enables keystroke trapping for a function key specified by keynunber .
(Refer to Appendix E, "Key Number Assignment on the Keyboard.")

A numeric expression which returns a
value from 1 to 29.

A numeric expression which returns a
value from 1 to 46.

A numeric expression which returns a
value from 1 to 34.

A numeric expression which returns a
value from 1 to 31, 33, and 34.

A numeric expression which returns a
value from 1 to 31 and 33 to 38.

A numeric expression which returns a
value from 1 to 31 and 33 to 50.

A numeric expression which returns a
value from 1 to 31 and 33 to 38.

» Between every execution of statements, the Interpreter checks whether a function
key specified by the KEY ON statement is pressed or not. If the key is pressed,
the Interpreter transfers control to the event-handling routine defined by an ON
KEY...GOSUB statement before the KEY ON statement.

« If a function key which has been assigned a null string by the KEY statement is
specified by the KEY ON statement, the keystroke trap takes place.

* If you specify a function key which has been defined as the LCD backlight func-
tion on/off key, trigger switch, shift key, or battery voltage display key by using the
KEY ON statement, then no keystroke trap takes place.

+ Keystroke trapping has priority over the | NKEY$ function.

249

Chapter 14. Statement Reference

» When a program waits for the keyboard entry by the | NPUT, L1 NE | NPUT state-
ment or | NPUT$ function, pressing a function key specified by the KEY ON state-
ment neither reads the pressed key data nor causes keystroke trapping.

* In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32
to keynurmber will be ignored.

m KEY OFF
KEY OFF disables keystroke trapping for a function key specified by keynunber .

* In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32
to keynurmber will be ignored.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error « keynunber is not enclosed in
parentheses ().

» Neither ON or OFF follows (key-

nunber).
Run-timeerrors:
Error code Meaning
05h Parameter out of the range

(keynunber is out of the range.)

Reference:

Statements: KEY and ONKEY. .. GOSUB

250

File 1/0 statement

KILL

Deletes a specified file from the memory.

Syntax:
KILL "[drivenane:]fil enane"

Parameter:
"[drivenane:]fil enane"”

A string expression.

Description:
KI LL deletes a data file or a user program file specified by "[dri ve-
name:]fil enane".
In the BHT-5000/BHT-6000/BHT-6500, the dr i vename may be A: or B: . If the
dri venane is omitted, the default A: applies.
In the BHT-7000/BHT-7500, the dr i venane (A: or B:) will be ignored.
» The specified file will be deleted from both the data and the directory in the mem-
ory.
 Afile to be deleted should be closed beforehand.

Syntax errors:

Error code and message Meaning

error 3: '"' mssing No double quote precedes or follows
[drivename:]fil enane.

error 71: Syntax error [drivename:]fil ename is not
enclosed in double quotes.

251

Chapter 14. Statement Reference

Run-timeerrors:

Error code Meaning

02h Syntax error
(The format of " [dri venane:] fi | enanme” is not correct.)

35h File not found

37h File already open

Example:

CLGSE

I F kyln$="Y" THEN
KILL "Master. Dat"

END | F

Reference:

Statements: CLFI LE

252

I/O statement

KPLOAD

Loads a user-defined Kanji font in the two-byte Kanji mode. p—
This statement also loads a user-defined cursor for the BHT-7000/BHT-7500. []

Syntax:
Syntax 1 (Loading a user-defined Kaniji font):
KPLOAD kanj i code, fontarraynane
Syntax 2 (Loading a user-defined cursor. Valid in the BHT-7000/BHT-7500):
KPLOAD kanji code, cursorarraynane

Parameter:
kanj i code
 For a user-defined Kaniji font

(BHT-3000/BHT-4000/BHT-5000/BHT-6000/BHT-6500)
A numeric expression which returns a value from
EBCOh to EBDFh.

(BHT-7000/BHT-7500) A numeric expression which returns a value from
EBCOh to EBDFh, EC40h to EC7Eh, and EC80h to
EC83h.

 For a user-defined cursor
A numeric expression which returns zero (0).
fontarrayname and cursorarraynane
An array integer variable name.

Do not specify parentheses () or subscripts which represent a gen-
era array as shown below. It will result in an error.

KPLOAD &HEBCO, kp%) 'error
KPLOAD &HEBCO, kp% 2) ' error

NOTE

Description:
m Loading a user-defined Kanji font
KPLQAD loads a user-defined Kaniji font data defined by f ont ar r aynane to the
user font area specified by kanj i code.
« kanj i code is a shift JIS code.

« To display user-defined Kanji fonts loaded by the KPLOAD, you use the PRI NT
statement in the two-byte Kanji mode. If you attempt to display an undefined
Kanji character code, a full-width space character will appear.

253

Chapter 14. Statement Reference

» The loaded user-defined fonts are effective during execution of the user program
which loaded those fonts and during execution of the successive user programs
chained by the CHAI N statement.

« If you load a font to the same kanj i code more than one time, the most recently
specified font takes effect.

« Only when the Interpreter executes the KPLOAD statement, it refers to the array
data defined by f ont ar r aynane. So, once a user program has finished load-
ing the user font, changing the data in the array or deleting the array itself (by the
ERASE statement) will not affect the already loaded user font.

 An array integer variable--a work array, register array, or common array--for f on-
t ar r aynamne should be declared by the DI M DEFREG or COMMON statement,
respectively.

DI M kp0% 15)
DEFREG kp1% 15)
COWVON kp2% 15)

The array variable should be one-dimensional and have at least 16 elements.
Each element data should be an integer and stored in the area from the 1st to
16th elements of the array.

» The loaded user-defined fonts are valid also in the condensed two-byte Kanji
mode (BHT-4000/BHT-5000). They are also effective when the small-size font is
selected (BHT-6000/BHT-6500/BHT-7000/BHT-7500). Note that the dot pattern
of each character will be condensed by the system program. (For the generating
procedure of condensed user-defined fonts, refer to Appendix C3., "Display Mode
and Letter Size.")

* The loaded user-defined fonts are valid also in the double-width mode (BHT-
7000/BHT-7500). Note that the dot pattern of each character will be doubled in
width by the system program.

m Loading a user-defined cursor (BHT-7000/BHT-7500)

KPLOAD loads a user-defined cursor data defined by cur sor ar r aynane to the
user font area specified by kanj i code.

 To display user-defined cursors loaded by the KPLOAD, you use the LOCATE
statement in the two-byte Kanji mode, in which you set 255 to cur sor swi t ch
(LOCATE , , 255).

» The loaded user-defined cursors are effective during execution of the user pro-
gram which loaded those cursors and during execution of the successive user
program chained by the CHAI N statement.

« Only when the Interpreter executes the KPLOAD statement, it refers to the array
data defined by cur sor arraynane. So, once a user program has finished
loading the user cursor, changing the data in the array or deleting the array itself
(by the ERASE statement) will not affect the already loaded user cursor.

254

» An array integer variable--a work array, register array, or common array--for cur -
sor arraynane should be declared by the DI M DEFREG or COMVION state-
ment, respectively.

DI M kp0% 5)
DEFREG kpl1% 5)
COVMON kp2% 5)
The array variable should be one-dimensional and have at least 6 elements.

Each element data should be an integer and stored in the area from the 1st to 6th
elements of the array.

« If the cursor size (the number of elements in an array variable wide by the number
of bits high) defined by cur sor ar r aynanme exceeds the allowable size, the
excess will be discarded.

» The cursor size will be as follows depending upon the font size.

Font size Cursor size (W x H) No. of elements
Standard-size 8 x 16 dots 8
01234567
LSB OOO00O0O0O0O00
OO0000Ooono
OOo0oOoodono
OOo00ooodno
OO0000Ooono
OOo0oOoodono
OOo0foOoaodn
O00oooono
OOo0Oooodono
(I
OOo0oododno
OOo0Oooodn
(I
OOo0oododno
OOo0Oooodn
MSB OOOOOOOME
Small-size 6 x 12 dots 6
012345
LSB OOO0O0O0
OOo0Ooon
O0o0o0omomno
(I
OOo0Ooon
O0o0o0omomno
(I
OOo0ood
OOodocc
OO0Oocd
O0O00oono
(I
OOoooadd
Lododn
OOooodtd
MSB OO0

255

Chapter 14. Statement Reference

* In double-width display mode, the cursor will appear in double width as shown

below:

When the standard-size font is selected

Cursor displayed in double width

MDDDDDDDDDDDDDDDD
pnd I o
stodododiooonoooon
“Uooododiooooooon
SUUO00O00000O0O0O0O00O000O
£={00 o o o o
o000 OOOOOOOOOO

000000000 00O0O000
~OOO0O0O0O0O0O00COOoood
o0 OOOOOOOOOOOnO
000000000 O00000808
0000000000 O00000808
oJO000O0HOCOO0OOOO
~LO000000O000000o.
-“JOO0000ooooogdoaoon
(= I o o o o
m

(%]
|

MSB

Cursor displayed in double width

o o o o o o o
SOO0O0Ooooooooooo™
o 1NIO0O00OO0O0O0O0O0OO
o000 OOO0O0O0O00000O
~OOO0O0O0O0O0O0O0O0O0O00004d
o000 O0OOOO0O0O0O000O0O
wOOOO0OO0O0O00O0O000000
<~O0000000O0O0O0O0O000O0O
oJO00000000000000
~OO0O0O0O0O0O000000000O
-UO00000000000000
o000 OOOOOO0O0Onn

m m

S S

1 =

Cursor loaded

~O0000000ooguooon
cidobooobooond
S I o o
~O0000O0O0O00OO0O00O0nd
~O000O00000000O0O0O0O0O
aJOgdodoooooooooo
“JO000oodoooobooon
(I o o o

o
n
-

MSB

When the small-size font is selected

Cursor loaded

wOO0O000o0ocoooood
~U00O00ooooooocaoddg
o0O00000O00O0O0O0O00000
~nO00O0O0O000000C0odd
«JUO0O000000O0O0000dd
oI HOOooOoOonooon

[aa]
0
|

MSB

Syntax errors:

Meaning

Error code and message

« Nof ontarraynane or cur sor -

71: Syntax error

error

ar r aynane is defined.
- fontarraynane or cursorar-

raynamnme has an array string vari-

able.
- fontarraynane or cursorar -

r ayname includes parentheses ().
- fontarraynane or cursorar-
r aynane includes subscripts

256

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(+ kanj i code is out of the range.)
(+ fontarraynamne or cur sorarraynane is not correct.)

08h Array not defined
Example:

DI M kp% 15)

kp% 0) =&H0000

kpo{ 1) =&H8011

kp% 2) =&H6022

kp% 3) =&H1844

kp% 4) =&H0600

kp% 5) =&H8802

kp% 6) =&HBAF2

kp% 7) =&HAA92

kp% 8) =&HAA97

kp% 9) =&H2A92

kp%{ 10) =&H1FF2

kp%{ 11) =&H2A92

kp% 12) =&HAA97

kp%{ 13) =&H4A92

kp%{ 14) =&HBAF2

kp% 15) =&H8802

SCREEN 1

KPLOAD &HEBCO, kp%

PRI NT CHR$(&HEB) ; CHR$(&HC0)

Array Elements
kp%(0) kp%(5) kp%(10) kp%(15) Bitin each array element
OmROO0O0O0OO0ODOmeOOOAOOaO 0 (LSB)
OOm"R OO0 EEEEEEEEERESR 1
OOo0omROOO0OOmROOOAOODO 2
OO0 o0ooooooooooooao 3
Om"R 00O O R EEEEEEREERRO 4
OO0OmROOOmeRO0OOCOmROOO0OM@O 5
OO0 omROOROOCOmROOOM@RO 6
OO0 0 O0dOCOEEEEEEEERERRERCO 7
OO0 oo0oOoooDoOooomO0O0O0O0Oaono 8
OO0 OO RO EEEEEREBERRO 9
OO0 Oo0oO0OmROOOOOeROOOO0Oaond 10
OOo0omROOO0DO0OOoOOoOmROO0OO0O0Oa0O 11
OO0 ORI EEEEEEEEERESR 12
OO0OmR0O0O0OO0O0ODOOmeROmOO0O0OaO 13
OOROCOCOCO RO OCOEmR0OO 14
OmR 0O OO ROCOOOOOO @ W 15 (MSB)
Reference:

Statements: APLOAD, COVMON, DEFREG, DI M PRI NT, and SCREEN

257

Chapter 14. Statement Reference

Assignment statement

LET

Assigns a value to a given variable.

Syntax:
Syntax 1:
[LET] stringvariable = stringexpression
Syntax 2:
[LET] numericvariable = nunericexpression
Description:

LET assigns a value of expression on the right-hand side to a variable on the left-
hand side.

* In a numeric data assignment, the assignment statement automatically converts
an integer value to a real value. In the type conversion from a real value to an
integer value, it rounds off the fractional part.

» Keyword LET can be omitted since the equal sign is all that is required to assign
a value.

» The data type of a variable and an expression must correspond.

Syntax errors:

Error code and message Meaning

error 71: Syntax error The data type on the right- and left-
hand sides does not correspond. That
is, the variable on the left-hand side is
numeric but the expression on the
right-hand side is a string, or vice
versa.

258

Run-timeerrors:

Error code Meaning

06h The operation result is out of the allowable range.

OFh String length out of the range
(In a string assignment, the string length of the evaluated result
on the right-hand side exceeds the maximum length of the string
variable on the left-hand side.)

10h Expression too long or complex

259

Chapter 14. Statement Reference

I/O statement

LINE INPUT

Reads input from the keyboard into a string variable.

Syntax:
LINE I NPUT ["prompt"{,]|;}]stringvariable

Parameter:
" pronpt"
A string constant.
stringvari abl e
A string variable.

Description:

When execution reaches a LI NE | NPUT statement, the program pauses and waits
for the user to enter data from the keyboard while showing a prompting message
specified by " pronpt ".

After typing data, the user must press the ENT key. Then, the LI NE | NPUT state-
ment assigns the typed datato st ri ngvari abl e.

« A LI NE | NPUT statement cannot assign a numeric variable. (An | NPUT state-
ment can do.)

o "pronpt" isaprompting message to be displayed on the LCD.
« The semicolon (;) or comma (,) after " pr onpt " has the following meaning:

If “pronpt" is followed by a semicolon, the LI NE | NPUT statement displays
the prompting message followed by a question mark and a space.

LI NE I NPUT "data= "; a$

data= ?

260

If " pronpt" is followed by a comma, the statement displays the prompting mes-
sage but no question mark or space is appended to the prompting message.

LI NE I NPUT "data= ", a$

dat a=

« The cursor shape specified by the most recently executed LOCATE statement
takes effect.

» Even after execution of the CURSOR OFF statement, the LI NE | NPUT statement
displays the cursor.

« Data inputted by the user will echo back to the LCD. To assign it to St ri ng-
vari abl e, itis necessary to press the ENT key.

Pressing the ENT key causes also a line feed.

If you type no data and press the ENT key, a LI NE | NPUT statement automati-
cally assigns a null string to st ri ngvari abl e.

* When any echoed back data is displayed on the LCD, pressing the Clear or BS
key erases the whole displayed data or a most recently typed-in character of the
data, respectively. If no data is displayed, pressing the Clear or BS key produces
no operation.

 Notes for entering string data:

The effective length of string data is the maximum string length of st ri ng-
vari abl e. Overflowed data will be ignored.

» The sizes of prompting message literals, echoed back literals and cursor depend
upon the screen mode (the single-byte ANK mode, two-byte Kanji mode, or con-
densed two-byte Kanji mode). In the single-byte ANK mode, they appear in sin-
gle-byte code size; in the two-byte Kanji or condensed two-byte Kanji mode, they
appear in half-width character size. (Note that the condensed two-byte Kanji
mode is supported by the BHT-4000/BHT-5000.)

In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, not only the screen mode but
also the display font size determines the sizes of prompting message literals, ech-
oed back literals, and cursor. If the standard-size font is selected, they appear in
standard size; if the small-size font is selected, they appear in small size.

In the BHT-7000/BHT-7500, in addition to the screen mode and display font size,
the character width (normal-width or double-width) determines those sizes. If the
double-width is selected, they appear in double width.

261

Chapter 14. Statement Reference

Syntax errors:

Error code and message Meaning

error 71: Syntax error « | NPUT is missing.

* Neither a comma (,) or semicolon (;)
follows " pr onpt " .

e "pronpt" is not a string constant.

e stringvari abl e has a numeric
variable.

A semicolon (;) immediately follows
LI NE | NPUT.

Reference:
Statements: | NPUT and LOCATE

Functions: | NKEY$ and | NPUT$

262

File 1/0 statement

LINE INPUT #

Reads data from a device /O file into a string variable.

Syntax:

LI NE | NPUT #fil enunber, stringvari abl e

Parameter:

filenunber

A numeric expression which returns a value from 1 to 16.

stringvari abl e

A string variable.

Description:

LI NE | NPUT # reads data from a device /O file (a communications device file or
bar code device file) specified by f i | enunber and assignsitto stri ngvari -
abl e.

- fil enunber is a number assigned to the device 1/O file when it was opened.

« A LI NE I NPUT # statement cannot assign a numeric variable. (An | NPUT #
statement can do.)

» Reading data from a communications device file:

A LI NE I NPUT # statement reads all of the string literals preceding a CR code
and assigns them to stri ngvari abl e except for CR codes and LF codes
which immediately follow a CR code.

If a LI NE | NPUT # statement reads data longer than the allowable string length
before reading a CR code, it ignores only the overflowed data and completes exe-
cution, causing no run-time error.

» Reading data from a bar code device file:
A LI NE | NPUT # statement reads the scanned data into st ri ngvari abl e.

If a LI NE | NPUT # statement reads data longer than the allowable string length,
it ignores only the overflowed data and completes execution, causing no run-time
error.

In the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the
maximum number of digits has been omitted in the read code specifications of the
OPEN " BAR: " statement (except for the universal product codes), then the
| NPUT # statement can read bar codes of up to 99 digits. To read bar codes
exceeding 40 digits, you should define a sufficient string variable length before-
hand.

263

Chapter 14. Statement Reference

Syntax errors:

Error code and message Meaning

error 71: Syntax error « | NPUT is missing.
- fil enunmber is missing.
o "pronpt" is not a string constant.

e stringvari abl e has a numeric
variable.

Run-timeerrors:

Error code Meaning

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type
(You specified fi | enunber of a file other than device /O
files.)
3Ah File number out of the range
Example:
LI NE | NPUT #fil eNo, dat$
Reference:

Statements: CLOSE, | NPUT#, OPEN"BAR ", and OPEN"COM "

Functions: | NPUT$

264

I/O statement

LOCATE

Moves the cursor to a specified position and changes the cursor shape.

Syntax:
Syntax 1:
LOCATE [colum] [, row, cursorswi tch]]
Syntax 2:
LOCATE, , cursorswi tch
Parameter:

A numeric expression which returns a value given below.

Single-byte ANK Mode

BHT-3000 BHT-4000 BHT-5000 BHT-6000/BHT-6500
Standard-size font Small-size font
col um 1to 17 1to 27 1to22 1to 17 1to 17
row lto4 1to 10 1to8 1to6 1to8
(1to 9%)
cursorswitch 0to2 Oto2 Oto2 Oto2 Oto2
BHT-7000 BHT-7500
Standard-size font Small-size font Standard-size font Small-size font
col um 1to 22 1to 22 1to 27 1to 27
row 1t08 1to 10 1to 20 1to 26
cursorsw tch 0to 2, 255 0to 2, 255 Oto 2, 255 0to 2, 255

* Values in parentheses will be returned when the system status indication is set to ON. If you specify the
bottom line of the LCD as the desired cursor position when the system status is displayed, the cursor
cannot move to the bottom line and it will move to the next to the bottom line instead.

265

Chapter 14. Statement Reference

Two-byte Kanji Mode

BHT-6000/BHT-6500
BHT-3000 BHT-4000 BHT-5000 Standard-size font Small-size font
col um 1to 13 lto21 1to 17 1to 13 1to 17
row 1to3 1t09 lto7 1to5 lto7
(1to 8%)
cursorsw tch Oto2 Oto2 Oto2 Oto2 Oto2
BHT-7000 BHT-7500
Standard-size font Small-size font Standard-size font Small-size font
col um 1to 17 1to 22 lto21 1to 27
row lto7 1to9 1to19 1to 25
cursorsw tch 0to 2, 255 0to 2, 255 Oto 2, 255 Oto 2,255
Condensed Two-byte Kanji Mode
BHT-4000 BHT-5000
col um 1to 27 1to22
row 1to 9 (1to 8% lto7
cursorswitch 0to2 Oto2

* Values in parentheses will be returned when the system status indication is set to ON. If you specify the
bottom line of the LCD as the desired cursor position when the system status is displayed, the cursor
cannot move to the bottom line and it will move to the next to the bottom line instead.

Description:

LOCATE moves the cursor to a position specified by col umrm number and r ow
number as co-ordinates on the LCD. It also changes the cursor shape as specified
by cur sor swi t ch.

» The cursor location in the upper left corner of the LCD is 1, 1 which is the default.

e cur sor sw t ch specifies the cursor shape as listed below.

cur sorswi t ch value Cursor shape
0 Invisible
1 Underline cursor (default)
2 Full block cursor
255 User-defined cursor (valid in the BHT-7000/
BHT-7500 only)

266

« Specification of the maximum value to col urm moves the cursor off the screen
and out of sight.

Example: Single-byte ANK mode in the BHT-3000
LOCATE 17

— « Cursor

If you display data on the screen under the above condition, the cursor moves to
the 1st column of the next row, from where the data appears.

 In the BHT-4000, if the system status indication is set to ON, the cursor cannot
move to the bottom line of the LCD. If you specify the bottom line, the cursor will
move to the next to the bottom line instead.

* In the BHT-5000/BHT-6000/BHT-6500, if you specify the right end of the bottom
line as the desired cursor position when the system status is displayed, the cur-
sor becomes invisible.

« If some parameter is omitted, the current value remains active. If you omit col -
um, for example, the cursor stays in the same column but moves to the newly
specified row position.

» Any parameter value outside the range will result in a run-time error.

» The column range does not differ between the normal- and double-width charac-
ters.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
Example:
LOCATE 1, 2
LOCATE xPos, xCSRLI N
LOCATE , , 2
Reference:

Functions: CSRLI Nand PGS

267

Chapter 14. Statement Reference

Error control statement

ON ERROR GOTO

Enables error trapping.

Syntax:
ON ERROR GOTO | abel

Description:

ON ERROR GOTOenables error trapping so as to pass control to the first line of an
error-handling routine specified by | abel if an error occurs during program execu-
tion.

 To return control from an error-handling routine to a specified program location,
you use a RESUME statement in the error-handling routine.

« Specification of zero (0) to | abel disables error trapping.

If ON ERROR GOTOO0 is executed outside the error-handling routine, the occur-
rence of any subsequent error displays a regular run-time error code and termi-
nates the program.

If ONERRCOR GOTOO is executed inside the error-handling routine, the Interpreter
immediately displays the regular run-time error code and terminates the program.

* You cannot trap errors which may occur during execution of the error-handling
routine. The occurrence of such an error displays a run-time error code and ter-
minates the program.

* You can use ON ERROR GO TOinstead of ON ERROR GOTQ.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error « | abel has not been defined.
| abel is missing.

Reference:
Statements: RESUNVE

Functions: ERL and ERR

268

Flow control statement

ON...GOSUB and ON...GOTO

Branches to one of specified labels according to the value of an expression.

Syntax:
Syntax 1:

ON expression GOSUB | abel [,label...]
Syntax 2:

ON expression GOTO | abel [,label...]

Parameter:
expr essi on

A numeric expression which returns a value from 1 to 255.

Description:

ON...GOSUB or ON...GOTOblock branches to a | abel in the label list according to
the value of expr essi on.

« If expr essi on has the value 3, for example, the target label is the third one in
the label list counting from the first.

- If expr essi on has the value 0 or a value greater than the number of labels in
the label list, execution of the ON...GOSUB or ON...GOTO block causes no run-
time error and passes control to the subsequent statement.

* You can specify any number of labels so long as a statement block does not
exceed one program line (512 characters).

» You can nest ON...GOSUB statements to a maximum of 10 levels.

* When using the GOSUB statement together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, | F..THEN
...ELSE..END | F, SELECT...CASE..END SELECT, SUB..END SUB and
VWHI LE.. VIEND), you can nest them to a maximum of 30 levels.

* You can use ON...GO TOinstead of ON...GOTO

269

Chapter 14. Statement Reference

Syntax errors:

Error code and message Meaning

error 71:. Syntax error « | abel has not been defined.
| abel is missing.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(expr essi on is negative or greater than 255.)

07h Insufficient memory space
(The program nesting by GOSUB statements only is too deep.)

Reference:

Statements: GOSUB, GOTO, and SELECT...CASE..END SELECT

270

ON KEY...GOSUB

Specifies an event-handling routine for keystroke interrupt.

I/O statement

Syntax:

ON KEY (keynumnber) GOSUB | abe

Parameter:

keynunber
(BHT-3000/BHT-4000)

(BHT-5000 with 32-key pad)
(BHT-5000 with 26-key pad)
(BHT-6000)

(BHT-6500)

(BHT-7000 with 32-key pad/BHT-7500)

(BHT-7000 with 26-key pad)

Description:

A numeric expression which returns
a value from 1 to 29.

A numeric expression which returns
a value from 1 to 46.

A numeric expression which returns
a value from 1 to 34.

A numeric expression which returns
a value from 1 to 31, 33, and 34.

A numeric expression which returns
a value from 1 to 31 and 33 to 38.

A numeric expression which returns
a value from 1 to 31 and 33 to 50.

A numeric expression which returns
a value from 1 to 31 and 33 to 38.

According to | abel , ON KEY...GOSUB specifies the first line of an event-handling
routine to be invoked if a function key specified by keynumnber is pressed. (Refer
to Appendix E, "Key Number Assignment on the Keyboard.")

« ONKEY...GOSUB specifies only the location of an event-handling routine but does
not enable keystroke trapping. It is KEY ON statement that enables keystroke

trapping. (Refer to KEY ON and KEY OFF.)

« Specification of zero (0) to | abel disables keystroke trapping.

271

Chapter 14. Statement Reference

« If a keystroke trap occurs, the Interpreter automatically executes KEY OFF state-
ment for the pressed function key before passing control to an event-handling rou-
tine specified by | abel in ON KEY...GOSUB statement. This prevents a same
event-handling routine from becoming invoked again by pressing a same function
key during execution of the routine until the current event-handling routine is com-
pleted by issuing a RETURN statement.

When control returns from the event-handling routine by a RETURN statement,
the Interpreter automatically executes KEY ON statement.

If it is not necessary to resume keystroke trapping, you describe a KEY OFF
statement in the event-handling routine.

« If you issue more than one ON KEY...GOSUB statement specifying a same key-
nunber , the last statement takes effect.
» You can nest GOSUB statements to a maximum of 10 levels.

« When using the ON KEY...GOSUB statement together with block-structured state-
ments (DEF FN..END DEF, FOR..NEXT, FUNCTI ON...END FUNCTI ON,
| F..THEN...ELSE...END | F, SELECT...CASE...END SELECT, SUB...END SUB
and V\HI LE.. VEEND), you can nest them to a maximum of 30 levels.

* In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32
to keynumnber will be ignored.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error « | abel has not been defined.
| abel is missing.

« keynunber is not enclosed in
parentheses ().

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(keynumber is out of the range.)

07h Insufficient memory space
(The program nesting by GOSUB statements is too deep.)

Reference:

Statements: KEY, KEY OFF, and KEY ON

272

File 1/0 statement

OPEN

Opens a file for 1/O activities.

Syntax:
OPEN "[drivenane:]fil enane"” AS [#] fil enunber [RECORD
filel ength]
Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
"[drivenane:]fil enanme"
A string expression.
filelength
An integer constant which has the value from 1 to 32767.
Description:

OPEN opens a data file specified by "[dri venane:] fi | enane" and associ-
ates the opened file with fi |l enunber for allowing 1/O activities according to
fil enunber.

» The maximum number of files which can be opened at one time is 16 including

the bar code device file and communications device files.
"fil enanme" consists of a file name and a file extension.

The file name should be 1 to 8 characters long. Usable characters for the file
name include alphabet letters, numerals, a minus (-) sign, and an underline ().
Note that a minus sign and underline should not be used for the starting character
of the file name. Uppercase and lowercase alphabet letters are not distinguished
from each other and both are treated as uppercase letters.

The file extension should be up to 3 characters long. It should be other than
.PD3, .EX3, .FN3, and .FLD and may be omitted (together with a period).

a. dat
mast er 01. dat

For the BHT-5000/BHT-6000/BHT-6500, the dr i vename may be A: or B: . If
the dr i venane is omitted, the default A: applies.

273

Chapter 14. Statement Reference

« In the BHT-7000/BHT-7500, if the dri venane is B:, the file specified by
fi | enane will be opened as a read-only file. If the dr i venamne is A: or omit-
ted, the file will be opened as a read/write file.

« fil el engt h is the maximum number of registrable records in a file. It can be
set only when a new data file is created by an OPEN statement. If you specify
fil el engt h when opening any of existing data files (including downloaded
data files), the f i | el engt h will be ignored.

Specifying f i | el engt h does not allocate memory. Therefore, whether or not a
PUT statement can write records up to the specified f i | el engt h depends on
the memory occupation state.

« Iffil el engt his omitted, the default file size is 1000 records.

Syntax errors:

Error code and message Meaning

error 3: "’ mssing No double quote precedes or follows
"[drivenane:]fil ename".
error 71:. Syntax error « fil el engt his out of the range.

- fil el engt his not an integer con-
stant.

e "[drivenane:]fil ename" is
not enclosed in double quotes.

Run-timeerrors:

Error code Meaning

02h Syntax error
("[drivenane:]fil ename" is not correct. Or the bar
code device file or communications device file is specified.)

07h Insufficient memory space
32h File type mismatch

37h File already open

3Ah File number out of the range
41h File damaged

Reference:

Statements: CLOSE, OPEN"BAR: ", and OPEN"COwM "

274

File 1/0 statement

OPEN "BAR:"

Opens the bar code device file. In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
this statement also activates or deactivates the reading confirmation LED and the beeper
(vibrator) individually. (Vibrator control valid only in the BHT-6500/BHT-7000/BHT-7500)

Syntax:
OPEN " BAR: [r eadnode] [beepercontrol][LEDcontrol]" AS
[#] fil enunber CODE readcode[, readcode. ..]
Parameter:
readnode
A string expression.
beeper control (for the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)
A string expression. Specification of B activates the beeper (vibrator).
(Default: Deactivated)
LEDcont r ol (for the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)
A string expression. Specification of L deactivates the reading confirmation
LED. (Default: Activated)
fil enunber
A numeric expression which returns a value from 1 to 16.
readcode
A string expression.
Description:

OPEN " BAR: " opens the bar code device file and associates it with fi | enunt
ber for allowing data entry from the bar code reader according to f i | enunber.

If the bar code device file has been opened with the OPEN " BAR: " statement,
pressing the trigger switch in the BHT-3000 makes the illumination LED start blink-
ing; pressing the trigger switch™ in the BHT-4000/BHT-5000/BHT-6000/BHT-7000
turns on the illumination LED; pressing the trigger switch™ in the BHT-6500/BHT-

7500 emits a laser beam™.

In the BHT-3000, when you bring the BHT near bar codes, the illumination LED
comes to stay on.

1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.

"2 The BHT-6500/BHT-7500 uses a laser source.

275

Chapter 14. Statement Reference

If the BHT reads a bar code successfully, the indicator LED for reading confirma-
tion will illuminate in green. The BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500 may activate or deactivate the indicator LED. The BHT-6500/BHT-7000/
BHT-7500 may activate or deactivate the beeper and vibrator function.

A bar code read will be decoded and then transferred to the barcode buffer. In the
BHT-3000, if the decoded data does not satisfy the reading conditions*, then the
reading confirmation LED will illuminate in red and no data will be transferred to
the barcode buffer.

(*The reading conditions include the number of digits, a check digit, the type of the
leading character, and start/stop characters.)

Only a single bar code device file can be opened at a time. The total number of
files which can be opened at a time is 16 including data files and communications
device files.

The BHT-6000/BHT-6500/BHT-7000/BHT-7500 cannot open the bar code device
file and the optical interface of the communications device file concurrently. If you
attempt to open them concurrently, a run-time error will occur. The BHT can open
the bar code device file and the direct-connect interface concurrently.
The name of the bar code device file, BAR, may be in lowercase.

OPEN "bar:" AS #10 CODE "A"
Alphabet letters to be used for r eadnode, beeper control , LEDcont r ol
and r eadcode may be in lowercase.

Up to eight r eadcodes can be specified.

If you specify more than one condition to a same read code, all of them are valid.
The sample below makes the BHT read both of the 6- and 10-digit ITF codes.

OPEN "BAR: " AS #1 CCDE "l:6","I:10"
OPEN "BAR " AS #1 CCDE "I1:6, 10" (For the BHT-6500/BHT-
7000/BHT-7500)

r eadnode

The BHT supports four read modes--the momentary switching mode, the auto-
off mode, the alternate switching mode, and the continuous reading mode,
which can be selected by specifying M F, A, and Cto r eadnode, respectively.

OMomentary switching mode (M

OPEN "BAR M AS #7 CODE "A"

Only while you hold down the trigger switch™, the illumination LED (laser
source?) lights and the BHT can read a bar code.

In the BHT-3000/BHT-4000/BHT-5000/BHT-6000, even if the bar code device
file is closed, the illumination LED does not go off so long as the trigger
switch™ is held down.

In the BHT-6500/BHT-7000/BHT-7500, if the bar code device file is closed
when the trigger switch™ is held down, the illumination LED (laser source)
will go off.

Until the entered bar code data is read out from the barcode buffer, pressing

the trigger switch™ cannot turn on the illumination LED (laser source”?) so that
the BHT cannot read the next bar code.

1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.
"2 The BHT-6500/BHT-7500 uses a laser source.

276

OAuto-off mode (F)

OPEN "BAR F' AS #7 CODE "A"

If you press the trigger switch™, the illumination LED (laser source™) comes
on. When you release the switch or when the BHT completes bard code read-
ing, the illumination LED (laser source™?) will go off. Holding down the trigger
switch™ lights the illumination LED (laser source?) for a maximum of 5 sec-
onds.

While the illumination LED (laser source”) is on, the BHT can read a bar code
until a bar code is read successfully or the bar code devices file becomes
closed.

If the illumination LED (laser source*z) goes off after 5 seconds from when you
press the trigger switchl, it is necessary to press the trigger switch™! again for
reading a bar code.

In the BHT-3000/BHT-4000/BHT-5000/BHT-6000, once a bar code is read
successfully, pressing the trigger switch™ turns on the illumination LED (laser
source™) but the BHT cannot read the next bar code as long as the entered
bar code data is not read out from the barcode buffer.

In the BHT-6500/BHT-7000/BHT-7500, once a bar code is read successfully,
pressing the trigger switch™ cannot turn on the illumination LED (laser
source™) and the BHT cannot read the next bar code as long as the entered
bar code data is not read out from the barcode buffer.

OAlternate switching mode (A)
OPEN "BAR A" AS #7 CODE "A"

If you press the trigger switch™, the illumination LED (laser source™) comes
on. Even if you release the switch, the illumination LED (laser source"?)
remains on until the bar code device file becomes closed or you press that
switch again. While the illumination LED (laser source*z) is on, the BHT can
read a bar code.

Pressing the trigger switch™ toggles the illumination LED (laser source?) on
and off.

Once a bar code is read successfully, pressing the trigger switch™ turns on
the illumination LED (laser source™?) but the BHT cannot read the next bar
code as long as the entered bar code data is not read out from the barcode
buffer.

1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.

*2 The BHT-6500/BHT-7500 uses a laser source.

277

Chapter 14. Statement Reference

OContinuous reading mode (C)
OPEN "BAR C' AS #7 CODE "A"

Upon execution of the above statement, the BHT turns on the illumination LED
(laser source”) and keeps it on until the bar code device file becomes closed,
irrespective of the trigger switch™.

While the illumination LED (laser source™) is on, the BHT can read a bar
code.

Once a bar code is read successfully, the BHT cannot read the next bar code
as long as the entered bar code data is not read out from the barcode buffer.

« If r eadnode is omitted, the BHT defaults to the auto-off mode.

* In the momentary switching mode, alternate switching mode, or continuous
reading mode, after you read a low-quality bar code which needs more than
one second to be read, keeping applying the barcode reading window to that
bar code may re-read the same bar code in succession at intervals of one sec-
ond or more.

m beepercontrol and LEDcont r ol (for the BHT-5000/BHT-6000/BHT-6500/
BHT-7000/BHT-7500)

In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the OPEN" BAR: "
statement can control the beeper and the reading confirmation LED to activate or
deactivate each of them when a bar code is read successfully. The BHT-6500/
BHT-7000/BHT-7500 may also control the vibrator with beeper cont r ol .

* You should describe parameters of r eadnode, beepercontrol, and
LEDcont r ol without any space inbetween.

* You should describe r eadnode, beeper control , and LEDcont r ol in
this order.

* In the BHT-6500/BHT-7000/BHT-7500, specifying B to beeper contr ol
allows you to choose beeping only, vibrating only, or beeping & vibrating by
making setting on the "LCD contrast & beeper volume screen" or by setting
the 1/O ports with the QUT statement.

To sound the beeper when a bar code is read successfully:
OPEN "BAR: B" AS #7 CODE "A"

To deactivate the reading confirmation LED when a bar code is read success-
fully:

OPEN "BAR: L" AS #7 CODE "A"

"1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.
"2 The BHT-6500/BHT-7500 uses a laser source.

278

m readcode

The BHT supports six types of bar codes--the universal product codes, Inter-
leaved 2 of 5 (ITF), Codabar (NW-7), Code 39, Code 93, and Code 128. In addi-
tion to them, the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500 supports the Standard 2 of 5 (STF). The BHT-6000/BHT-6500/BHT-7000/
BHT-7500 can read also EAN-128 if Code 128 is specified.

(For the allowable bar code types, refer to the BHT User’'s Manual.)

OUniversal product codes (A)
Syntax 1:
Al : [code] [1st chara[2ndchara]][suppl ement al]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

Al : [code] [1st chara[2ndchar a]] [suppl enent al]
[,[code][1stchara] 2ndchara]][suppl emental]]
[,[code][1stchara] 2ndchara]][suppl emental]]]

where
code is A, B, or C specifying the following:

code Bar code
A EAN-13 or UPC-A
B EAN-8
C UPC-E

If code is omitted, the default is all of the universal product codes.

1st char a or 2ndchar a is a numeral from 0 to 9 specifying the header
character (country flag). If a question mark (?) is specified to 1st char a or
2ndchar a, it acts as a wild card.

suppl enent al is a supplemental code. Specifying an S to suppl enmen-
t al allows the BHT (expect for the BHT-3000) to read also supplemental
codes. The BHT-3000 does not support supplemental codes, so specifying
the suppl enent al option will cause a run-time error.

OPEN "BAR " AS #1 CODE "A: 49S"

279

Chapter 14. Statement Reference

Olinterleaved 2 of 5 (ITF) (l)

Syntax 1:
I[:[mni.no.digits[-max.no.digits]][CD]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):
[[:[mni.no.digits[-max.no.digits]][CD
[,[mni.no.digits[-max.no.digits]][CD]
[,[mni.no.digits[-max.no.digits]][CD]]

where

m ni . no. di gi t s and max. no. di gi t s are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 2 to 40 in the BHT-3000 and a numeral from 2
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
and they should satisfy the following condition:

mni.no.digits < max.no.digits
If both of mi ni.no.digits and max. no. di gits are omitted, the
default reading range is 2 to 40 digits in the BHT-3000 and 2 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000. In the BHT-6500/BHT-7000/BHT-7500, if

both of them are omitted, the default reading range is from the minimum num-
ber of digits specified in System Mode up to 99 digits.

If only max. no. di gi t s is omitted, the BHT can only read the number of
digits specified by mi ni . no. digits.

CD is a check digit. Specifying a C to CD makes the Interpreter check bar
codes with MOD-10. The check digit is included in the number of digits.

OPEN "BAR " AS #1 CCDE "Il:6-10C

280

OCodabar (NW-7) (N)
Syntax 1:
N[:[mni.no.digits[-max.no.digits]][startstop][CD]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):
N[:[mni.no.digits[-max.no.digits]][startstop][CD
[,[mMni.no.digits[-max.no.digits]][startstop][CD]
[,[mMni.no.digits[-max.no.digits]][startstop][CD]]

where

mni.no.digits andnmax.no.digits arethe minimum and maxi-
mum numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 3 to 40 in the BHT-3000 and a numeral from 3
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
and they should satisfy the following condition:

mni.no.digits < max.no.digits

If both of mi ni.no.digits and nax. no.digits are omitted, the
default reading range is 3 to 40 digits in the BHT-3000 and 3 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000. In the BHT-6500/BHT-7000/BHT-7500, if
both of them are omitted, the default reading range is from the minimum num-
ber of digits specified in System Mode up to 99 digits.

If only max. no. di gi t s is omitted, the BHT can only read the number of
digits specified by mi ni . no. di gi t s.

start and st op are the start and stop characters, respectively. Each of
them should be an A, B, C, or D. If a question mark (?) is specified, it acts as
awild card. The start and stop characters are included in the number of digits.
The A through D will be stored in the barcode buffer as a through d.

CDis a check digit. Specifying a C to CD makes the Interpreter check bar
codes with MOD-16. The check digit is included in the number of digits.

OPEN "BAR: " AS #1 CCDE "N 8AAC'

281

Chapter 14. Statement Reference

OCode 39 (M

Syntax 1:
M:[mini.no.digits[-max.no.digits]][CD]
Syntax 2 (BHT-6500/BHT-7000/BHT-7500):
M:[mini.no.digits[-max.no.digits]][CD]
[,[mni.no.digits[-max.no.digits]][CD]
[,[mni.no.digits[-max.no.digits]][CD]]
where

m ni . no. di gi ts and max. no. di gi t s are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 1 to 40 in the BHT-3000 and a numeral from 1

to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,

excluding start/stop characters. They should satisfy the following condition:
mni.no.digits < max.no.digits

If both of mi ni.no.digits and max. no. di gits are omitted, the
default reading range is 1 to 40 digits in the BHT-3000 and 1 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500. If only
max. no. di gi t s is omitted, the BHT can only read the number of digits
specified by mi ni . no. digits.

CDis a check digit. Specifying a C to CD makes the Interpreter check bar
codes with MOD-43. The check digit is included in the number of digits.

OPEN "BAR " AS #1 CCDE "M 8-12C

OCode 93 (L)

Syntax 1:

L[:[mni.no.digits[-max.no.digits]]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

L[:[m ni.no.digits[-max.no.digits]
[,[mni.no.digits[-nmax.no.digits]]
[,[mMni.no.digits[-nmax.no.digits]]]

where

m ni . no. di gi t s and max. no. di gi t s are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 1 to 40 in the BHT-3000 and a numeral from 1
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
excluding start/stop characters and check digits. They should satisfy the fol-
lowing condition:

mni.no.digits < max.no.digits

If both of mini.no.digits and max. no.di gits are omitted, the
default reading range is 1 to 40 digits in the BHT-3000 and 1 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500. If only
max. no. di gi ts is omitted, the BHT can only read the number of digits
specified by mi ni . no. digits.

OPEN "BAR' " AS #1 CCDE "L:6-12"

Neither start/stop characters nor check digits will be transferred to the barcode
buffer.

282

OCode 128 (K)
Syntax 1:
Kl:[mni.no.digits[-max.no.digits]]]
Syntax 2 (BHT-6500/BHT-7000/BHT-7500):
K[:[m ni.no.digits[-nmax.no.digits]]

[,[mni.no.digits[-max.no.digits]]]
[,[mni.no.digits[-max.no.digits]]]]

where

m ni . no. di gi t s and max. no. di gi t s are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 1 to 40 in the BHT-3000 and a numeral from 1
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
excluding start/stop characters and check digit. They should satisfy the fol-
lowing condition:

mni.no.digits < max.no.digits

If both of mi ni.no.digits and max. no. di gits are omitted, the
default reading range is 1 to 40 digits in the BHT-3000 and 1 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500. If only
max. no. di gi ts is omitted, the BHT can only read the number of digits
specifiedby m ni . no.digits.

OPEN "BAR: " AS #1 CODE "K: 6-12"

Neither start/stop characters nor check digit will be transferred to the barcode
buffer.

If the BHT reads any bar code consisting of special characters only (such as
FNC, CODEA, CODEB, CODEC and SHIFT characters), it will not transfer the
data to the barcode buffer.

FNC characters will be handled as follows:

(1) FNC1

The BHT-3000/BHT-4000/BHT-5000/BHT-6000 will not transfer FNC1
characters to the barcode buffer at all.

The BHT-6500/BHT-7000/BHT-7500 will not transfer an FNC1 character
placed at the first or second character position immediately following the
start character, to the barcode buffer. FNC1 characters in any other posi-
tions will be converted to GS characters (1Dh) and then transferred to the
barcode buffer like normal data.

In the BHT-5000/BHT-6500/BHT-7000/BHT-7500, if an FNC1 immediately
follows the start character, the bar code will be recognized as EAN-128
and marked with Winstead of K.

283

Chapter 14. Statement Reference

(2) FNC2

If the BHT reads a bar code containing an FNC2 character(s), it will not
buffer such data but transfer it excluding the FNC2 character(s).

(3) FNC3

If the BHT-3000/BHT-4000/BHT-5000/BHT-6000 reads a bar code contain-
ing an FNC3 character(s), it will transfer it excluding the FNC3 charac-
ter(s), to the barcode buffer.

If the BHT-6500/BHT-7000/BHT-7500 reads a bar code containing an
FNC3 character(s), it will regard the data as invalid and transfer no data to
the barcode buffer, while it may drive the indicator LED and beeper (vibra-
tor) if activated with the OPEN statement.

(4) FNC4

If the BHT-3000/BHT-4000/BHT-5000/BHT-6000 reads a bar code contain-
ing an FNC4 character(s), it will transfer it excluding the FNC4 charac-
ter(s), to the barcode buffer.

In the BHT-6500/BHT-7000/BHT-7500, an FNC4 converts data encoded
by the code set A or B into a set of extended ASCIl-encoded data (128
added to each official ASCII code value).

A single FN4 character converts only the subsequent data character into
the extended ASCIl-encoded data.

A pair of FNC4 characters placed in successive positions converts all of
the subsequent data characters preceding the next pair of FNC4 charac-
ters or the stop character, into the extended ASCll-encoded data. If a sin-
gle FNC4 character is inserted in those data characters, however, it does
not convert the subsequent data character only.

An FNC4 character does not convert any of GS characters converted by
an FNC1 character, into the extended ASCIl-encoded data.

284

OStandard 2 of 5 (STF) (H) (For the BHT-4000/BHT-5000/BHT-6000/BHT-
6500/BHT-7000/BHT-7500)

Syntax 1:
H:[mni.no.digits[-max.no.digits]][CD][start-
st op]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):
H:[mni.no.digits[-max.no.digits]][CDl [start-

st op]
[,[mni.no.digits[-max.no.digits]][CD [start-
st op]]
[,[mMni.no.digits[-max.no.digits]][CD [start-
stop]]]

where

m ni . no. di gi t s and max. no. di gi t s are the minimum and maximum
numbers of digits for bar codes to be read.

They should be a numeral from 1 to 99 (excluding start/stop characters) and
satisfy the following condition:

mni.no.digits < max.no.digits
If both of mi ni.no.digits and max. no. di gits are omitted, the
default reading range is from 1 to 99 digits in the BHT-4000/BHT-5000/BHT-

6000 and from the minimum number of digits specified in System Mode up to
99 digits in the BHT-6500/BHT-7000/BHT-7500.

If only max. no. di gi t s is omitted, only the number of digits specified by
m ni . no.digits canbe read.

CD is a check digits. Specifying a C to CD makes the Interpreter check bar
codes with MOD-10. The check digit is included in the number of digits.

st art st op specifies the normal or short format of the start/stop characters.
Specify N for the normal format; specify S for the short format. If st art st op
is omitted, start/stop characters can be read in either format.

OPEN "BAR: " AS #1 CCDE "H 6-12"

285

Syntax errors:

Chapter 14. Statement Reference

Error code and message Meaning

error 71: Syntax error The number of the specified read

codes exceeds eight.

Run-timeerrors:

Error code Meaning
02h Syntax error
(r eadcode is missing.)
05h Parameter out of the range
(r eadcode is not correct.)
37h File already open
3Ah File number out of the range
45h Device files prohibited from opening concurrently

(You attempted to open the bar code device file and the optical
interface of the communications device file concurrently in the
BHT-6000/BHT-6500/BHT-7000/BHT-7500.)

286

File 1/0 statement

OPEN "COM:"

Opens a communications device file.

Syntax:

Syntax 1 (For the BHT-3000 and the direct-connect interface of the BHT-6000/BHT-
6500/BHT-7000/BHT-7500):

OPEN "COVnh: [baud] [, [parity]]
bit][,[RS/CS][,[timeout]]]]]

Syntax 2 (For the BHT-4000):

OPEN "COWn: [baud][,[parity][,[charal ength][,[stopbit]
[,[RS/CS][,[timeout][,[RS][,[ERI11111]1 "AS [#] fil enum
ber

Syntax 3 (For the high-speed transmission in the BHT-4000):
OPEN "COWn: HS" AS [#] fil enunber
Syntax 4 (For the BHT-5000):

OPEN "COWn: [baud][,[parity][,[charal ength][,[stopbit]
[,[RS/CS][,[tinmeout][,[RS]11111]1 "AS [#] filenunber

Syntax 5 (For the optical interface of the BHT-6000/BHT-6500/BHT-7000/BHT-7500):
OPEN "COWn: [baud] "AS [#] fil enunber

,[charal ength][,[stop-
] "AS [#] fil enunber

Parameter:
baud

BHT-3000/BHT-4000/BHT-5000 38400%, 19200, 9600, 4800, 2400,
1200, 600, or 300 (*In the BHT-3000/
BHT-4000, 38400 is supported by the
direct-connect interface only)

BHT-6000/BHT-6500 (For the optical interface)
115200, 57600, 38600, 19200, 9600,
or 2400

(For the direct-connect interface)
38400, 19200, 9600, 4800, 2400,
1200, 600, or 300

BHT-7000/BHT-7500 (For the optical interface)
115200, 57600, 38400, 19200, 9600,
or 2400

(For the direct-connect interface)
115200, 57600, 38400, 19200, 9600,
4800, 2400, 1200, 600, or 300

287

Chapter 14. Statement Reference

parity
N, E,or O

char al engt h

8or7
st opbi t
lor2
RS/ CS
0,1,2,30r4
ti meout
An integer numeral from O to 255.
RS
Oorl
ER
Oor1l
fil enunber
A numeric expression which returns a value from 1 to 16.
Description:

OPEN" COM " opens a communications device file and associates it with f i | e-
nunber for allowing input/output activities using the communications interface.

* If optional parameters enclosed with brackets are omitted, the most recently spec-
ified values or the defaults become active.

Listed below are the defaults:

Baud rate 9600 bps
Parity check No parity
Character length 8 bits

Stop bit 1 bit

RS/CS control 0 (No control)
Timeout 3 seconds
RS control*! 1 (Enabled)
ER control*? 1 (Enabled)

L Supported by the BHT-4000 or by the optical interface of the BHT-5000.
*2 Supported by the direct-connect interface of the BHT-4000.

288

m COVh
CQOWVh is a communications device file name.

For the BHT-3000 which supports both the optical and direct-connect interfaces
and can open them concurrently, you can set both "COM1:" and "COM2:".

For the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 which
supports both the optical and direct-connect interfaces but cannot open them
concurrently, you should set one of the specifications listed above. If you
attempt to open both interfaces concurrently, a run-time error will occur.

Interface Communications device file name
Optical interface "COM1:"

Direct-connect interface "ComM2:"

Default interface™ "COM:"

"3 The default interface refers to an interface which is selected on the Set Com menu (BHT-3000),
on the SET COM ENVIRONMENT menu (BHT-4000), on the SET COMMUNICATION menu
(BHT-5000/BHT-7000/BHT-7500), or on the SET COM menu (BHT-6000/BHT-6500) in System
Mode. (For details, refer to the BHT User’s Manual.)

The BHT-6000/BHT-6500/BHT-7000/BHT-7500 cannot open the optical inter-
face and the bar code device file concurrently. If you attempt to open them con-
currently, a run-time error will occur.

COMmay be in lowercase as shown below.
OPEN "com " AS #8

= baud

In the BHT-3000/BHT-4000/BHT-5000, baud is one of the baud rates: 38400*,
19600, 9600 (default), 4800, 2400, 1200, 600, and 300. (*The 38400 bps is sup-
ported by the direct-connect interface of the BHT-3000/BHT-4000 and by the
BHT-5000.)

In the BHT-6000/BHT-6500, when the optical interface is used, baud is one of
the baud rates: 115200, 57600, 38400. 19200, 9600 (default), and 2400. When
the direct-connect interface is used, it is one of the baud rates: 38400, 19200,
9600 (default), 4800, 2400, 1200, 600, and 300.

In the BHT-7000/BHT-7500, when the optical interface is used, baud is one of
the baud rates: 115200, 57600, 38400, 19200, 9600 (default), and 2400. When
the direct-connect interface is used, it is one of the baud rates: 115200, 57600,
,38400, 19200 (default), 9600, 4800, 2400, 1200, 600, and 300.

m parity
pari ty is a parity check. It should be N (default), E, or O, which corresponds
to None, Even, or Odd parity, respectively.

m charal ength

char al engt h is a character length or the number of data bits. It should be 8
(default) or 7 bits.

289

Chapter 14. Statement Reference

m stopbit
st opbi t is the number of stop bits. It should be 1 (default) or 2 bits.

The optical interface of the BHT-6000/BHT-6500/BHT-7000/BHT-7500 is

M compliant with the IrDA physical layer (IrDA-SIR1.0), so the vertical par-
ity, character length, and stop bit length are fixed to none, 8 bits, and 1 bit,
respectively. If selected, those parameters will be ignored.

m RS/ CS

RS/ CS enables or disables the RS/CS control. It should be 0 (default), 1, 2, 3,
or 4, which corresponds to the following function:

BHT-3000/BHT-6000/
BHT-6500/BHT-7000/ BHT-4000 BHT-5000
Value of BHT-7500
RS/ CS Direct- Direct- Direct-
Optical I/F | connect Optical I/F | connect Optical I/F | connect
IIF I/F IIF
0 lanored RS/CS control RS/CS con- | | 4
(default) 9 disabled trol disabled | '
1 Ignored RS/CS control enabled RS/CS con- Ignored
trol enabled
High RD High RD
will be Run-time will be
2 Ignored | regarded Run-time error regarded
) error)
as a high as high
CS. CsS.
Low RD Low RD
will be Run-time will be
3 Ignored | regarded Run-time error regarded
. error)
as high as high
Cs. Cs.
CS
control dis- €S .
control dis-
abled Run-time abled
4 Ignored (RD will Run-time error .
error (RD will be
be used as
. used as an
an input input port
port.) putport.

As listed above, you can specify RS/ CS option for the direct-connect interface
of the BHT-3000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 and for the BHT-
4000/BHT-5000. If you specify it for the optical interface of the BHT-3000/BHT-
6000/BHT-6500/BHT-7000/BHT-7500, it will be ignored resulting in no run-time
error.

RS/ CS option is also applicable to Busy control when the direct-connect inter-
face is used in the BHT-3000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500. To do so, interface cable connection should be modified. For details,
refer to the BHT User's Manual.

290

Shown below is a coding sample for enabling the RS/CS control.
OPEN "COM ,,,, 1" AS #16

Instead of the OPEN " COM " statement, you can use an OUT statement for
controlling the RS signal (supported by the optical interface of the BHT-5000 and
by the BHT-4000) or the ER signal (which is supported by the BHT-4000). Also,
you can use a WAl T statement or | NP function for monitoring the CS signal or
CD signal (supported by the BHT-4000). (To connect the BHT to an asynchro-
nous half-duplex modem, it is necessary to use the OUT and WAI T statements
and | NP function.)

m tineout

ti meout is a maximum waiting time length until the CS signal goes ON after
the BHT becomes ready to send data. It should be 0 to 255 in increment of 100
ms.

Specification of zero (0) causes no timeout.

Timeout is supported by the optical interface of the BHT-5000 and by the BHT-
4000. Shown below is a coding sample for setting 10 secondsto t i meout .

OPEN "COM ,,,, 1, 100" AS #6

To make the direct-connect interface of the BHT-3000/BHT-5000/BHT-6000/
BHT-6500/BHT-7000/BHT-7500 support timeout, the RS/ CS option should be
set to "2" or "3" so that the RD signal is regarded as CS. If any of "0," "1," and
"4" has been set to the RS/ CS option, the value of the t i meout option will be
modified.

The optical interface of the BHT-3000/BHT-6000/BHT-6500/BHT-7000/BHT-

7500 does not support timeout. If specified, the ti meout option will be
ignored resulting in no run-time error.

m RS (For the BHT-4000/BHT-5000)

RS specifies whether the RS signal should go ON or OFF when the OPEN
"COM " statement opens a communications device file of the optical interface
in the BHT-4000/BHT-5000. You should set 0 (OFF) or 1 (ON: default). This
specification is effective only when the RS/CS control is disabled.

m ER (For the BHT-4000)

ER specifies whether the ER signal should go ON or OFF when the OPEN
"COM " statement opens a communications device file in the BHT-4000. You
should set 0 (OFF) or 1 (ON: default). This specification is effective only when
the direct-connect interface is selected. If specified for the optical interface, the
ER option will be ignored resulting in no run-time error. In the BHT-3000/BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, specifying this ER option
results in a run-time error.

m HS (High-speed transmission for the BHT-4000)

This specification is effective only in the BHT-4000. In other BHTs, specifying
HS results in a run-time error.

291

Syntax errors:

Chapter 14. Statement Reference

Error code and message Meaning

error 71:. Syntax error fil enunber is missing.

Run-timeerrors:

Error code Meaning
02h Syntax error
(The x in" COM X" contains an invalid parameter.)
37h File already open
3Ah File number out of the range
45h File already open

(You attempted to open the bar code device file and the optical
interface of the communications device file concurrently in the
BHT-6000/BHT-6500/BHT-7000/BHT-7500.)

(You attempted to open the wireless interface and optical inter-
face of the communications device file, or the wireless interface
and direct-connect interface concurrently in the BHT-7500.)

292

I/O statement

OuT

Sends a data byte to an output port.

Syntax:
QUT port nunber, data

Parameter:
por t nunmber
A numeric expression.
dat a

A numeric expression which returns a value from 0 to 255.

Description:
QUT sends a data byte designated by dat a to a port specified by por t nunber.

« port nunber is not an actual hardware port number on the BHT but a logical
one which the Interpreter assigns. (Refer to Appendix D, "I/O Ports.")

« If bits not assigned a hardware resource are specified to por t nunber or dat a,
they will be ignored.

Syntax errors:

Error code and message Meaning

error 71: Syntax error e port nunber is missing.
- dat a is missing.

293

Chapter 14. Statement Reference

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(por t nunber or dat a is out of the range.)

Example:
aJr 3,7

The above example sets the LCD contrast to the maximum.
Reference:
Statements: WAl T

Functions: NP

294

I/O statement

POWER

Controls the automatic power-off facility.

Syntax:
Syntax 1 (Turning off the power according to the power-off counter):
PONER count er

Syntax 2 (Turning off the power immediately):
PONER { OFF| 0}

Syntax 3 (Disabling the automatic power-off facility):
PONER CONT

Parameter:

counter
A numeric expression which returns a value from 0 to 32767.

Description:
m Turning off the power according to the power-off counter
POVER count er turns off the power after the length of time specified by
count er from execution of the POAER statement.

e count er is a setting value of the power-off counter in seconds. Shown below is
a sample program for turning off the power after 4800 seconds from execution of
POVER statement.

PONER 4800

« If no POVER statement is issued, the default counter value is 180 seconds.

« If any of the following operations and events happens while the power-off counter
is counting, the counter will be reset to the preset value and start counting again:

- Any key is pressed.
- The trigger switch is pressed.

- The BHT sends or receives data via a communications device file. (If a com-
munications device file is closed, this operation does not reset the power-off
counter.)

295

Chapter 14. Statement Reference

m Turning off the power immediately
Execution of PONER OFF or POAER O immediately turns off the power.

 The execution of PONER OFF or PONER O deactivates the resume function if pre-
set.

m Disabling the automatic power-off facility
POWER CONT disables the automatic power-off facility.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(count er is out of the range.)

296

I/O statement

PRINT

Displays data on the LCD screen.

Syntax:
PRI NT [data[CR/ LFcontrol...]]

Parameter:
dat a

A numeric or string expression.
CR/ LFcont r ol

A comma (,) or a semicolon (;).

Description:
PRI NT displays a number or a character string specified by dat a at the current
cursor position on the LCD screen (To position the cursor, use a LOCATE state-
ment.) and then repositions the cursor according to CR/ LFcont r ol .

m data

« dat a may be displayed in any of the screen modes (the single-byte ANK mode,
two-byte Kanji mode, and condensed two-byte Kanji mode). (The condensed
two-byte Kanji mode is supported by the BHT-4000/BHT-5000.) It is, however,
necessary to select the screen mode by a SCREEN statement before execution of
the PRI NT statement.

If you specify single-byte ANK characters for dat a after selecting the two-byte

Kanji mode or condensed two-byte Kanji mode with a SCREEN statement, then
those ANK characters will appear in the half-width size.

CLS

SCREEN 1 "Kanji node
PRI NT " ABC123"

SCREEN 0 " ANK node

PRI NT " DEF456"

hese statements produce this output:

ABC123
DEF456

297

Chapter 14. Statement Reference

* In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, dat a may be displayed in
standard size or small size depending upon the display font size selected.

« If you omit dat a option, a blank line is outputted. That is, the cursor moves to
the first column of the next screen line.

 Positive numbers and zero automatically display with a leading space.

 Control codes (08h to 1Fh) appear as a space, except for BS (08h), CR (0Dh) and
C (18h) codes.

BS (08h) deletes a character immediately preceding the cursor so that the cursor
moves backwards by one column.

PRI NT CHR$(8) ;
CR (0ODh) causes a carriage return so that the cursor moves to the first column of
the next screen line.

PRI NT CHR$(&h0D) ;

C (18h) clears the LCD screen so that the cursor moves to its home position in the
top left corner, just like the CLS statement.

PRI NT CHR$(&h18);

m CR/ LFcontrol

CR/ LFcont r ol determines where the cursor is to be positioned after the PRI NT
statement executes.

« If CR/ LFcont rol is acomma (,), the cursor moves to the column position of a
least multiple of 8 plus one following the last character output.

Statement example: PRI NT 123,
Output:

123

L e ie —

« If CR/ LFcontrol is a semicolon (), the cursor moves to the column position
immediately following the last character output.

Statement example: PRI NT 123;
Output:

123

298

« If neither a comma (,) nor semicolon (;) is specified to CR/ LFcont r ol , the cur-
sor moves to the first column on the next screen line.

Statement example: PRI NT 123

Output:
123

In any of the above cases, the screen automatically scrolls up so that the cursor
always positions in view on the LCD screen.

To extend one program line to more than 512 characters in a single PRI NT state-
ment, you should use an underline () preceding a CR code, not a comma (,) pre-
ceding a CR code.

Syntax errors:

Error code and message Meaning
error 71: Syntax error dat a contains a comma (,) or semico-
lon (;).

Reference:

Statements: LOCATE, PRI NT USI NG and SCREEN

299

Chapter 14. Statement Reference

File 1/0 statement

PRINT #

Outputs data to a communications device file.

Syntax:
PRI NT #fil enunber[, data[CR/ LFcontrol...]]
Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
dat a
A numeric or string expression.
CR/ LFcont r ol
A comma (,) or a semicolon (;).
Description:

PRI NT # outputs a numeric value or a character string specified by dat a to a com-
munications device file specified by f i | enunber.

m fil enunber

« fil enunber is a communications device file number assigned when the file is
opened.

m CR/ LFcontrol

e If CR/ LFcontrol is a comma (,), the PRI NT # statement pads data with
spaces so that the number of data bytes becomes a least multiple of 8, before
outputting the data.

Statement example: PRI NT #1, " ABC', " 123"
Output: ABC 123 CR LF ("_"denotes a space.)

300

« If CR/ LFcont r ol is a semicolon (;), the PRI NT # statement outputs data with-
out adding spaces or control codes.

Statement example: PRI NT #1, "ABC'; " 123";
Output: ABC123

« If neither a comma (,) nor semicolon (;) is specified to CR/ LFcont r ol , the
PRI NT # statement adds a CR and LF codes.

Statement example: PRI NT #1, " ABC123"
Output: ABC123 CR LF
To extend one program line to more than 512 characters in a single PRI NT # state-

ment, you should use an underline () preceding a CR code, not a comma (,) pre-
ceding a CR code.

Syntax errors:

Error code and message Meaning

error 71:. Syntax error « fil enunber is missing.

- dat a contains a comma (,) or semi-
colon (;).

Run-timeerrors:

Error code Meaning

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type
(You specified fi | enunmber of a file other than communica-
tions device files.)

3Ah File number out of the range

Reference:

Statements: OPEN

301

Chapter 14. Statement Reference

I/O statement

PRINT USING

Displays data on the LCD screen under formatting control.

Syntax:
Syntax 1 (Displaying numbers):
PRI NT USI NG "nurericformat"; expressi on[CR/ LFcont r ol
[expression]...]
Syntax 2 (Displaying strings):
PRI NT USING "stringformat"; stringexpression
[CR/ LFcontrol [stringexpression]...]

Parameter:
numer i cf or mat
#, a decimal point (.), and/or +.
stringfor mat
I, @, and/or &
CR/ LFcont r ol

A comma (,) or a semicolon (;).

Description:
PRI NT USI NG displays a number or a character string specified by expr essi on
or st ri ngexpr essi on on the LCD according to a format specified by nuner -
i cformat orstringfornat, respectively.

« To extend one program line to more than 512 characters in a single PRI NT
USI NG statement, you should use an underline () preceding a CR code, not a
comma (,) preceding a CR code.

302

m nuneri cf or mat

nurer i cf or mat is a formatting string consisting of #, decimal point (.), and/or +,
each of which causes a special printing effect as described below.

Represents a digit position.
If the number specified by expr essi on has fewer digits than the number
of digit positions specified by #, it is padded with spaces and right-justified.
Statement example: PRI NT USI NG " #####"; 123
Output:

123

If the number specified by expr essi on has more digits than the number
of digit positions specified by #, the extra digits before the decimal point are
truncated and those after the decimal point are rounded.

Statement example: PRI NT USI NG " ###. #"; 1234. 56
Output:

234.6

Specifies the position of the decimal point.

If the number specified by expr essi on has fewer digits than the number
of digit positions specified by # after the decimal point, the insufficient digits
appear as zeros.

Statement example: PRI NT USI NG " ####. ###"; 123
Output:

123. 000

+ Displays the sign of the number.

If + is at the beginning of the format string, the sign appears before the num-
ber specified by expr essi on; if + is at the end of the format string, the
sign appears after the number. If the number specified by expr essi on is
a positive number or zero, it is preceded or followed by a space instead of a
sign. (+)

Statement example: PRI NT USI NG " +#####" ; - 123
Output:

-123

303

Chapter 14. Statement Reference

m stringfornmat

st ri ngf or mat is a formatting string consisting of ! , @ and/or &&, each of which
causes a special printing effect as described below.

I Displays the first character of the St ri ngexpr essi on.

Statement example: PRI NT USING "!"; " ABC"
Output:

A

@ Displays the entire st ri ngexpr essi on.

Statement example: PRI NT USING "@ ; " ABC'
Output:

ABC

&& Displays the first n+2 characters of the st ri ngexpr essi on, where n is
the number of spaces between the ampersands (&&).

If the format field specified by stringformat is longer than the
stringexpressi on, the string is left-justified and padded with space; if
it is shorter, the extra characters are truncated.

Statement example: PRI NT USI NG " & &" ;" ABCDE"
Output:

ABCDE

Below are statement examples containing incorrect formatting strings.

Example: PRI NT USI NG " Answer =###" ; a
Example: PRI NT USI NG " ####. # ######";a, b

m expressionorstringexpression

If more than one number or string is specified, the PRI NT USI NG statement dis-
plays each of them according to nuner i cf or mat or stri ngf or mat, respec-
tively.

PRI NT USI NG "###"; a, b, c

304

m CR/ LFcontrol

CR/ LFcont r ol determines where the cursor is to be positioned after the PRI NT
USI NG statement executes. For details, refer to the CR/ LFcontrol in the
PRI NT statement.

Syntax errors:

Error code and message Meaning

error 71: Syntax error « nuneri cf or mat is not correct.

- expression or stringex-
pr essi on contains a comma (,) or
semicolon (;).

error 86: ';’ mssing No semicolon (;) follows " numeri c-
format” or"string-format".

305

Chapter 14. Statement Reference

Declarative statement

PRIVATE

Declares one or more work variables or register variables defined in a file, to be private.

Syntax:
Syntax 1:
PRI VATE var nanme [, varnane...]
Syntax 2:
PRI VATE DEFREG registerdefinition [,registerdefini-
tion...]
Parameter:
var nane

nunericvariabl e [(subscript)]
stringvariable [(subscript)[[stringlength]]]

regi sterdefinition
non- arraynuneri cvari abl e [=numeri cconst ant]

arraynuneri cvari abl e(subscri pt)
[=nurericinitial val uedefinition]

non-arraystringvariabl e[[stringl ength]]
[=stringconstant]

arraystringvari abl e(subscript)[[stringlength]]
[=stringinitialval uedefinition]
nunericinitial val uedefinition

For one-dimensional:
{numericconstant[, nunericconstant...]}

For two-dimensional:
{{nunericconstant[, nunmericconstant...]},
{numericconstant[, nunericconstant...]} ...}

stringinitialval uedefinition

For one-dimensional:
{stringconstant[, stringconstant...]}

For two-dimensional:
{{stringconstant[,stringconstant...]},
{stringconstant[,stringconstant...]} ...}

306

subscri pt

For one-dimensional: i nt eger const ant

For two-dimensional:

i nt eger const ant, i nt eger const ant

Where i nt eger const ant is a numeric expression which returns a

value from 0 to 254.

stringlength

Description:

An integer constant from 1 to 255.

PRI VATE allows variables declared by var namne or r egi st erdefi niti onto
be referred to or updated in that file.

« Inside one PRI VATE statement, up to 30 variables can be declared to var nanme

or r egi

sterdefinition.

* You may declare non-array variables and array variables together to var nane.

» For details about r egi st er def i ni ti on, refer to DEFREG statement.

Syntax errors:

Error code and message

Meaning

error

error

error

error

7: Vari abl e nane
redefinition

71: Syntax error

72: Vari abl e nane
redefinition

78: Array synbol s
exceed 30 for
one DM PRI -
VATE, or GO
BAL st at enent

The array declared with PRI VATE had
been already declared with DEFREG

stringlength is out of the
range.

stringl ength is not an integer
constant.

A same variable name is double
declared inside a same PRI VATE
statement.

A same variable name is used for a
non-array variable and array vari-
able.

More than 30 variables are declared
inside one PRI VATE statement.

307

Chapter 14. Statement Reference

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)

Reference:
Statements: DEFREG DI M and GLOBAL

308

File 1/0 statement

PUT

Writes a record from a field variable to a data file.

Syntax:
PUT [#]fil enunber[, recordnunber]

Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
recor dnunber

A numeric expression which returns a value from 1 to 32767.

Description:

PUT writes a record from a field variable(s) declared by the FI ELD statement to a
data file specified by f i | enunber.

« fil enunber is the number of a data file opened by the OPEN statement.

« recordnunber is the record number where the data is to be placed in a data
file.

It should be within the range from 1 to the maximum number of registrable
records (f i | el engt h) specified by the OPEN statement (when a new data file
is created).

 Ifrecor dnunber option is omitted, the default record number is one more than
the last record written.

» Record numbers to be specified do not have to be continuous. If you specify
record number 10 when records 1 through 7 have been written, for example, the
PUT statement automatically creates records 8 and 9 filled with spaces and then
writes data to record 10.

« If the actual data length of a field variable is longer than the field width specified
by the FI ELD statement, the excess is truncated from the right end column.

» Since data in a data file is treated as text data (ASCII strings), numeric data
should be converted into the proper string form with the STR$ function before
being assigned to a field variable.

 In the BHT-5000/BHT-6000/BHT-6500, the PUT statement cannot write data to
files stored in drive B.

« In the BHT-7000/BHT-7500, the PUT statement cannot write data to files opened
as read-only by specifying drive B in the OPEN statement.

309

Syntax errors:

Chapter 14. Statement Reference

Error code and message Meaning

error 71:. Syntax error fil enunber is missing.

Run-timeerrors:

Error code Meaning
05h Parameter out of the range
(= fil enunber is out of the range.)
(= recordnunber is out of the range.)
07h Insufficient memory space
34h Bad file name or number
(You specified f i | enunber of an unopened file.)
36h Improper file type
(You specified f i | enunber of a file other than data files.)
3Ah Fi | enunber out of the range
3Eh A PUT statement executed without a FI ELD statement.
41h File damaged
42h File write error
(You attempted to write onto a read-only file.)
43h Not allowed to access the data in drive B.
Reference:
Statements: GET and OPEN

310

I/O statement

READ

Reads data defined by DATA statement(s) and assigns them to variables.

Syntax:
READ vari abl e[, variable...]
Parameter:
vari abl e
A numeric or string variable.
Description:

READ reads as many data values as necessary in turn from data stored by DATA
statement and assigns them, one by one, to each variable in the READ statement.

« If the data type of a read value does not match that of the corresponding variable,
the following operations take place so that no error occurs:

- Assigning a numeric data to a string variable:

The READ statement converts the numeric data into the string data type and then
assigns it to the string variable.

Statement example: DATA 123
READ a$
PRI NT a$
Output:
123

- Assigning a string data to a numeric variable:

If the string data is valid as numeric data, the READ statement converts the string
data into the numeric data type and then assigns it to the numeric variable.

Statement example: DATA " 123"
READ b
PRI NT b
Output:
123

311

Chapter 14. Statement Reference

If the string data is invalid as numeric data, the READ statement assigns the value
0 to the numeric variable.

Statement example: DATA " ABC"
READ c
PRI NT ¢
Output:
0

« The number of data values stored by the DATA statement must be equal to or
greater than that of variables specified by the READ statement. If not, a run-time
error occurs.

« To specify the desired DATA statement location where the READ statement
should start reading data, you use the RESTORE statement.

Run-timeerrors:

Error code Meaning

04h Out of DATA
(No DATA values remain to be read by the READ statement.)

Reference:

Statements: DATA and RESTORE

312

Declarative statement

REM

Declares the rest of a program line to be remarks or comments.

Syntax:
Syntax 1:
REM conment

Syntax 2:
’commrent

Description:

REM causes the rest of a program line to be treated as a programmer’s remark or
comment for the sake of the program readability and future program maintenance.
The remark statements are non-executable.

« Difference in description between syntax 1 and syntax 2:
The keyword REMcannot begin in the first column of a program line. When fol-
lowing any other statement, REMshould be separated from it with a colon (:).

An apostrophe ('), which may be replaced for keyword REM can begin in the first
column. When following any other statement, an apostrophe (') requires no colon
(:) as a delimiter.

» You can branch to a REMstatement labelled by the GOTO or GOSUB statement.
The control is transferred to the first executable statement following the REM
statement.

Syntax errors:

Error code and message Meaning
error 2: |nproper | abel REMbegins in the first column of a pro-
nane gram line.

(redefinition, vari-
able name, or
reserved word used)

Reference:

Statements: $1 NCLUDE

313

Chapter 14. Statement Reference

I/O statement

RESTORE

Specifies a DATA statement location where the READ statement should start reading data.

Syntax:
RESTORE [| abel]

Description:

RESTORE specifies a DATA statement location where the READ statement should
start reading data, according to | abel designating the DATA statement.

* You can specify DATA statements in included files.

« If | abel option is omitted, the default label is a DATA statement appearing first
in the user program.

Syntax errors:

Error code and message Meaning

error 81: Must be DATA | abel is not a DATA statement label.
st at ement
| abel

Reference:

Statements: DATA and READ

314

Error control statement

RESUME

Causes program execution to resume at a specified location after control is transferred to an
error-handling routine.

Syntax:
Syntax 1:
RESUME [0]
Syntax 2:
RESUVE NEXT
Syntax 3:
RESUME | abel
Description:
RESUME returns control from the error-handling routine to a specified location of the
main program to resume program execution.
» The RESUME statement has three forms as listed below. The form determines
where execution resumes.

RESUME or RESUMVE 0 Resumes program execution with the
statement that caused the error.

RESUME NEXT Resumes program execution with the
statement immediately following the one
that caused the error.

RESUME | abel Resumes program execution with the
statement designated by | abel .

« The RESUNME statement should be put inside the error-handling routine.
Syntax errors:
Error code and message Meaning
error 71: Syntax error | abel has not been defined.

315

Chapter 14. Statement Reference

Run-timeerrors:

Error code Meaning

14h RESUVME without error
(RESUME statement occurs outside of an error-handling rou-
tine.)

Reference:
Statements: ON ERROR GOTO

Functions: ERL and ERR

316

Flow control statement

RETURN

Returns control from a subroutine or an event-handling routine (for keystroke interrupt).

Syntax:
RETURN
Description:
RETURN statement in a subroutine returns control to the statement immediately fol-
lowing the GOSUB that called the subroutine.
RETURN statement in an event-handling routine for keystroke interrupt returns con-
trol to the program location immediately following the one where the keystroke trap
occurred.
* No label designating a return location should be specified in a RETURN state-
ment.
* You may specify more than one RETURN statement in a subroutine or an event-
handling routine.
Reference:

Statements: GOSUB and ONKEY...GOSUB

317

Chapter 14. Statement Reference

I/O statement

SCREEN

Sets the screen mode and the character attribute.

Syntax:
Syntax 1:
SCREEN screennode[, charaattri but e]
Syntax 2:
SCREEN , charaattribute
Parameter:
screennode and charaattribute
A numeric expression which returns a value from 0 to 3.
Description:

SCREEN sets the screen mode and the character attribute of the LCD screen
according to scr eennpode and char aat t ri but e, respectively, as listed below.

Screen mode screennode SCREEN statement
Single-byte ANK mode (default) 0 SCREEN 0
Two-byte Kanji mode 1 SCREEN 1
Condensed two-byte Kanji mode* 2 SCREEN 2

* The condensed two-byte Kanji mode is supported by the BHT-4000/BHT-5000. Specifying
this mode in the BHT-3000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 will result in a run-
time error (05h).

Character attribute charaattribute sStg:rEEwt

Normal display (default) 0 SCREEN, 0
Highlighted display 1 SCREEN, 1
Normal display, double-width characters* 2 SCREEN, 2
Highlighted display, double-width characters* 3 SCREEN, 3

* Double-width is supported by the BHT-7000/BHT-7500. Specifying it in the BHT-3000/BHT-
4000/BHT-5000/BHT-6000/BHT-6500 will result in a run-time error (05h).

318

» At program startup, the defaults--single-byte ANK mode and normal display--are
active.

« If a parameter is omitted, the corresponding screen mode or character attribute
does not change.

* In the two-byte Kanji mode, characters can be displayed in either the full-width
size (16 dots wide by 16 dots high) or the half-width size (8 dots wide by 16 dots
high). In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the small-size font is
selected, characters will be displayed in either the full-width size (12 dots wide by
12 dots high) or the half-width size (6 dots wide by 12 dots high).

« In the condensed two-byte Kanji mode (supported by the BHT-4000/BHT-5000),
characters can be displayed in either the full-width size (12 dots wide by 16 dots
high) or the half-width size (6 dots wide by 16 dots high).

Run-timeerrors:

Error code Meaning

02h Syntax error
(BHT-3000: The two-byte Kanji mode is set by the SCREEN
statement although you have selected the English message ver-
sion on the Set Resume menu in System Mode.)

05h Parameter out of the range

319

Chapter 14. Statement Reference

Flow control statement

SELECT...CASE...END SELECT

Conditionally executes one of statement blocks depending upon the value of an expression.

Syntax:
SELECT condi ti onal expression
CASE testl
[st at ement bl ock]
[CASE test2
[stat ement bl ock]]...
[CASE ELSE
[st at ement bl ock]]
END SELECT
Parameter:
condi tional expression, testl, and test2
A numeric or string expression.
Description:

This statement executes one of st at enent bl ocks depending upon the value of
condi ti onal expr essi on according to the steps below.

(1) SELECT evaluates condi ti onal expressi on and compares it with
t est s sequentially to look for a match.

(2) When a match is found, the associated st at enent bl ock executes and
then control passes to the first statement following the END SELECT.

If no match is found, the st at erent bl ock following the CASE EL SE exe-
cutes and then control passes to the first statement following the END SELECT.
If you include no CASE EL SE, control passes to the first statement following the
END SELECT.

« If the SELECT statement block includes more than one CASE statement contain-
ing the same value of t est, only the first CASE statement executes and then
control passes to the first statement following the END SELECT.

« If a CASE followed by no executable statement is encountered, control passes to
the first statement following the END SELECT.

- condi ti onal expressi on (numeric or string) and t est's must agree in
type.

320

* You can nest the SELECT...CASE...END SELECT statements to a maximum of
10 levels.

SELECT a
CASE 1
SELECT b
CASE 3
PRI NT "a=1, b=3"
END SELECT
CASE 2
PRI NT "a=2"
END SELECT

» When using the SELECT...CASE statement block together with block-structured
statements (DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON,
| F..THEN...ELSE...END | F, SELECT...CASE...END SELECT, SUB..END SUB
and V\HI LE.. VEEND), you can nest them to a maximum of 30 levels.

Syntax errors:

Error code and message Meaning

error 26: Too deep nesting.

error 55: I ncorrect use CASE, CASE ELSE, or END SELECT
of SELECT... statement appears outside of the
CASE...END SELECT statement block.
SELECT

error 56: I nconplete No END SELECT corresponds to
control struc- SELECT.
ture

error 71:. Syntax error condi ti onal expressi onand

t est s do not agree in type.

Run-timeerrors:

Error code Meaning
0Ch CASE and END SELECT without SELECT

10h Expression too long or complex
(The program nesting by SELECT statement block is too deep.)

321

Chapter 14. Statement Reference

User-defined function statement

SUB...END SUB

Names and defines user-created function SUB.

Syntax:
Syntax 1 (Defining a numeric function):

SUB subnane [(dumyparaneter[, dumyparaneter]...)]

Syntax 2 (Exiting from the function block prematurely):
EXIT SUB

Syntax 3 (Ending the function block):
END SUB

Syntax 4 (Calling a function):
[CALL] subnane[(real paraneter[,real paraneter]...)]

Parameter:
subname
Real function name
dunmypar anet er

A non-array integer variable, a non-array real variable, or a non-array string
variable.

r eal par anet er

A numeric or string expression.

322

Description:

m Creating a user-defined function

SUB...END SUB creates a user-defined function. The function definition block
between SUB and END SUB is a set of some statements and functions.

You cannot make double definition to a same function name.

This statement block should not be defined in the block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTI ON...END FUNCTI ON, | F...THEN
...ELSE...END | F, SELECT...CASE..END SELECT, SUB..END SUB, and
VWHI LE..VIEND), in the error-handling routine, event-handling routine, or in the
subroutines.

SUB...END SUB functions can be recursive.

dummypar anet er, which corresponds to the variable having the same name in
the function definition block, is a local variable valid only in that block. Therefore,
if a variable having the same name as dummrypar amet er is used outside
SUB...END SUB statement block or used as a duntmypar anmet er of any other
function in the same program, it will be independently treated.

In user-defined functions, you can call other user-defined functions. You can nest
SUB...END SUB statements to a maximum of 10 levels.

When using the SUB...END SUB together with block-structured statements (DEF
FN..END DEF, FOR..NEXT, FUNCTI ON..END FUNCTI QN, |F.. THEN
...ELSE...END | F, SELECT...CASE...END SELECT, SUB..END SUB, and
VWHI LE.. VIEND), you can nest them to a maximum of 30 levels.

If variables other than dummypar amet er (s) are specified in the function defini-
tion block, they will be treated as local variables whose current values are avail-
able only in that function definition block, unless PRI VATE or GLOBAL is
specified.

EXI T SUB exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

Unlike other user-defined functions, SUB function cannot assign a return value.

m Calling a user-defined function

CALL statement and subnane call a user-defined function. CALL can be omitted.

The number of r eal par anet er s should be equal to that of dunmy par ane-
t ers, and the types of the corresponding variables used in those parameters
should be identical.

If you specify a global variable in r eal par anmet er when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all r eal par anet er s are passed not by address but by value.
(So called "Call-by-value")

323

Chapter 14. Statement Reference

m Before any call to a SUB...END SUB function, you need to place definition
—— of the SUB function or declaration of the SUB by the DECL ARE statement
in your source program.

A function nameis defined globally. If more than one same function name
exists in a same project, therefore, a multiple symbol definition error will
occur when files will be linked. The same error will occur also if the
SUB...END SUB defines a user-created function in afile to be included and
more than one file in a same project reads that included file.

Syntax errors:
m When defining a user function

Error code and message Meaning
error 64: Function You made double definition to a same
redefinition function name.
error 71: Syntax error » The string length is out of the range.
e The string length is not an integer
constant.
error 92: I ncorrect use e The EXI T SUB statement is speci-
of SUB, EXIT fied outside the function definition

SUB or END SUB block.

« The END SUB statement is specified
outside the function definition block.

error 93: I nconplete END SUB is missing.
control struc-
ture

(SUB...END SUB)
error 94:. Cannot use SUB The SUB..END SUB statement is

in control defined in other block-structured state-
structure ments such as FOR and | F statement
blocks.

324

m When calling a user-defined function

Error code and message

Meaning

error 68: M snatch « The number of the real parameters is
argunment type not equal to that of the dummy
or nunber parameters.
e dumrypar anet er was an integer
variable in defining a function, but
r eal par amet er is a real type in
calling the function. (If dunmmypa-
raneter was a real variable in
defining a function and real pa-
ranet er is an integer type, then no
error occurs.)
error 69: Function Calling of a user-defined function pre-
undefi ned cedes the definition of the user-created
function.
Run-timeerrors:
Error code Meaning
07h Insufficient memory space
(You nested SUB statements to more than 10 levels.)
OFh String length out of the range
(The returned value of the string length exceeds the allowable
range.)
Reference:
Statements: DECLARE
Example:
File 1 File 2
DECLARE SUB add(x, y) SUB add(X, Y)
A=1: B=2 PRI NT X+Y
PRI NT " TEST" END SUB

CALL add(A B)

TEST

325

Chapter 14. Statement Reference

I/O statement

WAIT

Pauses program execution until a designated input port presents a given bit pattern.

Syntax:
WAI T port numrber, ANDbyt e[, XORbyt €]
Parameter:
port nunber
A numeric expression
ANDbyt e and XORbyte
A numeric expression which returns a value from 0 to 255.
Description:

WAI T suspends a user program while monitoring the input port designated by
port nunber until the port presents the bit pattern given by ANDbyt e and XOR-
byt e. (Refer to Appendix D, "I/O Ports.")

Each bit in ANDbyt e corresponds to a port bit you want to turn on. Each bit in
XORbyt e corresponds to a port bit you want to turn off.

The byte at the input port is first XORed with the XORbyt e parameter. Next, the
result is ANDed with the value of ANDbyt e parameter.

If the final result is zero (0), the WAI T statement rereads the input port and contin-
ues the same process. Ifit is nonzero, control passes to the statement following the
WAI T.

« If XORbyt e option is omitted, the WAI T statement uses a value of zero (0).
WAIT 1,x ' = WAIT 1,x,0

« If an invalid port number or bit data is specified, it will be assumed as zero (0) so
that the WAI T statement may fall into an infinite loop.

326

Syntax errors:

Error code and message Meaning

error 71: Syntax error e port nunber is missing.
- ANDbyt e is missing.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

Example:
WAI'T 0O, &HO03

The above statement suspends a user program until any data is inputted from the
keyboard or the bar code reader.

Reference:
Statements: OUT

Functions: | NP

327

Chapter 14. Statement Reference

Flow control statement

WHILE.. WEND

Continues to execute a statement block as long as the conditional expression is true.

Syntax:
WHI LE condi ti onal expressi on
[st at ement bl ock]
VEND
Description:

A VHI LE..VEEND continues to execute st at enent bl ock as long as the con-
di tional expr essi on is true (not zero) according to the steps below.

(1) The condi ti onal expressi on inthe WHI LE statement is evaluated.

(2) If the condition is false (zero), the st at enent bl ock is bypassed and control
passes to the first statement following the VAEND.

If the condition is true (not zero), the st at enent bl ock is executed. When
VAEND statement is encountered, control returns to the WHI LE statement. (Go
back to step (1) to be repeated.)

« The VWHI LE and VEEND statements cannot be written on a same program line.

« If no VEND statement is written corresponding to the WHI LE, a syntax error
occurs.

» The BHT-BASIC does not support a DO...LOOP statement block.
* You can nest the VWHI LE...END statements to a maximum of 10 levels.

* When using the VVHI LE.. \EEND statement together with block-structured state-
ments (DEF FN..END DEF, FOR..NEXT, FUNCTI ON...END FUNCTI ON,
| F..THEN...ELSE...END | F, SELECT...CASE...END SELECT, SUB...END SUB,
and V\HI LE.. VEEND), you can nest them to a maximum of 30 levels.

VWHI LE a

VWHI LE b
VWHI LE c

VAEND
VAEND
VAEND

328

Syntax errors:

Error code and message

Meaning

error 26:

error 57: Incorrect use
of WH LE..V\EEND

error 58: I nconplete
control struc-
ture

Too deep nesting.

VEND appears outside of the WHI LE
statement block.

No VEEND corresponds to WHI LE.

Reference:

Statements: FOR...NEXT

329

Chapter 14. Statement Reference

I/O statement

XFILE

Transmits a designated file according to the specified communications protocol. E]

000
|000]

Syntax:
XFILE "[drivenane:]filenanme"[, " protocol spec”]

Parameter:
"[drivenane:]fil ename” and "protocol spec”

String expressions.

Description:

XFI LE transmits a data file designated by "[drivenane:]fil enanme"
between the BHT and host computer or between BHTs according to the communi-
cations protocol specified by " pr ot ocol spec. " (For the BHT-protocol, refer to
the BHT User’'s Manual. For the BHT-Ir protocol, refer to the "BHT-6000 User’s
Manual," "BHT-6500 User's Manual," "BHT-7000 User's Manual," or "BHT-7500
User’'s Manual.")

m "[drivenane:]filenane"

fil enane is a data file name. For the format of data file names, refer to OPEN
statement.

For the BHT-5000/BHT-6000/BHT-6500, the dr i venane may be A: or B: . Ifthe
dri venane is omitted, the default A: applies.

In the BHT-7000/BHT-7500, the dr i venane (A: or B:) will be ignored.

m "protocol spec”
" protocol spec” parameter can specify the following protocol specifications:

Specifications BHT-protocol BHT-Ir protocol ~ Multilink protocol
Transmission direction v v v
Serial number v
Horizontal parity checking (BCC) v
Transmission monitoring v v v
Handling of space codes in the tail v v v
of a data field during file transmis-
sion"!

Timeout length when a link will be v v
established™
Checking whether filenames are v v

identical?

*1 Supported by the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.
*2 Supported by the BHT-7000/BHT-7500.

330

- Transmission direction

Parameter omitted (default) Transmits a file from the BHT.

Rorr Receives a file from the host com-
puter or any other BHT.

Example: XFI LE "d2.dat","R"
"[drivenane:]fil ename” cannotbe omitted even in file reception.

- Serial number

Parameter omitted (default) No serial number setting.

Sors Adds a serial number to every trans-
mission block.

Example: XFI LE "d2.dat","S"

A serial number immediately follows a text control character heading each trans-
mission block. Itis a 5-digit decimal number. When it is less than five digits, the
upper digits having no value are filled with zeros.

- Horizontal parity checking (BCC)

Parameter omitted (default) No horizontal parity checking.
Porp Suffixes a BCC to every transmission
block.

Example: XFI LE "d2.dat","P"

A block check character (BCC) immediately follows a terminator of each trans-
mission block. The horizontal parity checking checks all bits except for headers
(SOH and STX).

- Transmission monitoring

Parameter omitted (default) No serial number indication.
Mor m Displays a serial number of the trans-
mission block during file transmis-
sion.

Example: XFI LE "d2.dat","M

A serial number will appear in the 5-digit decimal format at the current cursor
position before execution of the XFI LE statement.

- Handling of space codes in the tail of a data field during file transmission (for the

BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)

Parameter omitted (default) Ignores space codes.

T ort Handles space codes as data.

Example: XFI LE "d2.dat","T"

Space codes placed in the tail of a data field will be handled as 20h in file recep-
tion.

331

Chapter 14. Statement Reference

- Timeout length when a link will be established (for the BHT-5000/BHT-6000/BHT-

6500/BHT-7000/BHT-7500)

Specify the timeout length by 1 to 9.

Uploading
Set value | Downloading
BHT-protocol BHT-Ir protocol
1 30 sec. Retries of ENQ, 10 times Retries of ENQ, 60 times
2 60 sec. Retries of ENQ, 20 times Retries of ENQ, 120 times
3 90 sec. Retries of ENQ, 30 times Retries of ENQ, 180 times
4 120 sec. Retries of ENQ, 40 times Retries of ENQ, 240 times
5 150 sec. Retries of ENQ, 50 times Retries of ENQ, 300 times
6 180 sec. Retries of ENQ, 60 times Retries of ENQ, 360 times
7 210 sec. Retries of ENQ, 70 times Retries of ENQ, 420 times
8 240 sec. Retries of ENQ, 80 times Retries of ENQ, 480 times
9 No timeout No timeout No timeout

Example: XFI LE "d2.dat","2"
In file reception, the timeout length is 60 seconds; in file transmission, the max-
mum number of ENQ retries is 20 (when the BHT-protocol is used.)

- Checking whether filenames are identical (BHT-7000/BHT-7500)

This option can apply only to file reception (that is, when the transmission direc-
tion is specified with Rorr).

Parameter omitted Receives only a data file having the same name as

(default) specified in fi | enanme. The "fi | enanme" should be
the same as that used in the sending station.
Norn No checking whether filenames are identical. The BHT

may receive a data file with a different name (given in
the sending station) from that specified by f i | enare.
That is, the received file is renamed as specified by
filenane. Iffil enamne is omitted (only ™ is speci-
fied), the BHT receives a data file with the name as is in
the sending station.

Example: If a file is named "TEST.DAT" in the sending station

Sample 1. XFI LE" TEST. DAT", "RN"' ' Recei ves TEST. DAT as
" TEST2. DAT.

Sample2. XFILE"", " RN "Receives thefile
"withthe sane nane

as usedinthesending

station.

332

« A communications device file should be opened before execution of the XFI LE
statement. (For the file opening, refer to the OPEN " COM " statement.)

» The XFI LE statement uses the interface specified by the OPEN" COM " state-
ment.

(If an XFI LE statement is executed in the BHT-3000, not the interface specified
by the OPEN" COM " statement but the interface selected for the BHT-BASIC on
the Set Com menu in System Mode will become active.)

» A data file to be transmitted should be closed beforehand.

 To transfer a file by using the BHT-Ir protocol or multilink protocol, set the BHT's
ID to any of 1 to FFFFh. Specifying zero (0) to the ID will result in a run-time error.

Undefined letters, if specified in pr ot ocol spec, will be ignored. The specifica-
tions below, therefore, produce the same operation. The last one of the timeout
values goes active.

" RSPMI1"

"RS,PMT,1"

"r,s,p,mt,1"

" ABCDEFGHI JKLMNOPQRSTUVWKYZ1"

n 2II
"3462"
n 22"

* If you transmit a data file having the same name as that already used in the
receiving station:

- the newly transmitted file replaces the old one when the field structure is
matched.

- arun-time error occurs when the field structure is not matched.

To receive a data file having the same name at the BHT but having a different
structure, therefore, it is necessary to delete that old file.

Pressing the Clear key during file transmission aborts the execution of the XFI LE
statement by issuing an EOT code and displays a run-time error.

Syntax errors:

Error code and message Meaning

error 3: "’ mssing No double quote precedes or follows

[drivenane:]fil enane.

error 71:. Syntax error [drivenane:]fil ename is not
enclosed in double quotes.

333

Chapter 14. Statement Reference

Run-timeerrors:

Error code Meaning

02h

07h

32h

33h
34h

35h
37h
38h
3Bh

3Eh
40h
44h
46h

47h

49h

Syntax error
([drivenane:]fil enane is not correct.)

Insufficient memory space
(During file reception, the memory runs out.)

File type mismatch
(The received file is not a data file.)

Received text format not correct

Bad file name or number
(You specified f i | enanme of an unopened file.)

File not found
File already open
The file name is different from that in the receive header.

The number of the records is greater than the defined maximum
value.

FI ELD statement not executed yet
ID not set
No empty area of the specified size in the RAM

Communications error
(A communications protocol error has occurred.)

Abnormal end of communications or termination of communica-
tions by the Clear key
(The Clear key has aborted the file transmission.)

Received program file not correct

Example:

The sample below transmits a data file by adding a serial number and horizontal
parity checking, and then displays the serial number at the 1st line of the screen.

CLCSE
OPEN "d0. dat " AS #1

FIELD #1, 10 AS AS$, 20 AS B$

L%LOF(1)

CLCSE

LOCATE 1, 1

PRI NT " 00000/ " ; Rl GHT$(" 00000" +M D$(STR$(L% , 2), 5)
LOCATE 1, 1

OPEN " COM 19200, N, 8, 1" AS #8

XFI LE " do. dat ", " SPM'

CLCSE #8
Before file transmission After file transmission
00000/ 00100 - 00100/ 00100

Reference:

Statements: OPEN and OPEN" COM "

334

File 1/0 statement

$INCLUDE

Specifies an included file.

Syntax:
Syntax 1:
REM $I NCLUDE: ' fi | enan®e’
Syntax 2:
" $I NCLUDE: ' fi | enane’
Description:

$1 NCLUDE reads a source program specified by ’ fi | enane’ into the program
line immediately following the $| NCLUDE line in compilation.

Storing definitions of variables, subroutines, user-defined functions, and other data
to be shared by source programs into the included files will promote application of
valuable program resources.

fil enane is a file to be included.

If the specified filename does not exist in compiling a source program, a fatal error
occurs and the compilation terminates.

No characters including space should be put between $ and | NCLUDE and
between single quotes () and f i | enane.

As shown below, if any character except for space or tab codes is placed between
REMand $I NCLUDE in syntax 1 or between a single quote (') and $| NCLUDE in
syntax 2, the program line will be regarded as a comment line so that the
$1 NCLUDE statement will not execute.

REM xxx $I NCLUDE: ’ nul pr g1. SRC

Before specifying included files, it is necessary to debug them carefully.
$I NCLUDE statements cannot be nested.
The program lines in included files are not outputted to the compile list.

If a compilation error occurs in an included file, the error message shows the line
number where the $| NCLUDE statement is described.

Symbols defined in included files are not outputted to the symbol list.

If a program line in an included file refers to a variable, user-defined function, or
others defined outside the included file, then the program line number where the
$1 NCLUDE statement is described is outputted to the cross reference list, as the
referred-to line.

335

Chapter 14. Statement Reference

Fatal Error:
Error code and message Meaning
fatal error 30: Cannot find No included file is found.
include file
" XXX
fatal error 31: Cannot nest Included files are nested.

include file

336

Additional Explanation for Statements

m Effective range of labels

Labels are effective only in a file.

m Definition of common variables (by COMMON statement)

In an object to be executed first (that is, in a main object), you should define all common vari-
ables to be accessed. In any other objects, declare common variables required only in each
object. If a first executed object is linked with an object where an undefined common vari-
able(s) is newly defined, an error will result.

m Definition and initialization of register variables (by DEFREG statement)

As for work variables, you should declare required register variables in each object. You may
specify an initial value to a register variable in each object; however, giving different initial val-
ues to a same register variable in more than one object will result in an error in linking process.

337

Chapter 15
Function Reference

CONTENTS

ABS e 339 INT e 367
ASC e 340 LEFTS oo 368
BCCS .ot 341 LEN Lo, 369
CHKDGTS ..o 343 LOC e 370
CHRS$.o 347 LOF oo 372
COUNTRYS$... 349 MARKS ..o 373
CSRLIN oo, 351 MIDS ..o 374
DATES ...ooiiiiieieeeee e 352 POS ., 376
EOF .. 354 RIGHTS .o 377
ERL .o, 356 SEARCHooviiiiiiiie e 378
ERR ..o 357 SOHS ..o 380
ETXS oo 358 STRS o 381
FRE .. 359 STXSE oot 382
HEXS oo 360 TIMES ..o 383
INKEYS$..o 361 TIMEA/TIMEB/TIMECoccoee. 385
INP 362 VAL 386
INPUTS . 363

INSTR oo 365

338

Chapter 15. Function Reference

ABSolute Numeric function

ABS

Returns the absolute value of a numeric expression.

Syntax:
ABS(nuneri cexpressi on)

Description:

ABS returns the absolute value of nuner i cexpr essi on. The absolute value is
the magnitude of numer i cexpr essi on without regard to sign. For example,
both ABS (- 12. 34) and ABS (12. 34) are equal to 12.34.

« If you give a real number, this function returns a real number; if an integer number,
this function returns an integer number.

339

ASCii code String function

ASC

Returns the ASCII code value of a given character.

Syntax:
ASC(stri ngexpression)

Description:
ASC returns the ASCII code value of the first character of st r i ngexpr essi on,
which is an integer from 0 to 255. (For the ASCII character codes, refer to Appendix
C, "Character Sets.")
- If stri ngexpressi onis a null string, this function returns the value 0.
« If given a two-byte Kanji character, this function cannot return the two-byte Kanji

code.
Reference:

Functions: CHR$

340

Chapter 15. Function Reference

Block Check Character String function

BCC$

Returns a block check character (BCC) of a data block. [']
1000
1000

Syntax:
BCC$(dat abl ock, checkt ype)

Parameter:
dat abl ock
A string expression.
checkt ype

A numeric expression which returns a value from 0 to 2.

Description:
BCC$ calculates a block check character (BCC) of dat abl ock according to the
block checking method specified by checkt ype, and returns the BCC.

» checkt ype is 0, 1, or 2 which specifies SUM, XOR, or CRC-16, respectively, as
described below.

Block check- No. of charas Generative
checktype ing method for BCC BCC polynomial
0 SUM 1 Lowest one byte of the

sum of all character
codes contained in a
dat abl ock.

1 XOR 1 One byte gained by
XORing all character
codes contained in a
dat abl ock.

2 CRC-16 2* Two bytes gained rom X164 x15, %241
the cyclic redundancy
check operation
applied to bit series of
all characters in dat -
abl ock with the bit
order in each byte
inverted.

“The upper byte and the lower byte of the operation result will be set to the 1st and 2nd characters,
respectively.

« A common use for BCC$ is to perform block checking or to generate a BCC for a
data block.

341

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(checkt ype is out of the range.)

342

Chapter 15. Function Reference

CHecK DiGIT String function
Returns a check digit of bar code data. [']
Syntax:

CHKDGT$(bar codedat a, CDt ype)

Parameter:

bar codedat a and CDt ype
String expressions.

Description:

CHKDGT$ calculates a check digit (CD) of bar codedat a according to the calcu-
lation method specified by CDt ype, and then returns it as one-character string.

« CDtype is A H, I, Mor N, which specifies the bar code type and the corre-
sponding calculation method as listed below.

CDt ype Bar Code Type Calculation Method
A EAN and UPC MOD-10 (Modulo arithmetic-10)
H* STF (Standard 2 of 5) MOD-10 (Modulo arithmetic-10)
| ITF (Interleaved 2 of 5) MOD-10 (Modulo arithmetic-10)
M Code 39 MOD-43 (Modulo arithmetic-43)
N Codabar (NW-7) MOD-16 (Modulo arithmetic-16)

* Supported by the BHT-7000/BHT-7500 only.

CDt ype may be in lowercase.

« In the BHT-7000/BHT-7500, if bar codedat a contains a character(s) out of the
specification of the bar code type specified by CDt ype, CHKDGT$ returns a null
string. However, if only the CD position character in bar codedat a is out of the
specification, CHKDGT$ calculates the correct CD and returns it as one-character
string.

Sample coding 1: CD. Dat a$=CHKDGT$(" 494AB4458", " A")
"A" and "B" are out of the specification of the EAN or UPC, so
CD. Dat a$ will become a null string.

Sample coding 2: CD. Dat a$=CHKDGT$(" 4940045X", " A")
"X" is a CD position character, so CHKDGT$ calculates the
correct CD and CD. Dat a$ will become "8."

Sample coding 3: CD. Dat a$=CHKDGT$(" a0ef 3-a", "N")
"e" and "f" are out of the specification of the Codabar (NW-7),
so CD. Dat a$ will become a null string.

343

Sample coding 4: CD. Dat a$=CHKDGT$("a123Qa", "N')

"Q" is a CD position character, so CHKDGT$ calculates the
correct CD and CD. Dat a$ will become "-."

m When CDt ype is A (EAN or UPC), CHKDGT$ identifies the EAN or UPC of
bar codedat a depending upon the data length (number of digits) as listed
below.

Data length of bar codedat a Universal Product Codes
13 EAN-13 or UPC-A
8 EAN-8
7 UPC-E

If the data length is a value other than 13, 8, and 7, this function returns a null

string.
- To check that the CD is correct:
Pass a CD-suffixed bar codedat a to a CHKDGI$ as shown below. If the
returned value is equal to the CD, the CD data is suitable for the bar codedat a.
Sample coding: | F CHKDGT$(" 49400458", " A") =" 8"

THEN. . .

- To add a CD to barcode data:

Pass bar codedat a followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRI NT" 4940045" +CHKDGT$(" 4940045" +" 0", " A")

49400458

m When CDt ype is H(STF), the length of bar codedat a must be two or more
digits. If not, CHKDGT$ returns a null string.

- To check that the CD is correct:

Pass a CD-suffixed bar codedat a to a CHKDGT$ as shown below. If the

returned value is equal to the CD, the CD data is suitable for the bar codedat a.

Sample coding: | F CHKDGT$(" 12345678905", "H"') =" 5"
THEN. . .

- To add a CD to barcode data:

Pass bar codedat a followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRI NT
"1234567890" +CHKDGT$(" 1234567890" +" 0" . "H")

12345678905

344

Chapter 15. Function Reference

m When CDt ype is | (ITF), the length of bar codedat a must be an even num-
ber of two or more digits. If not, CHKDGT$ returns a null string.

- To check that the CD is correct:

Pass a CD-suffixed bar codedat a to a CHKDGT$ as shown below. If the
returned value is equal to the CD, the CD data is suitable for the bar codedat a.

Sample coding: | F CHKDGT$(" 123457","1")="7"
THEN. . .
- To add a CD to barcode data:

Pass bar codedat a followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRI NT "12345" +CHKDGT$(" 12345"+" 0", "I ")

123457

m When CDt ype is M(Code 39), the length of bar codedat a must be two or
more digits except for start and stop characters. If not, CHKDGT$ returns a null
string.

- To check that the CD is correct:

Pass a CD-suffixed bar codedat a to a CHKDGT$ as shown below. If the
returned value is equal to the CD, the CD data is suitable for the bar codedat a.
Sample coding: | F CHKDGT$(" CODE39W , "M') =" W

THEN. . .
- To add a CD to barcode data:

Pass bar codedat a followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRI NT " CODE39" +CHKDGT$(" CODE39" +" 0", "M')

CCDE39W

345

m When CDt ype is N (Codabar), the length of bar codedat a must be three dig-
its or more including start and stop characters. If not, CHKDGT$ returns a null
string.

- To check that the CD is correct:

Pass a CD-suffixed bar codedat a to a CHKDGT$ as shown below. If the
returned value is equal to the CD, the CD data is suitable for the bar codedat a.

Sample coding: | F CHKDGT$("a0123-a","N')="-"
THEN. . .

- To add a CD to barcode data:

Pass bar codedat a followed by a dummy character and enclosed with start and
stop characters, to a CHKDGT$ as shown below. The returned value will become
the CD to be replaced with the dummy character.

Sample coding: | d%LEN("a0123a")

PRI NT LEFT$("a0123a", | d% 1) +CHKDGT$
("a01230a", "N') +Rl GHT$("a0123a", 1)

a0123-a

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(CDt ype is out of the range.)

Reference:

Statements: OPEN" BAR: "

346

Chapter 15. Function Reference

CHaRacter code String function

CHR$

Returns the character corresponding to a given ASCII code.

Syntax:
CHR$(char acode)

Parameter:
char acode
A numeric expression which returns a value from 0 to 255.
Description:

CHRS$ converts a numerical ASCII code specified by char acode into the equiva-
lent single-byte character. This function is used to send control codes (e.g., ENQ
and ACK) to a communications device file or to display a double quotation mark or
other characters having special meanings in the BHT-BASIC.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(char acode is out of the range.)

Example:

« To output an ACK code to a communications device file, use CHR$(&H06) . The
ASCII value for the ACK code is &H06.

PRI NT #1, CHR$(&H06) ;
* To display control codes from 8 (08h) to 31 (1Fh), refer to the program examples
shown in the PRI NT statement.

+ To display double quotation marks around a string, use CHR$(34) as shown
below. The ASCII value for a double quotation mark is 34 (22h).

PRI NT CHR$(34); " Barcode"; CHR$(&H22)

"Bar code"

347

 To display a Kaniji code, use a shift JIS code as shown below. The shift JIS code
for j& is BABFh.

SCREEN 1
PRI NT CHR$(&h8A) ; CHR$(&hBF)

N

ES

Reference:
Statements: PRI NT

Functions: ASC

348

Chapter 15. Function Reference

COUNTRY 1/0 function

COUNTRY$

[] Sets a national character set or returns a current country code.

1000
(000

Syntax:
Syntax 1 (Setting a national character set):
COUNTRY$="count r ycode"
Syntax 2 (Returning a country code):
COUNTRY$

Parameter:
count rycode

A string expression--A, D, E, F, G1,J,N, S, or W

Description:
m Syntax 1

COUNTRY$ sets a national character set specified by " countrycode". The
national character set is assigned to codes from 32 (20h) to 127 (7Fh). (Refer to
Appendix C2, "National Character Sets.")

« "countrycode" specifies one of the following national character sets:

count rycode National character set
A America (default)
D Denmark
E England
F France
G Germany
| Italy
J Japan (default)
N Norway
S Spain
\W Sweden

349

« After setting a national character set, you may display it for codes from 32 (20h) to
127 (7Fh), on the LCD.

« If "countrycode" is omitted, the default national character set is America
(code A) or Japan (code J) when you have selected the English or Japanese mes-
sage version on the menu screen* in System Mode, respectively.

* Menu screen for selecting the message version

BHT Series Menu screen
BHT-3000 Set Resume menu
BHT-4000/BHT-5000/BHT-6000/ SET DISPLAY menu

BHT-6500/BHT-7000/BHT-7500

« "countrycode" set by this function remains effective in the programs chained
by CHAI N statements.

- If" count rycode" has more than one character, only the first one takes effect.

- If "count rycode" is an invalid letter other than those listed above, the func-
tion is ignored.

« "count rycode" may be in lowercase.
COUNTRY$="] "

m Syntax 2

COUNTRYS$ returns a current country code as an uppercase alphabetic letter.

350

Chapter 15. Function Reference

CurSoR LINe 1/0 function

CSRLIN

Returns the current row number of the cursor.

Syntax:
CSRLI N

Description:

CSRLI Nreturns the current row number of the cursor as an integer, in the current
screen mode selected by a SCREEN statement.

BHT-
BHT- BHT- BHT- BHT-
Screen mode BHT-4000 6000/
3000 5000 BHT-6500 7000 7500
Single-byte Standard-size font 1to 4 1to 10 1to8 1to6 1to8 1to 20
ANK mode (1to 9%
Small-size font - — — 1to8 1to 10 1to 26
Two-byte Standard-size font 1to 3 1to9 1ltoto 7 1to5 1to7 1to 19
Kanji mode (1to 8%
Small-size font - — — lto7 1to9 1to 25
Condensed two- _ 1to9 1t07 _ _ _
byte Kanji mode (1to 8%)

" When the system status is displayed on the LCD.

« Even if the cursor is invisible (by a LOCATE statement), the CSRLI N function
operates.

» For the current column number of the cursor, refer to the PCS function.

Reference:

Statements: LOCATE and SCREEN

Functions: PGS

351

DATE I/0O function

DATES

Returns the current system date or sets a specified system date.

Syntax:
Syntax 1 (Retrieving the current system date):
DATE$
Syntax 2 (Setting the current system date):
DATE$="dat e"
Parameter:
date

A string expression.

Description:
m Syntax 1

DATES returns the current system date as an 8-byte string. The string has the for-
mat below.

yy/ m dd

where yYy is the lower two digits of the year from 00 to 99, nmis the month from 01
to 12, and dd is the day from 01 to 31.
m Syntax 2

DATES sets the system date specified by " dat e". The format of " dat e" is the
same as that in syntax 1.

Example: dat e$="00/ 10/ 12"

* The year yy must be the lower two digits of the year: otherwise, the system does
not compensate for leap years automatically.

» The calendar clock is backed up by the battery. (For the system time, refer to the
TI MES$ function.)

352

Run-timeerrors:

Chapter 15. Function Reference

Error code Meaning

05h Parameter out of the range
(dat e is out of the range.)

Reference:

Functions: TI MES

353

End Of File File I/O function

EOF

Tests whether the end of a device 1/O file has been reached.

Syntax:
ECF([#] fi | enunber)

Parameter:
filenunber

A numeric expression which returns a value from 1 to 16.

Description:

EOF tests for an end of a device 1/O file designated by fi | enurber. Then it
returns -1 (true) if no data remains; it returns 0 (false) if any data remains, as listed

below.
File Type Returned Value End-of-file Condition
Communications device file -1 (true) No data remains in the
receive buffer.
0 (false) Any data remains in the
receive buffer.
Barcode device file -1 (true) No data remains in the

barcode buffer

0 (false) Any data remains in the
barcode buffer.

« fil enunber should be the file number of an opened device file.

« The EOF function cannot be used for data files. Specifying a data file number for
fil enunber causes a run-time error.

354

Chapter 15. Function Reference

Run-timeerrors:

Error code Meaning

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type
(You specified f i | enunber of a data file.)

3Ah File number out of the range

Reference:

Statements: | NPUT#, LI NEI NPUT#, OPEN"BAR:", and
OPEN" COM "

Functions: | NPUT$, LOC, and LOF

355

ERror Line Error-handling function

ERL

Returns the current statement location of the program where a run-time error occurred.

Syntax:
ERL

Description:

ERL returns the current statement location of the program where a run-time error
occurred most recently.

» The ERL function works only with line numbers and not with labels.

+ The returned value is in decimals, so it may be necessary to use the HEX$ func-
tion for decimal-to-hexadecimal conversion when using the ERL function in error-
handling routines.

» Addresses which the ERL returns correspond to ones that are outputted to the left
end of the address-source list in hexadecimals when a +L option is specified in
compilation, if converted from decimals to hexadecimals with the HEX$ function.

* Since the ERL function returns a significant value only when a run-time error
occurs, you should use this function in error-handling routines where you can
check the error type for effective error recovery.

Reference:
Statements: ONERRORGOTO and RESUME

Functions: ERR and HEX$

356

Chapter 15. Function Reference

ERRor code Error-handling function

ERR

Returns the error code of the most recent run-time error.

Syntax:
ERR

Description:

ERR returns the code of a run-time error that invoked the error-handling routine.

+ The returned value is in decimals, so it may be necessary to use the HEX$ func-
tion for decimal-to-hexadecimal conversion when using the ERR function in error-
handling routines.

» Codes which the ERR returns correspond to ones that are listed in Appendix A1,
"Run-time Errors," if converted from decimals to hexadecimals with the HEX$
function.

* Since the ERR function returns a significant value only when a run-time error
occurs, you should use this function in error-handling routines where you can
check the error type for effective error recovery.

Reference:
Statements: ONERRORGOTO and RESUME

Functions: ERL and HEX$

357

End of TeXt I/0 function

ETX$

Modifies the value of a terminator (ETX) for the BHT-protocol; also returns the [

. | —
current value of a terminator. ggg

Syntax:
Syntax 1 (Changing the value of a terminator):
ETX$=st ri ngexpr essi on
Syntax 2 (Returning the current value of a terminator):
ETX$

Parameter:
stringexpression

A string expression which returns a single-byte character.

Description:
m Syntax 1

ETX$ modifies the value of a terminator (one of the text control characters) which
indicates the end of data text in the BHT-protocol when a data file is transmitted by
an XFI LE statement. (For the BHT-protocol, refer to the BHT User's Manual.)

« ETXS$ is called a protocol function.

 The initial value of a terminator (ETX) is 03h.

m Syntax 2

ETX$ returns the current value of a terminator.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(stringexpressionisanull string.)

OFh String length out of the range
(stringexpressi on is more than a single byte.)

Reference:
Statements: OPEN"COM " and XFI LE

Functions: SOH$ and STX$

358

Chapter 15. Function Reference

FREe area Memory management function

FRE

Returns the number of bytes available in a specified area of the memory.

Syntax:
FRE(ar easpec)

Parameter:
ar easpec

A numeric expression which returns a value from O to 3.

Description:

FRE returns the number of bytes left unused in a memory area specified by
ar easpec listed below.

ar easpec Memory area
0 Array work variable area
1 File area
2 Operation stack area for the Interpreter
3 File area in drive B (in the BHT-5000/BHT-6000/BHT-6500)

» The file area will be allocated to data files and program files in cluster units. The
FRE function returns the total number of bytes of non-allocated clusters. (For
details about a cluster, refer to Appendix F, "Memory Area.")

» The operation stack area for the Interpreter is mainly used for numeric operations,
string operations, and for calling user-defined functions.

» A returned value of this function is a decimal number.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(ar easpec is out of the range.)

359

HEXadecimal String function

HEX$

Converts a decimal number into the equivalent hexadecimal string.

Syntax:
HEX$(nuner i cexpr essi on)

Parameter:
nuneri cexpressi on

A numeric expression which returns a value from -32768 to 32767.

Description:

HEX$ function converts a decimal number from -32768 to 32767 into the equivalent
hexadecimal string which is expressed with 0 to 9 and Ato F.

Listed below are conversion examples.

numer i cexpr essi on Returned value
- 32768 8000
-1 FFFF
0 0
1 1
32767 7FFF

Run-timeerrors:

Error code Meaning

06h The operation result is out of the allowable range.

360

Chapter 15. Function Reference

INput KEYboard I/O function

INKEY$

Returns a character read from the keyboard.

Syntax:
| NKEY$

Description:

| NKEY$ reads from the keyboard to see whether a key has been pressed, and
returns one character read. If no key has been pressed, | NKEY$ returns a null
string. (For the character codes, refer to Appendix C. For the key number assign-
ment, refer to Appendix E.)

« | NKEY$ does not echo back a read character on the LCD screen.

« A common use for | NKEY$ is to monitor a keystroke while the BHT is ready for
bar code reading or other events.

« If any key previously specified for keystroke trapping is pressed, | NKEY$ cannot
return the typed data since the | NKEY$ has lower priority than keystroke trap-
ping.

» To display the cursor, you use the LOCATE and CURSOR statements as shown
below.

LOCATE, , 1: CURSCR ON
k$=I NKEYS$
| F k$="" THEN. ..
Reference:
Statements: CURSOR, KEY OFF, KEY ON, and LOCATE

Functions: ASC and | NPUT$

361

INPort data 1/0 function

INP

Returns a byte read from a specified input port.

Syntax:
I NP(port nunber)

Parameter:
port nunber

A numeric expression which returns a value from 0 to 32767.

Description:

I NP reads one-byte data from an input port specified by por t nurrber and returns
the value. (For the input port numbers, refer to Appendix D, "I/O Ports.")

« If you specify an invalid value to port nunber, | NP returns an indeterminate
value.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(por t nunber is out of the range.)

Reference:

Statements: OUT and WAI T

362

Chapter 15. Function Reference

INPUT File I/O function

INPUTS$

Returns a specified number of characters read from the keyboard or from a device file.

Syntax:
Syntax 1 (Reading from the keyboard):

| NPUT$(nunthar as)
Syntax 2 (Reading from a device file):
I NPUT$(nunthar as, [#] fi | enunber)

Parameter:
nunchar as
A numeric expression which returns a value from 1 to 255.
fil enunber

A numeric expression which returns a value from 1 to 16.

Description:
I NPUT$ reads the number of characters specified by nunchar as from the key-
board or from a device file specified by fi | enunber, then returns the resulting
string.
m Syntax 1 (without specification of f i | enunber)
I NPUT$ reads a string or control codes from the keyboard.
+ | NPUT$ does not echo back read characters on the LCD screen.

» The cursor shape (invisible, underlined, or full block) depends upon the specifica-
tion selected by the LOCATE statement.

« If any key previously specified for keystroke trapping is pressed during execution
of the | NPUT$, the keyboard input will be ignored; that is, neither typed data is
read by | NPUT$ nor keystroke is trapped.

m Syntax 2 (with specification of f i | enunber)

I NPUT$ reads from a device file (the bar code device file or any of the communica-
tions device files).

« The number of characters in a device file can be indicated by using a LOC func-
tion.

363

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(nunthar as is out of the range.)

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type
(You specified f i | enunber of a data file.)

3Ah File number out the range

Reference:

Statements: CURSOR, | NPUT, LI NEI NPUT, LOCATE,
OPEN"BAR: ", and OPEN" COM "

Functions: ECF, | NKEY$, LOC, and LOF

364

Chapter 15. Function Reference

IN STRing String function

INSTR

Searches a specified target string for a specified search string, and then returns the position
where the search string is found.

Syntax:
I NSTR([startposition,]targetstring, searchstring)

Parameter:
startposition
A numeric expression which returns a value from 1 to 32767.
targetstringandsearchstring

A string expression.

Description:

I NSTR searches a target string specified by t ar get st ri ng to check whether a
search string specified by sear chst ri ng is present in it, and then returns the
first character position of the search string first found.

« startposition is the character position where the search is to begin in
targetstring. If youomitstartposition option, the search begins at
the first character of t ar get stri ng.

« tar get string is the string being searched.

« sear chst ri ng is the string you are looking for.

—- Do not mistake the description order of t ar get stri ng and sear ch-
M string.

365

» A returned value of | NSTRis a decimal number from 0 to 255, depending upon

the conditions as listed below.

Conditions

Returned value

If sear chst ri ng is found within
targetstring:

If st art posi ti on is greater
thanthe length oft ar get st ri ng
or 255:

Ift ar get stri ng is a null string:
If sear chst ri ng is not found:

If sear chstri ng is a null string:

First character position of the search
string first found

0

0
0

Value of st art posi ti on
lifstart positi on option is omit-
ted.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(start positi onis out of the range.)

Reference:

Functions: LEN

366

Chapter 15. Function Reference

INTeger Numeric operation function

INT

Returns the largest whole number less than or equal to the value of a given numeric expres-
sion

Syntax:
I NT(nuner i cexpr essi on)

Parameter:
nuneri cexpressi on

A real expression.

Description:

I NT returns the largest whole number less than or equal to the value of
Numer i cexpr essi on by stripping off the fractional part.

« You use | NT as shown below to round off the fractional part of a real number.
I NT(r eal nunber +0. 5)

Example: dat=1.5
PRI NT | NT(dat +0. 5)

2

e If nuNMeri cexpr essi on is negative, this function operates as shown below.

PRI NT | NT(- 1. 5)
PRI NT | NT(- 0. 2)

-2
-1

367

LEFT String function

LEFTS$

Returns the specified number of leftmost characters from a given string expression.

Syntax:
LEFT$(stringexpression, stringl ength)

Parameter:
stringlength

A numeric expression which returns a value from 0 to 255.

Description:

LEFT$ extracts a portion of a string specified by st ri ngexpr essi on by the
number of characters specified by st ri ngl engt h, starting at the left side of the
string.

« Ifstringl engt his zero, LEFTS returns a null string.
« If stringl ength is greater than the length of stri ngexpr essi on, the
whole st ri ngexpr essi on will be returned.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(st ri ngl engt h is out of the range.)

Reference:

Functions: LEN, M D$, and Rl GHTS$

368

Chapter 15. Function Reference

LENgth String function

LEN

Returns the length (hnumber of bytes) of a given string.

Syntax:
LEN(stri ngexpressi on)

Description:

LEN returns the length of st ri ngexpr essi on, that is, the number of bytes in
the range from 0 to 255.

- If stri ngexpressi onisa null string, LEN returns the value 0.
» LEN counts a full-width Kaniji (in the two-byte code mode) as two characters.
PRI NT LEN(" ")

369

LOcation Counter of file

LOC

File I/O function

Returns the current position within a specified file.

Syntax:
LOC([#]fil enunber)

Parameter:
filenunber

A numeric expression which returns a value from 1 to 16.

Description:

LOCreturns the current position within a file (a data file, communications device file,
or bar code device file) specified by f i | enunber.

» Depending upon the file type, the content of the returned value differs as listed

below.
File type Returned value
Data file Record number following the number of the

Communications device file

Bar code device file

last record read by a GET statement

Number of characters contained in the
receive buffer
(0 if no data is present in the receive buffer.)

Number of characters contained in the bar-
code buffer*
(O if the BHT is waiting for bar code reading.)

* The size of the barcode buffer is 40 bytes in the BHT-3000, and 99 bytes in the BHT-4000/BHT-5000/
BHT-6000/BHT-6500/BHT-7000/BHT-7500.

« If LOC is used before execution of the first GET statement after a data file is
opened, it returns 1 or 0 when the data file has any or no data, respectively.

370

Chapter 15. Function Reference

Run-timeerrors:

Error code Meaning

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

3Ah File number out of the range

3Eh A PUT or GET statement executed without a FI ELD statement.
(No FI ELD statement is found.)

Reference:
Statements: OPEN

Functions: EOF and LOF

371

Location Of File File I/O function

LOF

Returns the length of a specified file.

Syntax:
LOF([#]fil enunber)

Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.

Description:

LOF returns the length of a data file or communications device file specified by
fil enunber.

» Depending upon the file type, the content of the returned value differs as listed

below.

File type Returned value

Data file Number of written records

Communications device file Number of bytes of unoccupied area in the

receive buffer

« If you specify the bar code device file, a run-time error will occur.

Run-timeerrors:

Error code Meaning

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type
(You specified f i | enunber of a bar code device file.)

3Ah File number out of the range

Reference:
Statements: GET, | NPUT, LINEI NPUT, OPEN, and OPEN" COM "

Functions: EOF, | NPUT$, and LOC

372

Chapter 15. Function Reference

code MARK I/O function

MARKS$

MARKS

Description:

MARKS returns a 3-byte string which consists of the first one byte representing a bar
code type and the remaining two bytes indicating the number of digits of the bar
code.

» The first one byte of a returned value contains one of the following letters repre-
senting bar code types:

Bar code type First one byte of a returned value
EAN-13 or UPC-A A
EAN-8 B
UPC-E C
ITF (Interleaved 2 of 5) I
STF (Standard 2 of 5) H
Codabar (NW-7) N
Code 39 M
Code 93 L
Code 128 K
EAN-128 w

» The remaining two bytes of a returned value indicate the number of digits of the
bar code in decimal notation.

« MARKS returns a null string until bar code reading takes place first after start of
the program.

373

MiDdle

MID$

Returns a portion of a given string expression from anywhere in the string.

String function

Syntax:
M D$(stringexpression,startposition[,stringlength])

Parameter:
startposition
A numeric expression which returns a value from 1 to 255.
stringlength

A numeric expression which returns a value from 0 to 255.

Description:

Starting from a position specified by st ar t posi ti on, M D$ extracts a portion of
a string specified by st ri ngexpr essi on, by the number of characters specified
by st ri ngl engt h.

« Areturned value of M D$ depends upon the conditions as listed below.

Conditions

Returned value

Ifstringlength
option is omitted:

Ifstringl engthis
greater than the number
of characters contained
between st art posi -
t i on and the end of the
string:

Ifstartpositionis
greater than the length of
st ri ngexpressi on:

All characters from st ar t posi ti on to the end
of the string

Example: PRI NT M D$(" ABC123", 3)

| c123

All characters from st ar t posi ti on to the end
of the string

Example: PRI NT M D$(" ABC123", 3, 10)
| c123

Null string

Example: PRI NT M D$(" ABC123", 10, 1)

374

Chapter 15. Function Reference

m BHT-BASIC does not support such MID$ function that replaces a part of a
—— string variable.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

Reference:

Functions: LEFT$, LEN, and Rl GHT$

375

POSition I/0 function

POS

Returns the current column number of the cursor.

Syntax:
POS(0)

Description:

PGS returns the current column number of the cursor in the current screen mode
selected by a SCREEN statement, as an integer.

Screen mode BHT- BHT- BHT- BHT-6000/ BHT- BHT-

3000 4000 5000 BHT-6500 7000 7500

Single-byte Standard-size font 1to 17 1to 27 1to 22 1to 17 1to 22 1to 27
ANK mode

Small-size font - - - 1lto 17 1to 22 1to 27

Two-byte Standard-size font 1to 13 lto21 1to 17 1to 13 1to 17 l1to21
Kanji mode

Small-size font - - - 1lto 17 1to 22 1to 27

Condensed two-

byte Kanji mode B lto27 1to22 B - -

» Even if the cursor is invisible (by a LOCATE statement), the POS function oper-
ates.

 If the maximum value in the current screen mode is returned, it means that the
cursor stays outside of the rightmost column.

» (0) is a dummy parameter that can have any value or expression, but generally it
is 0.

* In the BHT-7000/BHT-7500, the range of the column numbers does not differ
between the normal- and double-width characters.

» For the current row number of the cursor, refer to the CSRLI N function.
Reference:
Statements: LOCATE and SCREEN

Functions: CSRLI N

376

Chapter 15. Function Reference

RIGHT String function

RIGHTS

Returns the specified number of rightmost characters from a given string expression.

Syntax:
Rl GHT$(st ri ngexpressi on, st ri ngl engt h)

Parameter:
stringlength

A numeric expression which returns a value from 0 to 255.

Description:

Starting at the right side of the string, Rl GHT$ extracts a portion of a string speci-
fied by st ri ngexpr essi on by the number of characters specified by st ri ng-
| engt h.

« Ifstringl engt his zero, Rl GHTS returns a null string.

« If stringl ength is greater than the length of stri ngexpr essi on, the
whole st ri ngexpr essi on will be returned.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(st ri ngl engt h is out of the range.)

Reference:

Functions: LEFT$, LEN, and M D$

377

SEARCH File I/O function

SEARCH

Searches a specified data file for specified data, and then returns the record =
number where the search data is found. []

000
|000]

Syntax:
SEARCH([#] fi | enunber, fiel dvari abl e, searchdat a
[,startrecord])
Parameter:
fil enunber
A numeric expression which returns a value from 1 to 16.
fieldvariable
A non-array string variable.
sear chdat a
A string expression.
startrecord

A numeric expression which returns a value from 1 to 32767.

Description:

SEARCH searches a target field specified by f i el dvari abl e in a data file spec-
ified by f i | enunber for data specified by sear chdat a, starting from a record
specified by st ar t r ecor d, and then returns the number of the record where the
search data is found.

- fi el dvari abl e is a string variable defined by a FI ELD statement.
« sear chdat a is the data you are looking for.

« startrecord is the number of a record where the search is to begin in a data
file. The search ends when all of the written records have been searched.

If you omit st artrecord option, the search begins at the first record of the
data file.

« If the search data is not found, SEARCH returns the value O.

» A convenient use for SEARCH is, for example, to search for a particular product
name, unit price, or stock quantity in a product master file by specifying a bar
code data to sear chdat a.

« Since the search begins at a record specified by st artrecord in a data file
and finishes at the last record, sorting records in the data file in the order of fre-
quency of use before execution of this function will increase the searching speed.

378

Chapter 15. Function Reference

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number
(You specified f i | enunber of an unopened file.)

36h Improper file type

(You specified f i | enunber of a file other than data files.)
3Ah File number out of the range
3Eh A PUT or GET statement executed without a FI ELD statement.

(No FI ELD statement is found.)

Reference:
Statements: F| ELD, GET, and OPEN

Functions: LOF

379

Start Of Heading I/O function

SOH$

Modifies the value of a header (SOH) for the BHT-protocol; also returns the =
current value of a header. []

000
|000]

Syntax:
Syntax 1 (Changing the value of a header):
SOH$=st ri ngexpr essi on
Syntax 2 (Returning the current value of a header):

SOH$

Parameter:
stringexpression

A string expression which returns a single-byte character.

Description:
m Syntax 1

SCH$ modifies the value of a header (one of the text control characters) which indi-
cates the start of heading text in the BHT-protocol when a data file is transmitted by
an XFI LE statement. (For the BHT-protocol, refer to the BHT User's Manual.)

« SCHS$ is called a protocol function.
 The initial value of a header (SOH) is 01h.

m Syntax 2

SOHS$ returns the current value of a header.

Run-timeerrors:

Error code Meaning

OFh String length out of the range
(stri ngexpr essi on is more than a single byte.)

Reference:
Statements: OPEN"COM " and XFI LE

Functions: ETX$ and STX$

380

Chapter 15. Function Reference

STRing String function

STR$

Converts the value of a numeric expression into a string.

Syntax:
STR$(nuneri cexpr essi on)

Parameter:
nuneri cexpressi on

A numeric expression.

Description:
STR$ converts the value of numer i cexpr essi on into a string.

 If nuneri cexpr essi on is 0 or positive, STR$ automatically adds a leading
space as shown below.

PRI NT STR$(123); LEN(STR$(123))

123 4

To delete the leading space, you should use the M D$ function as shown below.
PRI NT M D$(STR$(123), 2); LEN(STR$(123))

123 4

 If nuneri cexpression is negative, STR$ adds a minus sign as shown
below.

PRI NT STRS$(- 456) ; LEN(STR$(- 456))

-456 4

« A common use for STR$ is to write numeric data into a data file.

« The VAL function has the opposite capability to STRS.
Reference:

Functions: VAL

381

Start of TeXt 1/0 function

STX$

Modifies the value of a header (STX) for the BHT-protocol; also returns the
current value of a header. []

Syntax:
Syntax 1 (Changing the value of a header):
STX$=stri ngexpression
Syntax 2 (Returning the current value of a header):
STX$

Parameter:
stringexpression

A string expression which returns a single-byte character.

Description:
m Syntax 1

STX$ modifies the value of a header (one of the text control characters) which indi-
cates the start of data text in the BHT-protocol when a data file is transmitted by an
XFI LE statement. (For the BHT-protocol, refer to the BHT User's Manual.)

« STX$ is called a protocol function.
 The initial value of a header (STX) is 02h.

m Syntax 2

STX$ returns the current value of a header.

Run-timeerrors:

Error code Meaning

OFh String length out of the range
(stri ngexpr essi on is more than a single byte.)

Reference:
Statements: OPEN"COM " and XFI LE

Functions: ETX$ and SOH$

382

Chapter 15. Function Reference

TIME I/O function

TIMES$

Returns the current system time or wakeup time, or sets a specified system time or wakeup
time.

Syntax:
Syntax 1 (Retrieving the current system time or the wakeup time):
TI VES
Syntax 2 (Setting the current system time or the wakeup time):
TI MVES="ti me"
Parameter:
time
A string expression.
Description:

m Syntax 1

Retrieving the current system time

TI MES$ returns the current system time as an 8-byte string. The string has the for-
mat below.

hh: mm ss

where hh is the hour from 00 to 23 in 24-hour format, nmis the minute from 00 to
59, and ss is the second from 00 to 59.

Example: CLS
PRI NT TI VE$

Retrieving the wakeup time (For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/
BHT-7500)

TI MES returns the wakeup time as a 5-byte string. The string has the format below.

hh: mm

383

m Syntax 2

Setting the system time

TI ME$ sets the system time specified by "t i me. " The formatof "ti nme" is the

same as that in syntax 1.
Example: TI ME$="13: 35: 45"

Setting the wakeup time (For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500)

TI MES$ sets the wakeup time specified by "t i me.
same as that in syntax 1.

The format of "t i me" is the

» The calendar clock is backed up by the battery. (For the system date, refer to the
DATES$ function.)

* For returning the current wakeup time or setting a specified wakeup time, bit 2 of
port 8 should be set to 1 with the OUT statement before execution of this function.

» For the wakeup function, refer to Chapter 12, Section 12.3, "Wakeup Function."

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(ti me is out of the range.)

Reference:

Functions: DATE$

384

Chapter 15. Function Reference

TIMER-A/TIMER-B/TIMER-C I/O function

TIMEA/TIMEB/TIMEC

Returns the current value of a specified timer or sets a specified timer. [']
1000
1000

Syntax:
Syntax 1 (Retrieving the current value of a specified timer):

TI MEA
TI MEB
TI MEC

Syntax 2 (Setting a specified timer):
TI MEA=count
TI MEB=count
TI MEC=count
Parameter:
count

A numeric expression which returns a value from 0 to 32767.

Description:
m Syntax 1
Tl MEA, TI MEB, or TI MEC returns the current value of timer-A, -B, or -C, respec-
tively, as a 2-byte integer.
m Syntax 2
TI MEA, Tl MEB, or TI MEC sets the count time specified by count .

e count is a numeric value in units of 100 ms.

» Upon execution of this function, the Interpreter starts a specified timer counting
down in decrements of 100 ms (equivalent to -1) until the timer value becomes 0.

Run-timeerrors:

Error code Meaning

05h Parameter out of the range
(count is a negative value.)

06h The operation result is out of the allowable range.
(count is greater than 32767.)

385

VALue String function

VAL

Converts a string into a numeric value.

Syntax:

VAL(stringexpression)
Parameter:

stringexpression

A string expression which represents a decimal number.

Description:
VAL converts the string specified by st r i ngexpr essi on into a numeric value.
- If stri ngexpressi onis nonnumeric, VAL returns the value 0.
PRI NT VAL("ABC")

0

- If st ri ngexpr essi on contains a nonnumeric in midstream, VAL converts the
string until it reaches the first character that cannot be interpreted as a numeric.

PRI NT VAL("1.2E-3ABC")

1. 200000000E- 03

» The STR$ function has the opposite capability to VAL.
Reference:

Functions: ASC and STR$

386

Chapter 16

Extended Functions

CONTENTS
L16.1 OVEIVIEW.....eiiutiiiieeeiee ettt nb ettt ettt sb bbb st steenne e 388
16.2 Reading or writing system settings from/to the memory (SYSTEM.FN3).... 388
16.2.1 Function Number List of SYSTEM.FN3.......cccocoiiiiiiiiiiiiiieeneenneene 388
16.2.2 Detailed Function Specificationsccocuveiiiireiiieeince e 389

387

Chapter 16. Extended Functions

16.1 Overview

In addition to the BHT-BASIC statements and functions, the BHT-7000/BHT-7500/BHT-7500S
supports the following extended functions which can be invoked by the CALL statement.

Extented functions Used to: Integrated in:
SYSTEM FN3 Read or write system settings from/to the memory. BHT-7000/
BHT-7500/
BHT-7500S
SS. FN3 Connect or disconnect the BHT-7500S to/from the BHT-7500S
spread spectrum system. (For details, see Chapter
17)
SOCKET. FN3 Implement a subset of the TCP/IP socket application BHT-7500S

program interface (API). (For details, see Chapter 18.)

FTP. FN3 Implement FTP client services for file transfer to/from BHT-7500S
FTP servers. (For details, see Chapter 18.)

16.2 Readingor writing system set-
tings from/to the memory
(SYSTEM FN3)

16.2.1 Function Number List of SYSTEM FN3

The SYSTEM FN3 may read or write system settings depending upon the function number
specified, as listed below.

it?ﬁgg? Used to:
0 Get SYSTEM FN3 version
1 Read numeric data from System Mode settings
2 Write numeric data to System Mode settings
3 Read string data from System Mode settings
4 Write string data to System Mode settings
5 Get font information

388

16.2.2 Detailed Function Specifications

Function #0: Get SYSTEM FN3 version

Syntax: CALL " SYSTEM FN3" 0 VERSI ON$

Description: This function returns the SYSTEM FN3 library version in VER-
Sl ONS$.

Parameter: (None)

Returned value: VERSI ON$ Version which is fixed to 7 characters

Function #1: Read numeric data from System Mode settings

Syntax: CALL " SYSTEM FN3" 1 PARAY DATA%

Description: This function reads numeric data (DATA% from the system menu
item specified by PARAY%

Parameter: PARA% Item number of the system menu

Returned value: DATA% Numeric data read from the specified system menu item
System menu itemslist:

Item number DATAY% numeric data of the

System menu item ibute™? Initial value
(PARA%Y% y Attribute system menu item
1 Shift key mode R/W 0: Nonlock 0
1: Onetime
2 Assignment to M1 key R/W 0: None 0
1: Enter key
2: Trigger switch
3: Shift key
4: Backlight on/off function key
3 Assignment to M2 key R/W Same as above. 0
4 Assignment to M3 key R/W Same as above. 2
5 Assignment to M4 key R/W Same as above. 2
6 Black-and-white inverted label R/W 0: OFF 0
reading function 1: ON
7 Reserved for system -
8 Decode level R/W 1to9 4
9 Minimum number of digits to be R/W 210 20 4
read for ITF
10 Minimum number of digits to be R/W 1to 20 2

read for STF

"I R/W: Read and write possible
RO: Read only

389

Chapter 16. Extended Functions

ltem number System menu item Attribute™® DATAY numeric data of the Initial value
(PARAY MUt ™| system menu item
11 Minimum number of digits to be R/W 3to 20 4
read for Codabar
12 Default interface to be used for R/W 0: Optical interface 0
user programs 1: Direct-connect interface
13 Default interface to be used for R/W 0: Optical interface 0
System Mode 1: Direct-connect interface
14 Transmission speed for optical R/W 0: 2400 bps 1: 9600 bps 1
interface 2:19200 bps 3: 38400 bps
4:57600 bps 5: 115200 bps
15
| Reserved for system -
17
18 Transmission speed for direct- R/W 0: 300 bps 1: 600 bps 6
connect interface 2: 1200 bps 3: 2400 bps
4: 4800 bps 5: 9600 bps
6:19200 bps 7: 38400 bps
8:57600 bps 9: 115200 bps
19 Vertical parity for direct- R/W 0: None 0
connect interface 1: Odd
2: Even
20 Character length for direct- R/W 0: 7 bits 1
connect interface 1: 8 hits
21 Stop bit length for direct- R/W 0: 1 bit 0
connect interface 1: 2 bits
22 Serial numbers for optical inter- R/W 0: No numbers (OFF) 1
face 1: Add numbers (ON)
23 Horizontal parity for optical R/W 0: No parity (OFF) 1
interface 1: Add (ON)
24 Timeout for data link establish- R/W 0: No timeout 1
ment for optical interface 1: 30 sec, 2: 60 sec,
3: 90 sec, 4: 120 sec
25 Space codes in the tail of a data R/W 0: Ignore 0
field for optical interface 1: Handle as data
26 Serial numbers for direct- R/W 0: No numbers (OFF) 1
connect interface 1: Add numbers (ON)
27 Horizontal parity for direct- R/W 0: No parity (OFF) 1
connect interface 1: Add (ON)
28 Timeout for data link establish- R/W 0: No timeout 1
ment for direct-connect inter- 1: 30 sec, 2: 60 sec,
face 3: 90 sec, 4: 120 sec
29 Space codes in the tail of a data R/W 0: Ignore 0
1:

field for direct-connect interface

Handle as data

"1 R/W: Read and write possible
RO: Read only

390

Item number System menu item Attribute” DATA% numeric data of the | | o o
(PARA% ribute system menu item
30 Communications protocol type R/W 0: BHT protocol 0
2: BHT-Ir protocol
31 Resume function R/W | 0: OFF 12
1: ON
32 Reserved for system
34
35 RAM size RO 512/1024/2048 (kilobytes) 3
36 ROM size RO 2048/4096/8192 (kilobytes) 3
37 Cluster size RO 4096 (bytes)
38 Scanning range marker R/W 0: Normal mode 0
(BHT-7000 only) 1: OFF mode

"1 R/W: Read and write possible

RO: Read only
"2 The resume function setting made here is effective also in user programs downloaded to the BHT.
"8 These values will vary depending upon the hardware type.

Function #2: Write numeric data to System Mode settings

Syntax: CALL " SYSTEM FN3" 2 PARAY DATA%

Description: This funcion writes numeric data (DATA%) to the system menu item
specified by PARA%

Parameter: PARA% Item number of the system menu

DATA% Numeric data to be specified
(See the system menu items list given in Function #1.)

Returned value: None
System menu itemslist: Refer to the System menu items list given in Function #1.

391

Chapter 16. Extended Functions

Function #3: Read string data from System Mode settings

Syntax:
Description:

Parameter:
Returned value:

CALL " SYSTEM FN3" 3 PARAY DATAS$

This funcion reads string data (DATA$) from the system menu item
specified by PARA%.

PARA% Item number of the system menu
DATA$ String data read from the specified system menu item

System menu itemslist:

Item number . . DATAS, numeric data of the sys-
System menu item Attribute ’
(PARA% Y tem menu item
1 System version RO "X.XX" fixed to 4 characters
2 Reserved for system -
3 Model name RO Max. of 8 characters
(e.g., "BHT75")
4 Product number assigned to the BHT RO Fixed to 16 characters
(e.g., "496310....")
5 Serial number assigned to the BHT R/W | Fixed to 6 characters
6 Execution program R/W | Filename.xxx
(Filename followed by period and
extension)
If not selected, a null string
7 Version of the BHT system parameter RO "X.XX" fixed to 4 characters
file

Function #4: Write string data to System Mode settings

Syntax:
Description:

Parameter:

Returned value:

CALL " SYSTEM FN3" 4 PARAY DATAS$

This funcion writes string data (DATAS$) to the system menu item
specified by PARA%.

PARA% Item number of the system menu
DATA$ String data to be specified
(See the System menu items list given in Function #3.)

None

System menu itemslist: Refer to the System menu items list given in Function #3.

392

Function #5: Get font information

Syntax:
Description:

Parameter:
Returned value:

Note:

CALL "SYSTEM FN3" 5 N. FONT% VERSI ON$()

This funcion returns font information--the number of downloaded
fonts, font name, font size, and font version.

None

N. FONT% Number of fonts
VERSI ON$ Sets of the font name, font size, and font version in
the following format

| Font name | Font size | Font version |

! (P . |

| 8 bytes | 2 bytes | 8 bytes |

If the number of elements of VERSI ON$ is less than the number of
fonts, the SYSTEM FNS3 returns the sets of the font information by
the number of elements.

393

Chapter 17

Spread Spectrum Communication
(BHT-7500S only)

CONTENTS

A R @ YT YT

17.2 Programming for Wireless CommuniCationcccccoveeeerieeernieeeenieee e

17.3 Wireless Communications-related Statement.........cccvvvveeevieeeiiieieieeeeeeeeeenn,

17.4 Wireless Communication Library (SS.FN3)ccoiieriiiieeiiiieeiiee e
17.4.1 OVEIVIEW ...eeieiiiie ittt ere et as
17.4.2 Detailed Function SpecifiCationscoocvveiiiieiiieee e

394

17.1 Overview

m Spread spectrum wireless device

The BHT-7500S system consists of the BHT main system and the spread spectrum wireless
device; the former executes user programs and the latter performs spread spectrum communi-
cations.

User programs use the logical device file (named "COM3") to control the spread spectrum
wireless device.

BHT-7500S

Main system

User programs
(written in BHT-BASIC)

V4
L Logical device »| Spread J

file spectrum
wireless device

m Spread spectrum communications method

The BHT-7500S uses the TCP/IP protocol subset over the spread spectrum wireless device.
For details about programming for spread spectrum communications, refer to Chapter 18,

"TCP/IP."

m Configuration of spread spectrum system

Shown below is an example of the spread spectrum system configuration using the BHT-
7500S. For details, refer to the BHT-7500/7500S User’s Manual.

Access point (master) BHT-7500S (station)
Host computer pomain: 0 Domain: 0
Security ID: DENSO Security ID: DENSO

= Channel: 1 p—
Sub channel: 1 4"]

|
|
Wireless boardl | I
connection

I Wireless card

. I'l connection I' Access point BHT-7500S
BHT—75008 (statlon) | | | <master)p (station)
Domain: 0 h BHT-7500S (station) | Domain: 0 Domain: 0
Security ID: DENSO / Domain: 0 | Security ID: DENSO Security ID: DENSO
SN - - - - = N Security ID: DENSO ;, Channel: 2
————————— Sub channel: 1

395

Chapter 17. Spread Spectrum Communication (BHT-7500S only)

The table below shows the communications status transition as the state of the wireless com-
munications device built in the BHT-7500S changes.

Spread spectrum

) . Communication
wireless device

Open (power on) Impossible

Checking synchronization with Impossible

master

Synchronization complete Possible

Roaming Impossible if roaming leads to the loss of synchronization

Possible if synchronization with the master is kept
End of roaming Possible

Close (power off) Impossible

If always being opened, the wireless communications device will consume much power. When
the device is not in use, therefore, close it as soon as possible.

However, it will take several seconds to open the wireless communications device and syn-
chronize it with the master for making communications ready. Frequent opening and closing of
the device will require much time, resulting in slow response. Take into account the application
purposes of user programs when programming.

When the wireless communications device is synchronized with the maser, the BHT-7500S wiill
display a bar on the LCD as shown below.

A bar will appear if the wireless
communications device is
synchronized with the maser.

396

17.2 Programming for Wireless Com-
munication

When programming for spread spectrum communications, use the following statement and
extension functions:

(1) OPENSstatement (OPEN " COVB: ")
Refer to Section 17.3, "Wireless Communications-related Statement."
(2) Spread spectrum library (SS. FN3) for controlling the spread spectrum wireless device
Refer to Section 17.4, "Wireless Communication Library (SS.FN3)."
(3) Socket library (SOCKET. FN3) for data transmission according to TCP/IP
Refer to Section 18.5, "Socket Library (SOCKET.FN3)."
(4) FTP library (FTP. FN3) for file transfer
Refer to Section 18.6, "FTP Library (FTP.FN3)."

397

Chapter 17. Spread Spectrum Communication (BHT-7500S only)

17.3 Wirdess Communications-
related Satement

OPEN "COM3:"Open a wireless communications device file

Syntax: OPEN "COVB: " AS [#] filenunber

Description: This statement opens a wireless communications device file.

A wireless communications device file cannot be opened with an optical
interface device file concurrently. If you attempt to open them concur-
rently, a run-time error will occur.

A wireless communications device file can be opened with a bar code
device file concurrently.

Syntax error: Refer to Chapter 14, "Statement Reference.”

Run-timeerrors:

Error code Meaning

02h Syntax error

37h File already open

3Ah File number out of the range

45h File already open (You attempted to open a wireless communica-
tions file and the optical interface of a communications device file
concurrently.)

401h Failed to open a wireless communications device file.

ﬁ A wireless communications device uses TCP/IP for reading or writing data, unlike
other communications devices. For details about programming for using TCP/IP over
awireless communications device, refer to Chapter 18, "TCP/IP."

To close a wireless communications device file, use a CLOSE statement listed in
Chapter 14.

398

17.4 WirelessCommunication Library
(SS. FN3)

17.4.1 Overview

The spread spectrum library (SS. FN3) used in a BHT-BASIC CALL statement gets or sets
parameters from/to the wireless block.

If wireless communications are frequent, a run-time error may occur when you set or refer to
wireless-related parameters. In such a case, set or refer to them again.

m Function Number List of SS. FN3

Number Function

Get SS. FN3 version

Get parameter value (integer) from the wireless block
Get parameter value (string) from the wireless block
Set parameter value (integer) to the wireless block

Set parameter value (string) to the wireless block

~N b~ WON PO

Check wireless block synchronization with master

399

Chapter 17. Spread Spectrum Communication (BHT-7500S only)

17.4.2 Detailed Function Specifications

Function #0 Get SS.FN3 version

Syntax: CALL "SS. FN3" 0 VERSI ON$
Description: This function returns the SS. FN3 library version in VERSI ONS.
Parameters: (None)

Returned value: VERSI ON$: Version information, 7 characters, fixed length

Run-timeerrors:

Error code Meaning

FOh Mismatch parameter number
F1h Mismatch parameter type
F2h Insufficient string variable storage area

Function #1 Get parameter value (integer) from the wireless block

Syntax: CALL "SS. FN3" 1 PARAY% DATA%

Description: This function gets integer (DATA%) from the wireless block setting speci-
fied by PARA%

Parameters: PARA% Setting number
Returned value: DATA% Integer read from the specified wireless block setting

Correspondencetable;

Setting number Description Values for setting Initial
(PARA%) P (DATA%) value
1 Domain information 0to 15 0
Run-timeerrors:
Error code Meaning
05h Parameter out of the range
FOh Mismatch parameter number
F1h Mismatch parameter type

400

Function #2 Get parameter value (string) from the wireless block

Syntax: CALL "SS. FN3" 2 PARAY% DATA$

Description: This function gets string (DATAS) from the wireless block setting specified
by PARA%

Parameters: PARA% Setting number

Returned value: DATA% String read from the specified wireless block setting

Correspondence table:

Setting number

-) 0
(PARAY) Description Values for setting (DATA%)

1 .ereless blogk Character string, 4 bytes
firmware version

2 Physical address Character string, 6 bytes

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number (The wireless communications device is
not opened.)

FOh Mismatch parameter number

F1h Mismatch parameter type

F2h Insufficient string variable storage area

105h Power-off detected

400h Failed to get the setting value. (Failed to set the value.)

M After executing an OPEN " COMB: " statement, refer to the above parameter.

401

Chapter 17. Spread Spectrum Communication (BHT-7500S only)

Function #3 Set parameter value (integer) to the wireless block

Syntax: CALL "SS. FN3" 3 PARAY% DATA%

Description: This function sets integer (DATA%) to the wireless block setting specified
by PARA%

Parameters: PARA% Setting number

Returned valuee DATA% Integer to be set to the specified wireless block

Correspondence table:

Setting number Values for setting

(PARA% Description (DATA%
1 Domain information Oto 15
Run-timeerrors:
Error code Meaning
05h Parameter out of the range
37h File already open (The wireless communications device has
already been opened.)
FOh Mismatch parameter number
F1h Mismatch parameter type

NOTE The above parameter will take effect when the immediately following OPEN
"COMB: " statement executes.

The above parameter should be set with the wireless communications device file
being closed.

=
S
=

402

Function #4 Set parameter value (string) to the wireless block

Syntax: CALL "SS. FN3" 4 PARAY% DATA%

Description: This function sets string (DATAS) to the wireless block setting specified by
PARA%

Parameters: PARA% Setting number

Returned values DATA% String to be set to the specified wireless block

Correspondence table:

Setting number

-) 0
(PARAY) Description Values for setting (DATA%)

Character string,

3 Security ID maximum 20 bytes

Run-timeerrors:

Error code Meaning

05h Parameter out of the range

37h File already open (The wireless communications device has
already been opened.)

45h Device files prohibited from opening concurrently
(The optical interface communications device has been opened.)

FOh Mismatch parameter number

F1h Mismatch parameter type

105h Power-off detected

400h Failed to get the setting value. (Failed to set the value.)

The above parameter will take effect when the immediately following OPEN

NOj "COMB: " statement executes.

m Set the above parameter after closing both the optical interface communications
—— devicefile and wireless communications devicefile.

m The alowable entry range of the ASCII codes is from 20h to 7Eh. If you set " " to

DATAS, the default will apply.

403

Function #7

Chapter 17. Spread Spectrum Communication (BHT-7500S only)

Check wireless block synchronization with master

Syntax:

Description:

Parameters:

Returned value:

Run-timeerrors:

CALL "SS. FN3" 7 TI MEQUT% ASSOC%

This function checks whether the wireless block is synchronized with the
master.

According to the timeout length specified by TI MEOUT% the system oper-
ates as follows:

If greater than zero (0) is specified to TI MEOUT%(recommended), this
program will check synchronization with the master during the specified
time. Upon completion of synchronization, the program will set zero (0)
to ASSOC%to end the checking operation.

If the wireless block fails to synchronize with the master within the spec-
ified time, the program will set -1 to ASSOC%to end the checking opera-
tion.

If zero (0) is specified to TI MEOUT% this function will check synchroni-
zation with the master and immediately return.

If -1 is specified to TI MEOUT% no timeout will occur so that this function
will wait until synchronization will be complete.

TI MEOUT% Maximum time (unit: 100ms) to wait for synchronization

with master

ASSOC% 0 (Synchronization with master complete)|

-1 (Failed to synchronize with master)

Error code Meaning

FOh
Flh
105h

Mismatch parameter number
Mismatch parameter type

Power-off detected

m After executing an OPEN " COMB: " statement, refer to the above parameter.

404

Chapter 18
TCP/IP

CONTENTS

L18.1 TWO SIUES ..ottt ettt ettt ettt 406
18.1.1 BHT-7500S......ccieieieeitiiesiie sttt ettt st siae et saeesine e 406
18.1.2 HOSES ..ottt ettt bt bbbttt 406

18.2 TCP/IP over Spread SPeCtrUMSYSIEMceeiiiiiiiiieerieee it 407
18.2.1 General PrOCEAUIEcccueiiieeriieiee ettt 407

[1] Configure Wireless Communications Devicecccccccoeenne 407

[2] Configure TCP/IP SYStEMccviiiiiiiiiiieiiiie e seee e 408

[3] Declare TCP/IP Communications Pathway...............ccceernirnnne 409

18.3

18.4

18.5

18.6

[4] Open Wireless Communications Device
[5] Check Wireless Communications Device Synchronization

with Master 410

[6] Connectto TCP/IP Communications Pathway..........ccccccee... 411

[7] Transfer Data or File via Socket Interface..........ccccocoeeeiieeene 411

[8] Disconnect TCP/IP Communications Pathwayc.ccccec... 412

[9] Close Spread Spectrum Wireless DeviCecccceovvernennnen. 412

18.2.2 Programming Notes for Socket APl According to UDP.................... 413
18.2.3 Programming Notes for Resume FUNCtioNccccceeviviieennnnnene 415
SOCKEE AP ...t e 417
18.3.1 OVEIVIEW ..veiiieeiiiiieie ettt e e e ettt e e e e estte e e e e st ee e e s sntbeeeeeessnneaeeeeeaan 417
Ll I O 11T o | PO RRUR PRSP 419
18.4.1 OVEIVIEW ...eeeutiiiieeiiee stttk san e 419
18.4.2 File FOIMALSciuvieiiiiiiieiierie ettt 419
[1] User Programs (*.PD3)cccceeruiimiiiriiiiiieiiieeeniee s seeeesnieee e 419

[2] Extension Libraries (*.FN3 and *.EX3)cccccouvueririineininnnnns 421

[B] Data FileS ..ccuuiiiiieiiiieecie e 422

18.4.3 USING FTP ClIENTeeiiiiiiiiiiiie ettt 425
[1] BaSIC ProCEAUIE.......cociiiiiiiiiie ettt 425

[2] Configuring FTP CHENt.....cooviiiiiiieiiiieiieee e 425

[3] Calculating Memory REQUIrEMENTSc.eeevvvieeriiieniieeeniiieens 426

[4] Optimizing Drive (Recommended)cccoouverriieeiiieneiiiieennns 427

[5] FTP Transfers ...c.oooiiiiiiiiiieieee et 427
Socket Library (SOCKET.FN3)coiiuieiiiiieiiee sttt 428
L18.5.1 OVEIVIEW ...ttt ettt e et e e e et ee e e e satbeeee e e eenbeeeeeeeanns 428
18.5.2 Detailed Function SpecifiCationscccocvveiiieeiiiieee e 431
FTP Library (FTP.FNB) ..covceoeceeieeeeceeeeee oo naenenaes 452
18.6.1 OVEIVIEW ...eeinriiiiieitee ittt sttt ettt sttt 452
18.6.2 Detailed Function Specificationsccocuveiiiieiiiiee i 454

405

18.1 Two Sides

18.1.1 BHT-7500S

The BHT-7500S includes two built-in libraries providing BHT-BASIC programs with access to a
subset of the TCP/IP family of protocols over the spread spectrum communication system.

SOCKET. FN3: This library implements a subset of the BSD4.4 socket application program
interface (API).

FTP. FN3: This library implements FTP client services for file transfers to and from FTP
servers.

18.1.2 Hosts

SOCKET. FN3 and FTP. FN3 require a host machine with the equivalent TCP/IP functionality
and running the appropriate server software.

406

Chapter 18. TCP/IP

18.2 TCP/IP over Spread Spectrum
System

18.2.1 General Procedure

The following is the procedure for using TCP/IP over a wireless communications device.

[1] Configure Wireless Communications Device

To connect to the wireless communications pathway, specify the following system settings in
System Mode or by using the extension library SS.FN3 in a user program:

« Domain
» Security ID

For the procedure in System Mode, refer to the "BHT-7500/BHT-7500S User’s Manual." For
the details of the SS.FN3, refer to Section 17.4, "Wireless Communication Library (SS.FN3)" in
this manual.

If no system settings are made in a user program, those made in System Mode will apply; if
made with SS.FN3, those will become system settings.

Given below is a setting example with SS.FN3:

para%= 1 " Speci fy domain (#1)

data%=9 "Val ue to be set to domain

call "ss.fn3" 3 para% data% "Set domain (SS.FN3 function #3)
para%= 3 "Specify security ID (#3)

data$ = "9999" "Value to be set to security ID
call "ss.fn3" 4 para% data$ "Set security ID

"(SS.FN3 function #4)

407

[2] Configure TCP/IP System

To connect to the TCP/IP pathway, specify the following system settings in System Mode or by
using the extension library SOCKET.FN3 in a user program:

 IP address
* Subnet mask
» Default gateway
These settings will be used in [6].

For the procedure in System Mode, refer to the "BHT-7500/7500S User’'s Manual." For the
details of the SOCKET.FN3, refer to Section 18.5, "Socket Library (SOCKET.FN3)."

Given below is a setting example with SOCKET.FN3:

ny.addr$ = "192. 168. 0. 125" "I P address of the BHT
subnet mask$ = "255. 255. 255. 0" " Subnet mask
gateway$ = "0.0.0.0" "Default gat eway
para%= 1 "Specify I P address (#1)
cal | "socket.fn3" 45 para% ny.addr$ "Set | P address

" (SOCKET. FN3 Function #45)
para%= 2 " Set subnet mask (#2)
cal | "socket.fn3" 45 para% subnet mask$ "Set subnet mask

" (SOCKET. FN3 Function #45)
para%= 3 "Specify default gateway (#3)
cal | "socket.fn3" 45 para% gateway$ "Set default gateway

" (SOCKET. FN3 Function #45)

408

Chapter 18. TCP/IP

[3] Declare TCP/IP Communications Pathway

Specify the following system settings by using the socket library (SOCKET.FN3):

» Communications device: Wireless communications device

 Link layer: Ethernet
For the setting procedure with the SOCKET.FN3, refer to Section 18.5, "Socket Library
(SOCKET.FN3)."

Given below is a setting example using SOCKET.FN3:

iftype%= 2 "Specify wirel ess communications device
| ayermode% = 2 "Specify Ethernest as a link |ayer

call "socket.fn3" 40 iftype% |ayernode% interface%
" Speci fy communi cations pat hway

" (SOCKET. FN3 function #40)

"Returns value in interface%

"(The returned value will be used in
'[6] and [8].)

[4] Open Wireless Communications Device

Use the OPEN " COMB:" statement.
At the opening time, the following will take place:
» Powering up the wireless block
» Performing the self test of the wireless block

« Initializing the wireless block
For the details, refer to Section 17.3, "Wireless Communications-related Statement."

Given below is an example using the wireless communications-related statement:

hConB% = 1 "Specify a file nunber to be opened
"(The file number will be used alsoin[9].)
open "COMB: " as #hConB% "(pen the wirel ess communications device

"(OPEN "COMB: " statenent)

409

[5] Check Wireless Communications Device Synchronization
with Master

Using a wireless communications device for TCP/IP communication requires synchronizing
with the master (e.g., access point). To check the synchronization, use the extension library
SS.FN3.

In any of the following cases, a wireless communications device may not be synchronized with
the master:

* When a wireless communications device is opened (Opening a wireless communications
device and synchronizing with the master will take a few seconds.)

» When a wireless block tries to synchronize with a new master in roaming.
* When a wireless block is moved out of the radio-wave area with the master.

* When a wireless block is moved to a place where there is any radio-wave obstruction
between the wireless block and the master.

For details about SS.FN3, refer to Section 17.4, "Wireless Communication Library (SS.FN3)."

Given below is a setting example using SS.FN3.

timeout % = 100 "Set time (10 sec.) to wait for
"synchroni zation with master.

call "ss.fn3" 7 timeout% assoc% " Check synchronization with master.
"(SS.FN3 function #7)
"Returns value in assoc%

if assoc%= -1 then "I'f synchronization is not conplete, go
goto Sync.Erro "to Sync.FErr.
endi f

410

Chapter 18. TCP/IP

[6] Connect to TCP/IP Communications Pathway

Use the extension library SOCKET.FN3. Connecting to the TCP/IP communications pathway
requires the following settings (specified in [2]):

* |P address
* Subnet mask

» Default gateway

There are two ways to specify these parameters.

(&) Use the system settings with the extension library SOCKET.FN3. Refer to Section 18.5,
"Socket Library (SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

call "socket.fn3" 41 interface% ' Connect to communications pathway
" (SOCKET. FN3 function #41)
"Use the returned value of [3] in
"interface%

(b) Use user-defined values provided by the application with the extension library
SOCKET.FN3. Refer to Section 18.5, "Socket Library (SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

ny.addr$ = "192. 168. 0. 125" "I P address of the BHT
subnet mask$ = "255. 255. 255. 0" " Subnet mask
gateway$ = "0.0.0.0" 'Default gat eway

cal | "socket.fn3" 42 interface% ny.addr$, subnetmask$, gateway$

"Connect to conmmuni cations pat hway
" (SOCKET. FN3 function #42)

"Use the returned value of [3] in
"interface%

[7] Transfer Data or Filevia Socket Interface

To transfer data via the socket interface, use the extension library SOCKET.FN3. Refer to Sec-
tion 18.3, "Socket API" and Section 18.5, "Socket Library (SOCKET.FN3)."

To transfer file via the socket interface, refer to Section 18.4.3, "Using FTP Client."

411

[8] Disconnect TCP/IP Communications Pathway
Use the extension library SOCKET.FN3. Refer to Section 18.5, "Socket Library
(SOCKET.FN3)."
Given below is an example using SOCKET.FN3.
Call "socket.fn3" 43 interface% 'Disconnect TCP/IP communications pathway

" (SOCKET. FN3 function #43)
"Use the returned value of [3] in interface%

[9] Close Spread Spectrum Wireless Device

Use the CLOSE statement in BHT-BASIC.

Closing the device will power off the wireless block. For details about the CLOSE statement,
refer to Chapter 14 "Statement Reference."

Given below is an example using the CLOSE statement.
cl ose #hConB% "Close the wireless comunications device

"(Use CLOSE statenent)
"Use the file nunber specified in [4]

For details, refer to the sample programs.

412

Chapter 18. TCP/IP

18.2.2 Programming Notes for Socket API According
to UDP

The user datagram protocol (UDP) has no flow control, so send/receive data may go missing
due to poor line conditions or difference of communications capabilities between wireless and
Ethernet. To prevent data missing, be sure to incorporate some flow control process into user
programs at both the BHT and host.

Given below are message transmission examples that support retransmission controls at each
of the BHT and host.

m BHT’sretransmission control for a transmission error

Assume that the BHT uses the protocol of receiving transmission completion message from
the host after sending a message.

If the BHT times out for waiting a transmission completion message, it will transmit the unsent
message again.

Normal end

BHT Host

Data message

Transmission
completion message

Disconnect

Transmission error in a message sent from the BHT

BHT Data message Host

Transmission
completion message

v

Timeout for receiving W

the transmission

completion message | (sent again)

Disconnect

Transmission
completion message

413

m Host’'sretransmission control for atransmission error

Assume that the host uses the protocol of receiving transmission completion message from the
BHT after sending a message.

If the host times out for waiting a transmission completion message, it will transmit the unsent
message again.

Normal end
BHT Host

Data message

Transmission
completion message

Disconnect

Transmission error in a message sent from the host

BHT Data message Host

Transmission
completion message

v

m Timeout for receiving
(sent again) the transmission
\ completion message

Disconnect

Transmission |
completion message

414

Chapter 18. TCP/IP

18.2.3 Programming Notesfor Resume Function

If the BHT is turned off and on during data transmission in wireless communications, the wire-
less communications device will remain off so that subsequent data will no longer be sent or
received.

In such a case, BHT-BASIC interpreter will return a run-time error (Error code: &h105) inform-
ing that the power is off. Develop such user programs that perform the following procedure and
then open the wireless communications device again.

m Procedurefor opening the wireless communications device again after detec-
tion of a power-off error

(1) Usethe ON ERROR GOTOstatement for error interrupt (at this step, none of (3) through
(5) should be carried out)

(2) Use the RESUME statement for transferring control to the main program
(3) Close the socket.
(4) Disconnect the TCP/IP communications pathway.

(5) Close the wireless communications device.

On the next page is a sample program.

415

main: " Main program
on error goto Err. TCP " Prepare for error interrupt (To Err. TCP
" at the time of error occurrence)

open "COM3:" as #hCom3% ' Open awireless communications device
" Use the OPEN "COM3:" statement

sock.stts% = 1 " Set "1" to socket processing number

call "socket.fn3" 41 interface% " Connect TCP/IP communications pathway
" (system settings)
" Use SOCKET.FN3 function #41

sock.stts% = 2 " Set "2" to socket processing number
call "socket.fn3" 26 family%,type%,protocol%,sockfd% ' Generate socket
" Use SOCKET.FN3 function #26

sock.stts% = 3 " Set "3" to socket processing number

call "socket.fn3" 3 sockfd%,family%,port%,serv.addr$ * Connect socket

: " Use SOCKET.FN3 function #3
sock.stts% = 4 " Set "4" to socket processing number
return '

Err. TCP: " Error interrupt processing
" Control transferred to this step if an
" error occurs
err.code% = ERR ' Get error number
err.line% = ERL ' Get error line number
resume Sock.Err " RESUME statement to transfer control from
" error interrupt processing to socket error
’ processing routine
Sock.Err: " Socket error processing routine
print" ERR : " ; hex$(err.code%) ' Display error number
print" ERL : " ; hex$(err.line%) ' Display error line number
if sock.stts% >= 3 then " If OK until socket generation,
call "socket.fn3" 28 sockfd% ’ close socket
endif
if sock.stts% >= 2 then " If OK until connection of TCP/IP
’ communications pathway
call "socket.fn3" 43 interface% ’ disconnect the pathway
endif ’
if sock.stts% >= 1 then " If OK until opening the wireless device
close #hCom3% ' close the device
endif ’
goto main ’ To main program

416

Chapter 18. TCP/IP

18.3 Socket API

18.3.1 Overview

The SOCKET. FN3 library implements a subset of the BSD4.4 socket application program
interface (API).

The following flowcharts show the BSD4.4 socket API calls for the two communications proto-
cols required for the TCP/IP transport layer: transmission control protocol (TCP) for streams
and user datagram protocol (UDP) for datagrams.

m Transmission Control Protocol (TCP)

Client Server
socket() socket()
V]
bind()
V]
listen()
V]
connect() accept()
V] V]
send() select()
\ V]
select() recv()
V] \
recv() send()
v v
close() close()

417

m User Datagram Protocol (UDP)

Client Server
socket() socket()
% %

bind() bind()
\/
l select()
\/
sendto() recvfrom()
v 2
select() sendto()
\/ \/
recvfrom() close()
\/
close()

418

Chapter 18. TCP/IP

18.4 FTP Client

18.4.1 Overview

The FTP.FN3 library implements FTP client services for file transfers to and from FTP servers.
Note that there are no server capabilities.

This FTP client transfers files between operating systems in image (binary) format. The only
translation support is for line delimiter conversion.

In particular, note that this FTP client does not convert between such double-byte character
encodings as Shift JIS and EUC. Provide your own code conversion if the server uses a differ-
ent encoding--for directory and file specifications, in particular.

18.4.2 FileFormats

The FTP client classifies files into three types by their extensions: user programs (*.PD3),
extension libraries (*.FN3 and *.EX3), and data files (other extensions).

The following describes each file format in turn, assuming that the line delimiter setting speci-
fies the CR-LF combination: a carriage return (0Dh) plus a line feed (0Ah).

[1] User Programs (*.PD3)

The FTP client reserves the .PD3 extension for user program files generated by the BHT-
BASIC compiler.

Program files use a fixed record length of 128 bytes for all records except the last. These
records are separated with line delimiters.

Record length (128 bytes)

Record — CR|LF
CR|LF
Program code CR|LF
CR|LF
CR|LF

419

The FTP client automatically pads the last record of a downloaded program file with null codes
(00h) to maintain the fixed-length format. (The number required is 128 less the number of
bytes in the last record).

Record length (128 bytes)

CR|LF
CR|LF
CR|LF

l Download

Record length (128 bytes)

| Zeros

Aside: To conserve memory and boost performance, the BHT packs a pair of ASCII bytes
into a single byte by converting each byte into a 4-bit hexadecimal number.

420

Chapter 18. TCP/IP

[2] Extension Libraries (*.FN3 and *.EX3)

The FTP client treats files with extensions .FN3 and .EX3 as extension libraries.

Extension libraries use a fixed record length of 130 bytes for all records except the last. These
records are separated with line delimiters.

Record length (130 bytes)

Record — CR|LF
CR|LF
Program code CR|LF
CR|LF
CR|LF
[CRILF|

The FTP client automatically pads the last record of a downloaded program file with null codes
(00h) to maintain the fixed-length format. (The number required is 130 less the number of
bytes in the last record.)

Record length (130 bytes)

CR|LF
CR|LF
CR|LF
|CR‘LF‘
l Download

Record length (130 bytes)

| Zeros

Aside: When downloading extension libraries, the BHT uses 128 bytes out of 130 bytes of
record length (the remaining 2 bytes will be used for checking data). To conserve
memory and boost performance, the BHT packs a pair of ASCII bytes into a single
byte by converting each byte into a 4-bit hexadecimal number.

421

[3] DataFiles

The FTP client treats files with extensions other than .PD3, .FN3, and .EX3 as data files.

Data file records consist of fields separated with line delimiters. An EOF (1Ah) at the end of the
data file is optional.

Data files are not limited to ASCII characters. They can use all bytes codes from 00h to FFh.

Record length

Record — | Field 1 Fied2 | Fieldn |CR|LF
________ CRI|LF
________ CRI|LF
________ CRI|LF
________ CRI|LF
EOF (optional) |

There can be 1 to 16 fields, each 1 to 254 bytes long. The sum of the field lengths and the
number of fields, however, must not exceed 255.

If the actual record length is different from the specified record length

The FTP client discards any excess beyond the specified record length during downloads.

Specified record length

Record 1 CRILFI — Specified length
Record 2 ‘CR‘LF‘ < Length over
specification

l

Specified record length

Record 1 ~ Asis
Record 2 « Truncated

422

Chapter 18. TCP/IP

The treatment of short records is under application control. The default is to delete any trailing

spaces (20h).

Specified record length

Record 1

CR‘LF‘ ~ Specified length

Record 2

CR[LF

~ Short

Record 3 | Spaces

CR| LF‘ « Short, with trailing spaces

l

Specified record length

Record 1

~ Asis

Record 2
Record 3

~ Asis
« Truncated further

Alternatively, the FTP client can pad such short records to the specified record length with

spaces (20h).

Specified record length

Record 1 CR‘LF‘ — Specified length
Record 2 |CR|LF| « Short
Record 3 | Spaces |CR‘LF‘ — Short, with trailing spaces
Specified record length
Record 1 ~ Asis
Record 2 | Spaces ~ Padded
Record 3 | Spaces| Spaces | ~ Padded

423

Line Delimiters inside Data Records

The treatment of line delimiters (CR-LF, CR, or LF) inside downloaded data records, which can
use all codes from 00h to FFh, is under application control. The default, described above, is to

split the incoming stream into short records.

Specified record length

Record n1 |CR|LF| Record n2

CR|LF|

l

Specified record length

Record n1 | Spaces

Record n2 | Spaces

Split

Alternatively, the FTP client can ignore any line delimiters inside downloaded data records,
treating them as data. Note, however, that the specified line delimiters must appear in the
specified positions between records. Otherwise, the FTP client cancels the transfer with an

error because a record is either too long or too short.

Specified record length

Record n1 |CR|LF| Record n2

CR|LF|

l

Specified record length

Record n1 |CR|LF| Record n2

424

Single record

Chapter 18. TCP/IP

18.4.3 Using FTP Client

[1] Basic Procedure

First, set up for using the FTP client, as necessary, with the following steps. All three are
optional, but the last two are highly recommended for downloads.

(1) Configure the FTP client with the appropriate FTP. FN3 extension functions.

(2) Use the FRE function to check whether there is sufficient free memory available to hold
the downloaded file.

(3) Use a BHT-BASIC QUT statement to optimize the drive.

The rest of the procedure is the same as in Section 18.2, "TCP/IP over Spread Spectrum Sys-
tem." The key step is to use the FTP. FN3 extension functions for the file transfers.

[2] Configuring FTP Client

The FTP client requires the following information before it can transfer files.
* IP address for server
* Login (user) name for server
» Password for that login (user) name

SOCKET. FN3 provides functions #8 and #9 for reading and changing these settings. For fur-
ther details on these two functions, see their descriptions in Section 18.6, "FTP Library
(FTP.FN3)," Subsection 18.6.2.

425

[3] Calculating Memory Requirements

The FTP protocol specifications do not provide for checking the amount of BHT memory avail-
able during downloads. If the BHT runs out of memory during a download, the FTP client can-
cels the transfer and deletes the partially downloaded file. The user application program must,
therefore, check availability with the FRE function or equivalent method and compare the result
with the BHT file size (BFS) before using the download function. The formula for calculating the
BHT memory requirements (MEM) depends on the file format.

NOTE

* The line delimiter size (LDYS) refers to the number of bytes in each line delimiter:
two for operating systems using the CR-LF combination and one for those using
only LF or CR.

* The number 4096 (4K) is the assumed memory management unit. Change this to
8192 (8K) if the handy terminal uses that larger block size.

* HFS = host file size

m User Programs (*.PD3)
Determine MEM from HFS.
BFS = ROUND_UP (HFS + (128 + LDS)) x 64
MEM = ROUND_UP (BFS + 4096) x 4096

Example: File size of 12,345 bytes on operating system using CR-LF combination
BFS = ROUND_UP (12345 + (128 + 2)) x 64 = ROUND_UP(94.96) x 64 = 6080
MEM = ROUND_UP (6080 + 4096) x 4096 = ROUND_UP(1.48) x 4096 = 8192

Note that 128K of free memory is enough to download even the largest (128K) BASIC pro-
gram.

m Extension Libraries (*.FN3 and *.EX3)
Determine MEM from HFS.
BFS = ROUND_UP (HFS + (130 + LDS)) x 64
MEM = ROUND_UP (BFS + 4096) x 4096

The rest of the procedure is the same as for BASIC program files.

426

Chapter 18. TCP/IP

Data Files

Determine MEM from the field lengths and number of records.
BPR = bytes per record = (number of fields) + (sum of field lengths)
RPB = records per block = ROUND_DOWN (4096 + BPR)
MEM = ROUND_UP (records + RPB) x 4096

Example: File with 1000 records with four fields of lengths 13, 12, 6, and 1
BPR =4+ (13+12+6+1) =36
RPB = ROUND_UP (4096 + 36) = ROUND_UP (113.778) = 113

MEM = ROUND_UP (1000 + 113) x 4096 = ROUND_UP (8.850) x 4096
= 9 x 4096 = 36,864

[4] Optimizing Drive (Recommended)

File system delays can sometimes retard file FTP downloads. The surest way to prevent such
delays is to use a BHT-BASIC OUT statement to optimize the drive.

Another reason for recommending this step is that it reduces air time, the period that the wire-
less device is open.

[5] FTP Transfers

The following is the basic procedure for transferring files with the FTP. FN3 extension func-
tions.

1)
)
®)
(4)

Open an FTP client session with function #1 or #2.
Verify the FTP server current directory with function #4 or #5, if necessary.
Download and upload files with functions #6 and #7.

Close the FTP client session with function #3.

427

185 Socket Library (SOCKET. FN3)

18.5.1 Overview

m String Variables

The following are the string variables used by this library together with their memory
requirements.

Description Name Size in Bytes
Version information VERSI| ON$ min. 7
Internet address | PADDRESS$ min. 15
Subnet mask SUBNETNMASK$ min. 15
Default gateway GATEVWAYS min. 15
Receive buffer RECVBUFF$ 1to 255
Transmit buffer SENDBUFF$ 1 to 255
Socket identifier set SOCKFDSET$ min. 41

READFDSET$ min. 41
WRI TEFDSET$ min. 41
EXCEPTFDSET$ min. 41

m String Array Variables

The following are the string array variables used by this library together with their memory
requirements.

Description Name Size in Bytes
Receive buffer RECVBUFF$() 1 to 4096
Transmit buffer SENDBUFF$()

TCP 1 to 4096
UDP 1to 1472

428

m Function Number List

Chapter 18. TCP/IP

Corresponding

Number Function Socket API Function

0 Get socket.FN3 version —

1* — accept()

2 Assign address to socket bind()

3 Connect socket connect()

4* — getpeername()

5* — getsockname()

6 Get socket option getsockopt()

7 Convert host long (4 bytes) to network byte order htonl()

8 Convert host short (2 bytes) to network byte order htons()

9 Convert Internet address from dotted quad nota- inet_addr()
tion to 32-bit integer

10* — listen()

11 Convert network long (4 bytes) to host byte order ntohl()

12 Convert network short (2 bytes) to host byte order ntohs()

13* — readv()

14 Receive message from TCP socket recv()

15 Receive message from UDP socket recvfrom()

16* — rresvport()

17 Monitor socket requests select()

18 Initialize socket identifier set FD_ZERO macro

19 Add socket identifier to socket identifier set FD_SET macro

20 Delete socket identifier from socket identifier set FD_CLR macro

21 Get socket identifier status from socket identifier =~ FD_ISSET macro
set

22 Send message to another TCP socket send()

23 Send message to another UDP socket sendto()

24 Set socket options setsockopt()

25 Shut down socket shutdown()

26 Create socket socket()

27* — writev()

28 Close socket close()

* Socket API function not supported by SOCKET.FN3 library.

429

Corresponding

Number Function Socket API Function

40 Specify TCP/IP communications pathway Unique to BHT

41 Connect TCP/IP communications pathway with Unique to BHT
system settings

42 Connect TCP/IP communications pathway with ~ Unique to BHT
user settings

43 Disconnect TCP/IP communications pathway Unique to BHT

44 Get TCP/IP system settings Unique to BHT

45 Set TCP/IP system settings Unique to BHT

46 Get TCP socket status Unique to BHT

* Socket API function not supported by SOCKET.FNS3 library.

430

Chapter 18. TCP/IP

18.5.2 Detailed Function Specifications

This function returns the SOCKET.FN3 library version in VERSI ONS.

Function #0 Get SOCKET.FN3 version

Syntax: CALL "SOCKET. FN3" 0 VERSI ON$
Description:

Parameters: (None)

Return value:

Function #2

VERSI ONS$: Version information, 7 characters, fixed length

Assign address to socket

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL " SOCKET. FN3" 2 SOCKFD% FAM LY% PORT% address
where addr ess is ADDRESS or | PADDRESS$
This function assigns an address to the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API bind() function.

SOCKFD% Socket identifier

FAM LY% Protocol family

PORT% Port

ADDRESS Local address for connection

| PADDRESS$ Internet address in dotted quad notation

The protocol family (FAM LY% must be 2, the value indicating the ARPA
Internet protocols.

(None)

Error code Meaning

209h Socket identifier is invalid.

216h A parameter is invalid, or the socket is already bound.

224h The socket is being assigned an address.

230h The specified IP address is already in use.

431

Function #3: Connect socket

Syntax: CALL " SOCKET. FN3" 3 SOCKFD¥% FAM LY% PORT% address
where addr ess is ADDRESS or | PADDRESS$
Description: This function connects the specified socket identifier to another socket.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API connect() function.

Parameters: SOCKFD% Socket identifier
FAM LY% Protocol family
PORT% Port
ADDRESS Local address for connection

| PADDRESS$ Internet address in dotted quad notation

The protocol family (FAM LY% must be 2, the value indicating the ARPA
Internet protocols.

Return value: (None)

Run-time errors:

Error code Meaning
105h Power-off detected. (BHT-7500S only)
201h Cannot connect to socket.
209h Socket identifier is invalid.
216h A parameter is invalid.
229h The specified socket does not match the connection target socket.
22Fh The specified address family is invalid for this socket.
230h The specified address is already in use.
231h The specified address is invalid.
238h The specified socket is already connected.
23Ch The connection attempt has timed out.
23Dh Failed to connect.
241h There is no connection pathway to the host for TCP socket.

432

Chapter 18. TCP/IP

Function #6: Get socket option

Syntax: CALL " SOCKET. FN3" 6 SOCKFD¥ OPTNAMVEY option
where opt i on is OPTI ON%or OPTI ON
Description: This function gets the specified option setting for the specified socket.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API getsockopt() function.

Parameters: SOCKFD% Socket identifier
OPTNAMEY Option name
Return value: option Current setting for socket option (OPTI ONYOPTI ON)

of type integer/real

Correspondence tables:

O(g;?m:“gizr Description Values for Option (OPTI ON%
2 Keep-alive timer enable/disable 0 (disabled), 1 (enabled)
O(g;?m'i‘gizr Description Values for Option (OPTI ON)
8 Transmit buffer size (byte) 1to 8192
9 Receive buffer size (byte) 1to0 8192
26 Retry count 0to 32
30 Initial round trip time (ms) 100 to 3000
31 Minimum round trip time (ms) 100 to 1000
32 Maximum round trip time (ms) 100 to 60000

Run-time errors:

Error code Meaning

209h Socket identifier is invalid.

216h A parameter is invalid.

433

Function #7: Convert host long (4 bytes) to network byte order

Syntax: CALL " SOCKET. FN3" 7 HOSTLONG NETLONG

Description: This function converts a (4-byte) long from host byte order to network byte
order.
BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API htonl() function.

Parameters: HOSTLONG Long in host byte order

Return value: NETLONG Long in network byte order

Function #8: Convert host short (2 bytes) to network byte order
Syntax: CALL " SOCKET. FN3" 8 HOSTSHORT% NETSHORT%
Description: This function converts a (2-byte) short from host byte order to network byte
order.
BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API htons() function.
Parameters: HOSTSHORT% Short in host byte order
Return value: NETSHORT% Short in network byte order

Function #9: Convert Internet address from dotted quad notation to 32-bit integer

Syntax: CALL "SOCKET. FN3" 9 | PADDRESS$, ADDRESS

Description: This function converts an Internet address in dotted quad notation to a 4-
byte Internet address.
BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API inet_addr() function.

Parameters: | PADDRESS$ Internet address in dotted quad notation

Return value: ADDRESS 4-byte Internet address

434

Function #11:

Chapter 18. TCP/IP

Convert network long (4 bytes) to host byte order

Syntax:

Description:

Parameters:

Return value:

Function #12:

CALL " SOCKET. FN3" 11 NETLONG HOSTLONG
This function converts a (4-byte) long from network byte to host byte order.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API ntohl() function.

NETLONG
HOSTLONG

Long in network byte order

Long in host byte order

Convert network short (2 bytes) to host byte order

Syntax:

Description:

Parameters:

Return value:

Function #14:

CALL " SOCKET. FN3" 12 NETSHORT% HOSTSHORT%

This function converts a (2-byte) short from network byte order to host byte
order.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API ntohs() function.

NETSHORT %
HOSTSHORT%

Short in network byte order

Short in host byte order

Receive message from TCP socket

Syntax:

Description:

Parameters:

CALL "SOCKET. FN3" 14 SOCKFD% RECVBUFFS[()],
RECVLEN% RECVMODEY% RECVSI ZE% [, RECVFLAGY

This function receives data from the IP address and port humber con-
nected to the specified socket identifier into the specified buffer.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API recv() function.

SOCKFD% Socket identifier

RECVBUFFS$[()] Receive buffer

RECVLEN% Maximum number of bytes to receive
RECVMODE% Receive mode

RECVFLAG% Storage method (optional)

The receive buffer (RECVBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
4096.

The receive mode (RECVMODE%) must be one of the following values:

0 Normal
1 Out of band data
2 Peek at next message

The storage method (RECVFLAG) is required for a string array buffer. It
is ignored for a string variable and new data will be written.

435

The storage method (RECVFLAGX) must be one of the following values:

0 Append data to buffer (default if omitted)
1 Overwrite buffer with data

Note: If RECVFLAGYis 0 or omitted, the user application program must
initialize the receive buffer string array variable before receiving any data.

Return value: RECVSI ZE% Number of bytes received

Run-time errors:

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

228h The maximum number of bytes to receive is too small.
236h An RST from the opposite end has forced connection.
237h There is insufficient system area memory.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

436

Example:

Append operation
Incoming data: 1024 bytes ("0123456789.......... 0123")
Receive buffer: 8 elements, 128 characters each for a total of 1024 bytes

« After initializing receive buffer

Element O

Element 7

1

2

3 4 5

* After receiving first 512 bytes

Element O

Element 1

Element 3

Element 4

Element 7

1 2 3 4 5
(O I A A IC N
g|9(0o|1|2
gl lel7]e

[Strings]

[Strings]

« After receiving remaining 512 bytes

Element O

Element 1

Element 3

Element 4

Element 7

1 2 3 4 5
olalo]ae]ae
g 9|01
4|56 |78
234|556
67 e]olo

[Strings]

437

125126127 128
125126127 128
4 '5"|'6" |7
273145
g 9o
125126127 128
gl el
e
8'9|0|1
6’789
olalo2]e

Chapter 18. TCP/IP

Second half is
appended to first.

Example: Overwrite operation

Incoming data: 1024 bytes ("0123456789.......... 0123")
Receive buffer: 8 elements, 128 characters each for a total of 1024 bytes

« After initializing receive buffer

[Strings]
1 2 3 4 5 125126 127 128
Element0 | — | | <[=[] «ccvvous I
Element 7 I I O I I N R N
« After receiving first 512 bytes
[Strings]
1 2 3 4 5 125126 127 128
Elemento |o[1v[2[s[a] - - - [a]s]e]7
Element 1 Q90| 2] e o | g | g | g
Element3 |4 |5 |6 |7 |'8 e ‘8190 | T
Element 4 S T N I I
Element7 | — | - | |- [=-] -+ cvovv _1T-T-71=
 After receiving remaining 512 bytes
[Strings]
1 2 3 4 5 125126 127 128
Elemento |2 |34 [s5]e] o it YS) o e e
Elementl |0 |21 [2 |3 |4 | == 456 |7 Second half
o oo overwrites first.
Element3 |6’ |78 |9 |0’ e 01|23
Element 4 N I I N e I N I I
Element 7 N D N I U

438

Chapter 18. TCP/IP

Function #15: Receive message from UDP socket

Syntax:

Description:

Parameters:

Return value:

CALL "SOCKET. FN3" 15 SOCKFD% RECVBUFFS$[()], RECV-
LEN% RECVMODE% FAM LY% PORT% address, RECVS| ZE%
[, RECVFLAG%

where addr ess is ADDRESS or | PADDRESS$

This function receives data from the IP address and port number con-
nected to the specified socket identifier into the specified buffer.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API recvfrom() function.

SOCKFD% Socket identifier

RECVBUFF$[()] Receive buffer

RECVLENY% Maximum number of bytes to receive
RECVMODE% Receive mode

FAM LY% Protocol family

PORT% Port

ADDRESS Local address for connection

| PADDRESS$ Internet address in dotted quad notation
RECVFLAG% Storage method (optional)

The receive buffer (RECVBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
4096.

The receive mode (RECVMODE%) must be one of the following values:

0 Normal
1 Out of band data
2 Peek at next message

The protocol family (FAM LY% must be 2, the value indicating the ARPA
Internet protocols.

The storage method (RECVFLAG is required for a string array buffer. It
is ignored for a string variable and new data will be written.

The storage method (RECVFLAGX) must be one of the following values:

0 Append data to buffer (default if omitted)
1 Overwrite buffer with data

Note: If RECVFLAGYis 0 or omitted, the user application program must
initialize the receive buffer string array variable before receiving any data.

RECVSI ZE% Number of bytes received

439

Run-time errors:

Error code Meaning
105h Power-off detected. (BHT-7500S only)
209h Socket identifier is invalid.
216h A parameter is invalid.
228h The maximum number of bytes to receive is too small.
229h TCP is the wrong protocol here.
237h There is insufficient system area memory.

440

Function #17:

Chapter 18. TCP/IP

Monitor socket requests

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL "SOCKET. FN3" 17 MAXFD% READFDSET$, WRI TEFD-
SET$, EXCEPTFDSET$, TI MEOUT, RESULT%

This function waits for changes in the socket identifier sets (read, write,
and exception conditions) for the specified socket identifiers.

The only exception condition is out of band data.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API select() function.

MAXFD% Number of socket identifiers + 1

READFDSET$ Socket identifier set to monitor for read

WRI TEFDSET$ Socket identifier set to monitor for write
EXCEPTFDSET$ Socket identifier set to check for exception conditions
TI MEQUT Waiting period (in seconds)

The waiting period (TI MEQUT) must be one of the following values:

-1 No waiting period
0 No timeout

Other time interval in seconds

RESULT% Number of sockets that are ready.
After a timeout, RESUL T%contains 0.

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

Function #18:

Initialize socket identifier set

Syntax:

Description:

Parameters:

Return value:

CALL "SOCKET. FN3" 18 SOCKFDSET$
This function initializes the specified socket identifier set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API FD_ZERO macro.

SOCKFDSET$ Socket identifier set
(None)

441

Function #19:

Add socket identifier to socket identifier set

Syntax:

Description:

Parameters:

Return value:

Function #20:

CALL "SOCKET. FN3" 19 SOCKFDY% SOCKFDSET$

This function adds the specified socket identifier to the specified identifier
set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket APl FD_SET macro.

SOCKFD% Socket identifier
SOCKFDSET$ Socket identifier set
(None)

Delete socket identifier from socket identifier set

Syntax:

Description:

Parameters:

Return value:

Function #21:

CALL " SOCKET. FN3" 20 SOCKFDY% SOCKFDSET$

This function deletes the specified socket identifier from the specified iden-
tifier set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API FD_CLR macro.

SOCKFD% Socket identifier
SOCKFDSET$ Socket identifier set
(None)

Get socket identifier status from socket identifier set

Syntax:

Description:

Parameters:

Return value:

CALL " SOCKET. FN3" 21 SOCKFD% SOCKFDSET$, FDI SSET%

This function gets the status of the specified socket identifier in the speci-
fied socket identifier set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket APl FD_ISSET macro.

SOCKFD% Socket identifier
SOCKFDSET$ Socket identifier set
FDI SSET% Socket identifier status

The socket identifier status (FDISSET%) has the following values:

0 No change
1 Change in status

442

Function #22;

Chapter 18. TCP/IP

Send message to another TCP socket

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL "SOCKET. FN3" 22 SOCKFDY% SENDBUFFS$[()],
SENDLEN% SENDMODEY% SENDSI ZE%

This function transmits data from the specified buffer to the IP address and
port number connected to the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API send() function.

SOCKFD% Socket identifier
SENDBUFF$[()] Transmit buffer
SENDLEN% Number of bytes to transmit
SENDMODE% Transmit mode

The transmit buffer (SENDBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
4096.

The transmit mode (SENDMODE%) must be one of the following values:

0 Normal
1 Out of band data
4 Bypass pathway control function

SENDSI ZE% Number of bytes transmitted

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

228h The maximum number of bytes to receive is too small.
237h There is insufficient system area memory.
239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

241h There is no connection pathway to the host for UDP socket.

443

Function #23:

Send message to another UDP socket

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL "SOCKET. FN3" 23 SOCKFDY% SENDBUFFS$[()],
SENDLENY% SENDMODE% FAM LY% PORT% address,
SENDSI ZE%

where addr ess is ADDRESS or | PADDRESS$

This function transmits data from the specified buffer to the IP address and
port number connected to the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API sendto() function.

SOCKFD% Socket identifier

SENDBUFF$[()] Transmit buffer

SENDLEN% Number of bytes to transmit
SENDMODE% Transmit mode

FAM LY% Protocol family

PORT% Port

ADDRESS Local address for connection

| PADDRESS$ Internet address in dotted quad notation

The transmit buffer (SENDBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
1472.

The transmit mode (SENDMODE%) must be one of the following values:

0 Normal
1 Out of band data
4 Bypass pathway control function

The protocol family (FAM LY% must be 2, the value indicating the ARPA
Internet protocols.

SENDSI ZE% Number of bytes transmitted

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

228h The maximum number of bytes to receive is too small.

229h TCP is the wrong protocol here.

237h There is insufficient system area memory.

241h There is no connection pathway to the host.

444

Function #24:

Chapter 18. TCP/IP

Set socket options

Syntax:

Description:

Parameters:

Return value:

CALL "SOCKET. FN3" 24 SOCKFDY% OPTNAME% option
where opt i on is OPTI ON%or OPTI ON

This function sets the specified option for the specified socket to the new
value.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API setsockopt() function.

SOCKFD% Socket identifier
OPTNAMEY Option name
OPTI ON% OPTI ON New setting for socket option of type integer/real

(None)

Correspondence tables:

O(gtla?l\;l;/nélg/zr Description Values for Option (OPTI ON% \:2;31
2 Keep-alive timer enable/disable 0 (disabled), 1 (enabled) 0

?g;?,\;l:vng/jr Description Values for Option (OPTI ON) v';;ﬂzls
8 Transmit buffer size (byte) 1to 8192 8192
9 Receive buffer size (byte) 1to 8192 8192
26 Retry count 0to 32 12
30 Initial round trip time (ms*) 100 to 3000 3000
31 Minimum round trip time (ms*) 100 to 1000 100
32 Maximum round trip time (ms¥*) 100 to 60000 60000

* To be set in units of 100.

Run-time errors:

Error code Meaning

201h Cannot set option after connection established.

209h Socket identifier is invalid.

216h A parameter is invalid.

445

Function #25;:

Shut down socket

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL " SOCKET. FN3" 25 SOCKFDY% HOMO»%
This function shuts down socket transfers in the specified direction.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API shutdown() function.

SOCKFD% Socket identifier
HOW G Direction specification
The direction specification (HOM G2 must be one of the following values:

0 Receive
1 Transmit
2 Both

(None)

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

22Ah This option is not recognized at the specification level.

446

Function #26:

Chapter 18. TCP/IP

Create socket

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL " SOCKET. FN3" 26 FAM LY% TYPE% PROTCCOL%
SOCKFD%

This function creates a socket from the specified protocol family, socket
type, and protocol layer and assigns it to a socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API socket() function.

FAM LY% Protocol family for the socket

TYPE% Socket type

PROTOCOL% Protocol layer for the socket

The protocol family (FAM LY% must be 2, the value indicating the ARPA
Internet protocols.

The socket type (TYPE% must be one of the following values:

1 Stream socket
2 Datagram socket
3 Raw socket

The protocol layer (PROTOCOL%) must be one of the following values:

1 ICMP
6 TCP
17 UDP

SOCKFD% Socket identifier

Error code Meaning

218h Too many sockets.

22Bh This protocol family does not support the specified protocol type

and protocol.

237h There is insufficient system area memory.

447

Function #28:

Close socket

Syntax:

Description:

Parameters:
Return value:

Run-time errors:

CALL " SOCKET. FN3" 28 SOCKFD%
This function closes the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API close() function.

SOCKFD% Socket identifier
(None)

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

225h The last close operation for the specified socket is not complete.

23Ah The specified TCP socket has been closed.

23Ch The connection attempt has timed out.

Function #40:

Specify TCP/IP communications pathway

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL " SOCKET. FN3" 40 | FTYPEY% LAYERMODEY% | NTERFACE%

This function specifies the TCP/IP communications pathway from the
specified communications device and link layer.

| FTYPE% Communications device

LAYERMODE% Link layer

The communications device (I FTYPE% must be 2, the value indicating a
COMS3 (wireless) communications device.

The link layer (LAYERMODE%) must be 2, the value indicating an Ethernet
client.

| NTERFACE% Communications pathway

Error code Meaning

100h Cannot specify communications pathway.

448

Function #41:

Chapter 18. TCP/IP

Connect TCP/IP communications pathway with system set-
tings

Syntax:

Description:

Parameters:
Return value:

Run-time errors:

CALL " SOCKET. FN3" 41 | NTERFACE%

This function connects the TCP/IP communications pathway based on the
system settings.

| NTERFACE% Communications pathway
(None)

Error code Meaning

34h Communications device file not open.

101h Cannot connect to communications pathway.
102h Communications pathway not specified.
103h Communications pathway already connected.

105h Power-off detected. (BHT-7500S only)

216h A parameter is invalid.

Function #42:

Connect TCP/IP communications pathway with user settings

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL " SOCKET. FN3" 42 | NTERFACEY% | PADDRESS$, SUBNET-
MASKS$, GATEVWAY$

This function connects the TCP/IP communications pathway based on the
supplied user settings.

| NTERFACE% Communications pathway

| PADDRESS$ Internet address in dotted quad notation
SUBNETMASK$ Subnet mask in dotted quad notation
GATEVWAYS$ Default gateway in dotted quad notation

(None)

Error code Meaning

34h Communications device file not open.

101h Cannot connect to communications pathway.
102h Communications pathway not specified.
103h Communications pathway already connected.

105h Power-off detected. (BHT-7500S only)

216h A parameter is invalid.

449

Function #43:

Disconnect TCP/IP communications pathway

Syntax:
Description:
Parameters:
Return value:

Run-time errors:

CALL " SOCKET. FN3" 43 | NTERFACE%

This function disconnects the specified TCP/IP communications pathway.
| NTERFACE% Communications pathway

(None)

Error code Meaning

104h Communications pathway already disconnected.

105h Power-off detected. (BHT-7500S only)

216h A parameter is invalid.

Function #44:

Get TCP/IP system settings

Syntax:

Description:

Parameters:

Return value:

CALL "SOCKET. FN3" 44 PARAY% DATA$

This function gets the current setting for the specified TCP/IP system set-
tings.

PARA% Setting number
DATAS$ Current setting for TCP/IP system settings

Correspondence tables:

Setting Number

(PARA% Description Values for Setting (DATAS$)
1 IP address Character string in dotted quad
notation, maximum 15 bytes
2 Subnet mask Character string in dotted quad
notation, maximum 15 bytes
3 Default gateway Character string in dotted quad

notation, maximum 15 bytes

450

Function #45:

Chapter 18. TCP/IP

Set TCP/IP system settings

Syntax:
Description:

Parameters:

Return value:

CALL "SOCKET. FN3" 45 PARAY% DATA$
This function sets the specified TCP/IP system settings to the new value.

PARA% Setting number
DATAS$ New setting for TCP/IP system settings

(None)

Correspondence tables:

Function #46:

See Table under function #44.

Get TCP socket status

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL " SOCKET. FN3" 46 SOCKFDY% PATTERNYG TI MEOUT%
RESULT%

This function waits until the specified TCP socket is in the specified state
or the specified time elapsed.

SOCKFD% Socket identifier
PATTERNY% Desired socket state
TI MEQUT% Waiting period (in milliseconds, 100 ms resolution)

The socket state (PATTERN%) must be &h0020, the value indicating that
the opposite end has sent FIN to close the socket. Only TCP sockets sup-
port this function.

Note: Specifying an invalid state sometimes stops processing.

TI MEQUT%must be one of the following values:

-1 No timeout

0 Read current state

1to 32767 Wait specified time (timer resolution: 100 ms)
RESULT% Current socket state

RESUL T%contains the current socket state. After a timeout, RESULT%
contains 0.

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

451

18.6 FTP Library (FTP. FN3)

18.6.1 Overview

m String Variables

The following are the string variables used by this library together with their memory
requirements.

Description Name Size in Bytes
Version information VERSI ON$ 7
Server IP address SERV. | P 15
Login user name USERNAMVES Oto 16
Login password PASSWORDS$ 0to 16
Directory names CURDI R$ NEWDI R$ 0to 255
File names SERV. FNAVES$ Oto 12
CLNT. FNAVES$ Oto 12
OLD. FNAVES Oto 12
NEW FNANVES$ Otol2
Field lengths FLD$ 1to 64 (48)
FTP parameter FTP. PARAS
Function Number Description ConfrTwans
0 Get FN3 version information
1 Open FTP client session with system settings USER/PASS
2 Open FTP client session with user settings USER/PASS
3 Close FTP client session
4 Get current directory on FTP server PWD
5 Change current directory on FTP server CWD
6 Download file from FTP server RETR
7 Upload file to FTP server STOR/APPE
8 Get FTP system settings
9 Set FTP system settings
10 Change file name on FTP server RNFR/RNTO
11 Set port number for file transfer PORT
12 Delete file from FTP server DELE

See also the run-time errors for the FTP. FN3 library.

452

m Reply Codes

Chapter 18. TCP/IP

The messages that FTP servers send during and after FTP operations vary, but servers all
use the same reply codes. (See Table.) All function numbers therefore supply these as their

return value (REPLY%).
Reply Codes Description
110 Restart marker replay.
120 Service ready in nnn minutes.
125 Data connection already open; transfer starting.
150 File status okay; about to open data connection.
200 Command okay.
202 Command not implemented, superfluous at this site.
211 System status, or system help reply.
212 Directory status.
213 File status.
214 Help message.
On how to use the server or the meaning of a particular non-standard
command. This reply is useful only to the human user.
215 NAME system type.
Where NAME is an official system name from the list in the Assigned
Numbers document.
220 Service ready for new users.
221 Service closing control connection.
Logged out if appropriate.
225 Data connection open; no transfer in progress.
226 Closing data connection.
Requested file action successful (for example, file transfer or file abort).
227 Entering Passive Mode (h1, h2, h3, h4, p1, p2).
230 User logged in, proceed.
250 Requested file action okay, completed.
257 “PATHNAME” created.
331 User name okay, need password.
332 Need account for login.
350 Requested file action pending further information.
421 Service not available, closing control connection.

This may be a reply to any command if the service knows it must shut
down.

453

Reply Codes Description

425 Can’t open data connection.
426 Connection closed; transfer aborted.
450 Requested file action not taken.
File unavailable (e.g., file busy).
451 Requested action aborted: local error in processing.
452 Requested action not taken.
Insufficient storage space in system.
500 Syntax error, command unrecognized.
This may include errors such as command line too long.
501 Syntax error in parameters or arguments.
502 Command not implemented.
503 Bad sequence of commands.
504 Command not implemented for that parameter.
530 Not logged in.
532 Need account for storing files.
550 Requested action not taken.
File unavailable (e.g., file not found, no access).
551 Requested action aborted: page type unknown.
552 Requested file action aborted.

Exceeded storage allocation (for current directory or dataset).

553 Requested action not taken.
File name not allowed.

18.6.2 Detailed Function Specifications

Function #0: Get FTP.FN3 version information

Syntax: CALL "FTP. FN3" 0 VERSI ON$

Description: This function returns the FTP.FN3 library version in VERSI ONS.
Parameters: (None)

Return value: VERSI| ON$ Version information, 7 characters, fixed length

454

Chapter 18. TCP/IP

Function #1: Open FTP client session with system settings
Syntax: CALL "FTP. FN3" 1 FTPHANDLEY, REPLY%

Description: This function opens an FTP client session using the system settings.
Parameters: (None)

Return value:

Run-time errors:

FTPHANDLE% FTP client handle, for use by following functions
REPL Y% Server response to FTP command

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

20Dh Attempt to connect to different FTP server without disconnecting.

216h The FTP client handle is invalid.

239h The specified socket is not connected.
23Ch The connection attempt has timed out.
Function #2: Open FTP client session with user settings
Syntax: CALL "FTP. FN3" 2 FTPHANDLEY% SERV. | P$, USERNAMES,
PASSWORDS, REPLY%
Description: This function opens an FTP client session based on the supplied user set-
tings.
Parameters: SERV. | P$ FTP server IP address in dotted quad notation
USERNAMES User name for FTP authentication
PASSWORDS$ Password for FTP authentication
Return value: FTPHANDL E% FTP client handle, for use by following functions
REPL Y% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

20Dh Attempt to connect to different FTP server without disconnecting.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

23Ch The connection attempt has timed out.

455

Function #3: Close FTP client session

Syntax: CALL "FTP. FN3" 3 FTPHANDLE% REPLY%
Description: This function closes the specified FTP client session.
Parameters: FTPHANDL E% FTP client handle

Return value: REPLY% Server response to FTP command

Run-time errors:

Error code Meaning
105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.
216h The FTP client handle is invalid.

239h The specified socket is not connected.

Function #4: Get current directory on FTP server

Syntax: CALL "FTP. FN3" 4 FTPHANDLE% CURDI R$, REPLY%
Description: This function gets the current directory on the FTP server.
Parameters: FTPHANDL E% FTP client handle
Return value: CURDI R$ FTP server current directory

REPL Y% Server response to FTP command

Run-time errors:

Error code Meaning
105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.
216h The FTP client handle is invalid.
239h The specified socket is not connected.

295h There is no user for login request.

Note: The directory specification (CURDI R3$) is limited to 255 bytes, so
do not use longer directory names on the server.

456

Chapter 18. TCP/IP

Function #5: Change current directory on FTP server

Syntax: CALL "FTP. FN3" 5 FTPHANDLE% NEWDI R$, REPLY%
Description: This function changes the current directory on the FTP server.
Parameters: FTPHANDLE% FTP client handle

Return value:

Run-time errors:

NEVDI R$ New directory

REPL Y% Server response to FTP command

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.
295h There is no user for login request.
Function #6: Download file from FTP server
Syntax: CALL "FTP. FN3" 6 FTPHANDLEY SERV. FNAVES, CLNT. FNAVES,
CRLF. TYPEY CRLF. MODEY REPLY%|[, FLD$] [, DI SP. MODE%
Description: This function downloads, from the current directory on the FTP server to
the handy terminal, the specified file using the specified parameters.
Parameters: FTPHANDL E% FTP client handle

SERV. FNAME$ Name of file to download from FTP server
CLNT. FNAME$ Name for file on handy terminal. Leaving this unspeci-
fied (™) uses the name in SERV. FNAVES instead.

Note: SERV. FNAME$ and CLNT. FNAME$ must have the same type
(file extension): user program (.PD3), extension library (.FN3 or .EX3), or
data file (all other extensions). Otherwise, the run-time error 32h is the
result.

CRLF. TYPE% Line delimiter

0 CR-LF combination
(Treat CR-LF combinations as delimiters. Use this value when
the data file delimits records with CR-LF combinations.)

1 LF
(Treat LFs as delimiters. Use this value when the data file delim-
its records with LFs.)

2 CR
(Treat CRs as delimiters. Use this value when the data file delim-
its records with CRs.)

3 None
Use this value when the data file does not delimit records.

457

Return value:

Example:

Example:

SERV. FNAVES

CLNT

CRLF
CRLF

FLD$
CALL
CRLF

SERV. FNAVES

CLNT

CRLF
CRLF

DI SP
CALL
CRLF

CRLF. MODE%

Treatment of line delimiters inside records and trailing

spaces

in fields

Note: CRLF. MODE%will be ignored for files except
data files.

0 Treat line delimiters inside records as SEPARATORS.
TRIM trailing spaces in fields.

1 Treat line delimiters inside records as DATA.
TRIM trailing spaces in fields.

10 | Treat line delimiters inside records as SEPARATORS.
RETAIN trailing spaces in fields.

11 Treat line delimiters inside records as DATA.
RETAIN trailing spaces in fields.

FLD$ Field lengths in bytes. Delimit the field length specifi-
cations with commas (,) or semicolons (;). (This
parameter applies only to downloaded data files.)
"<field length 1> [,<field length 2>,... <field length n>]"
(n=1to 16, field length = 1 to 254)

DI SP. MODE% Flag controlling a progress display consisting of an 8-
digit number giving the number of bytes transferred

0 | Disable
1 | Enable
REPLY% Server response to FTP command

Downloading a data file

. FNAVES

.TYPE% = 1
. MODE% = 0

="3 2 1"

"FTP. FN3" 6 FTPHANDLE%
. MODE% REPLY% FLD$

" MASTER. DAT" '

Fil e nane on server

Name for file on the handy term nal
Sane as on server

Server line delimter: LF

Dat a conposition
Therearenolinedelimtersinthedata.
Field lengths: 3, 2, 1

SERV. FNAME$, CLNT. FNAME$, CRLF. TYPE% _

Downloading a program file, with progress display

. FNAMVES

.TYPE% = O
. MODE% = 0

. MODE% = 1

"FTP. FN3" 6 FTPHANDLE%

" SAVPLE. PD3"

. MODE% REPLY% DI SP. MCDE%

Fil e nane on server

Name for file on the handy term nal
Sane as on server

Server linedelimter: CR LFconbination
Dat a conposition: WII be ignored for
files except data files

Enabl e progress display

SERV. FNAME$, CLNT. FNAME$, CRLF. TYPE% _

458

Run-time errors:

Chapter 18. TCP/IP

Error code Meaning

02h Syntax error (Incorrect file name).

05h Number of field items or number of digits in a field out of the range.

07h Insufficient memory space.

32h Wrong file type.

33h Invalid text received.

37h File already open.

39h Too many files.

3Ch Record exceeds 255 bytes.

3Dh Field mismatch error.

41h File damaged.

47h User break with cancel (C) key.

49h Invalid program file received. (Invalid program size. Do not down-
load user programs that have been run through Kanji conversion
utilities.)

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

111h File not closed.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

459

Function #7: Upload file to FTP server

Syntax: CALL "FTP. FN3" 7 FTPHANDLE% SERV. FNAMES,
CLNT. FNAME$, CRLF. TYPE% UP. MODEY REPLY%
[, DI SP. MODE%4
Description: This function uploads, from the handy terminal to the current directory on
the FTP server, the specified file using the specified parameters.
Parameters: FTPHANDL E% FTP client handle
SERV. FNAME$ Name for file on FTP server. Leaving this unspecified
(") uses the name in CLNT. FNAMES instead.
CLNT. FNAME$ Name of file to upload to FTP server.
CRLF. TYPE% Line delimiter (See description under function #6
above.)
UP. MODE% Flag controlling treatment of existing files
0 Overwrite existing file
1 | Append to existing file. Create new file if necessary.
DI SP. MODE% Flag controlling a progress display consisting of an 8-
digit number giving the number of bytes transferred
0 | Disable
1 | Enable
Return value: REPLY% Server response to FTP command
Example: Uploading data file
RCLNT. FNAME$ = " MASTERL. DAT" " Name of file on handy terminal
SERV. FNAME$ = "" " Nane on server
Sane as on handy terninal
CRLF. TYPE% = 0 " Server line delimter: CRLF conbination
UP. MODE% = 1 " Upl oad node: Append
CALL "FTP.FN3" 7 FTPHANDLE% SERV. FNAME$, CLNT. FNAME$, CRLF. TYPE%
UP. MODE% REPLY%
Example: Uploading program file, with progress display

CLNT. FNAME$ = " SAMPLE. PD3" " Name of file on handy terminal
SERV. FNAME$ = "" " Nane on server
' Same as on handy termnal
CRLF. TYPE% = 0 " Server line delimter: CR-LF conbination
UP. MODE% = 0 " Upl oad node: Overwite
DI SP. MODE% = 1 ' Enabl e progress display

CALL "FTP. FN3" 7 FTPHANDLE% SERV. FNAME$, CLNT. FNAME$, CRLF. TYPE% _
UP. MODE% REPLY% DI SP. MODE%

460

Chapter 18. TCP/IP

Run-time errors:

Error code Meaning

35h File not found.
37h File already open.
47h User break with cancel (C) key.

105h Power-off detected. (BHT-7500S only)
110h Response other than 2XX received.
111h File not closed.

216h The FTP client handle is invalid.
239h The specified socket is not connected.

295h There is no user for login request.

Function #8: Get FTP system settings

Syntax: CALL "FTP. FN3" 8 PARAY% ftp.para
where f t p. par a is FTP. PARAYor FTP. PARAS
Description: This function gets the current setting for the specified FTP system settings.
Parameters: PARAY Setting number
Return value: ftp.para Current setting for FTP system settings of type integer/

string (FTP. PARAY FTP. PARAS)

Correspondence tables:

Setting Number .
i 0,
(PARA%) Description Values for Setting (FTP. PARA%)
5 Line delimiter 0 (CR-LF), 1 (LF),
2 (CR), 3 (None)
6 Treatment of line delimiters inside | O (separators), 1 (data)
records
7 Upload mode 0 (overwrite), 1 (append)
8 Progress display 0 (disabled), 1 (enabled)
Setting Number . .
(PARA% Description Values for Setting (FTP. PARAS)
1 IP address for FTP server Character string in dotted quad
notation, maximum 15 bytes
2 User name for FTP authentication Character string, maximum 16
bytes

461

Setting Number

(PARA% Description Values for Setting (FTP. PARAS)
3 Password for FTP authentication Character string, maximum 16
bytes
4 Initial directory on FTP server character string, a maximum of 63
bytes long
Function #9: Set FTP system settings
Syntax: CALL "FTP. FN3" 9 PARAY% ftp.para
where f t p. par a is FTP. PARAYor FTP. PARA$
Description: This function sets the specified FTP system settings to the new value.
Parameters: PARAY% Setting number
ftp.para New setting for FTP system settings of type

Return value:

integer/string (FTP. PARAY FTP. PARAS)
(None)

Correspondence tables:

Function #10:;

See Table under function #8.

Change file name on FTP server

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL "FTP. FN3" 10 FTPHANDLEY OLD. FNAMVES,

NEW FNAME$, REPLY%

This function changes the name of a file in the current directory on the FTP
server.

FTPHANDL E% FTP client handle

OLD. FNAVES$ Name before change

NEW FNAMES$ Name after change

REPL Y% Server response to FTP command

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

462

Function #11:

Chapter 18. TCP/IP

Set port number for file transfer

Syntax:
Description:

Parameters:

Return value:

Run-time errors:

CALL "FTP. FN3" 11 FTPHANDLEY PORT%
This function sets a port number specified by PORT%for file transfer.

FTPHANDL E% FTP client handle
PORT% Port number

(None)

Error code Meaning

105h Power-off detected. (BHT-7500S only)

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

Function #12:

Delete file from FTP server

Syntax:

Description:

Parameters:

Return value:

Run-time errors:

CALL "FTP. FN3" 12 FTPHANDLE% SERV. FNAME$, REPLY%

This function deletes a file specified by SERV. FNAME$ from the FTP
server.

FTPHANDL E% FTP client handle
SERV. FNAME$ File name to be deleted

REPLY% Server response to FTP command

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

463

Appendices

CONTENTS

Appendix A Error Codes and Error MESSagES.ccovveeeiiieeiieeeiiieeeineeenieeesseneens 465
AL, RUN-UIME EITOIS.....coiiiiiiiiieiiiie et 465

A2, Compilation EFTOrScooiiiiiiiiciieeecie e 468
AppendiX B RESEIVEd WOIAS..........ooiiiiiiiie e 477
ApPENdiX C CharaCter SEtSccuiiiiiiiiiiie et reee et reee et eeeee s neaeeas 478
CL. CRAraCLEr SEL....ccciuiiiiiiiie ettt 478

C2. National Character SetS.........ccoocveieeriiiiieenii e 479

C3. Display Mode and Letter Sizecccevveeeiiieeeiiiienieee e 480
APPENIX D /O POFES ...ttt ettt et e st enbee e et e e e snneeas 483
D1, BHT-3000....c.ciiiiiiieeiieiiiieniee sttt esee it bes e e sreesnneseeas 483

D2, BHT-4000........ccitiiiietieaiiieriee sttt e e see et e snneeeeas 485

D3. BHT-5000.......ccciuiiiiiiiiaiiieniee sttt tee e sere e e snaeseeas 488

D4. BHT-6000/BHT-6500ccoouiiriiiiiiniiiniiieniee st 492

D5. BHT-7000/BHT-7500cccemiiiiriiiiiiniiinineeniee st 498
Appendix E Key Number Assignment on the Keyboardcccccceeviiieiiiiennnnee. 505
EL. BHT-3000.......cciiiiiiiiiieiiieeniee sttt sttt sae e sae e eenaee e s 505

E2. BHT-4000.......ccciiiiiiriieiiieeniee sttt ettt st ae e sae e naee e 506

E3. BHT-5000.......cciiiiiiiriieiiieeniie sttt see et sne e sre e e naee e s 507

[1] 32-KEY PA ...eiiiiiiiiiiiie et 507

[2] 26-KEY PAoi ittt 509

E4. BHT-6000........ccctiiiiiiiiiiieirieniie et 510

ES. BHT-6500.......ccciiiiiiiiiiiiieeireesie ettt 511

E6. BHT-7000/BHT-7500ccceeriiiiriiiiiiniiiniiiesiee s 512

[1] 3B2-KEY PA ...oiiiiieiiiiee et 512

[2] 26-key pad (BHT-7000 ONIY)...coiueieiiiiiiiieeeiiieeeiieee e 514

APPENIX F MEMOIY A8uviieiiieeiiiieeiiee e see e e et e et ee e et e et e e sneee e eneee e enns 515
Appendix G Handling Space Characters in Downloadingcccoevvveenieeeninenn. 519
Appendix H Programming NOEESc..eoiiiiiiiiieeiii et 523
[1] FIash ROM.....cooiiiiiiiiiiiiiieree e 523

[2] BHT-2000 compatible MOdecccoveveiiiieiiiieeeiiieeseee e 524

[3] Program file named APLINT.PD3......cccccoviiiiiieniiiie e 525

AppendiX | Program SamPIEScoiiiiiiiiiee et 526
Appendix J Quick Reference for Statements and FUNCtionscccceevcvverineen. 529
Appendix K Unsupported Statements and FUNCHONScccceervieeiiiniinnieee e, 537

464

Appendices

Appendix A

Error Codesand Error M essages

Al. Run-timeErrors

Error code Meaning

00h Internal system error

01h NEXT without FOR

02h Syntax error

03h RETURN without GOSUB

04h Out of DATA
(No DATA values remain to be read by the READ statement.)

05h Parameter out of the range

06h The operation result is out of the allowable range.

07h Insufficient memory space
(Too deep nesting, etc.)

08h Array not defined

09h Subscript out of range
(An array subscript is out of the array. Or the array is referenced by
different dimensions.)

0Ah Duplicate definition
(An array is double defined.)

0Bh Division by zero

0Ch CASE and END SELECT without SELECT

0Dh END DEF or EXI T DEF statement executed outside the DEF FN
statement block

OFh String length out of the range

10h Expression too long or complex

14h RESUME without error
(RESUME statement occurs before the start of an error-handling rou-
tine.)

1Fh Function number out of the range (in CALL statement)

32h File type mismatch

33h Received text format not correct

34h Bad file name or number
(A statement uses the file number of an unopened file.)

35h File not found

465

Error code

Meaning

36h

37h

38h
39h
3Ah
3Bh

3Ch

3Dh

3Eh

3Fh

40h

41h
42h

43h
44h
45h
46h
47h

48h

49h
FOh
Flh
F2h
100h
101h
102h

Improper file type
(The statement attempts an operation that conflicts with the file type-
-data file, communications device file, or bar code device file.)

File already open
(An OPEN statement executed for the already opened file.)

The file name is different from that in the receive header.
Too many files
File number out of the range

The number of the records is greater than the defined maximum
value.

FI ELD overflow
(A FI ELD statement specifies the record length exceeding 255
bytes.)

A FI ELD statement specifies the field width which does not match
one that specified in file creation.

FI ELD statement not executed yet
(A PUT or GET statement executed without a FI ELD statement.)

Bad record number
(The record number is out of the range.)

Parameter not set
(ID not set)

File damaged

File write error
(You attempted to write onto a read-only file.)

Not allowed to access data in the flash ROM

No empty area of the specified size in the RAM
Device files prohibited from opening concurrently
Communications error

Abnormal end of communications or termination of communications
by the Clear key

Device timeout
(No Cs signal has been responded within the specified time period.)

Received program file not correct

Mismatch parameter number

Mismatch parameter type

Insufficient string variable storage area
Cannot specify communications pathway.
Cannot connect to communications pathway.

Communications pathway not specified.

466

Appendices

Error code Meaning
103h Communications pathway already connected.
104h Communications pathway already disconnected.
105h Power-off detected.
110h Response other than 2XX received.
111h File not closed.
201h Cannot connect to socket.
209h Socket identifier is invalid.
20Dh Attempt to connect to different FTP server without disconnecting.
216h A parameter is invalid.
The FTP client handle is invalid.
A parameter is invalid, or the socket is already bound.
218h Too many sockets.
224h The socket is being assigned an address.
225h The last close operation for the specified socket is not complete.
228h The maximum number of bytes to receive is too small.
229h The specified socket does not match the connection target socket.
22Ah This option is not recognized at the specification level.
22Bh This protocol family does not support the specified protocol type and
protocol.
22Fh The specified address family is invalid for this socket.
230h The specified address is already in use.
231h The specified address is invalid.
236h An RST from the opposite end has forced connection.
237h There is insufficient system area memory.
238h The specified socket is already connected.
239h The specified socket is not connected.
23Ah The specified TCP socket has been closed.
23Ch The connection attempt has timed out.
23Dh Failed to connect.
241h There is no connection pathway to the host for TCP socket.
295h There is no user for login request.
400h Failed to get the setting value. (Failed to set the value.)
401h Failed to open a wireless communications device file.

467

A2. Compilation Errors

m Fatal Errors

Error code & Message

fatal
fatal
fatal
fat al
fatal
fatal
fatal
fatal
fatal
fatal

f at al

fatal
fatal
fatal
fatal
fatal
fatal
fatal

f at al

f at al

f at al

f atal
f at al
f at al

f at al

f at al
f at al

f at al

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

1

2
3
4
5
6
7
8
9

10
11:

12
13
14:
15
16
17
18:
19:

20

21:

22
23
24:
25

26
27
28

Qut of menory

Wrk file I/O error

oject file l/Oerror

Token file I/O error

Rel ocation information file |I/O error

Cross reference file I/O error

Synbo

file I/Oerror

Conpile list file l/Oerror

Debug information file 1/O error (source-address)

Debug information file I/O error (label-address)

Debug information file I/ O error
(variabl e-internedi ate code)

Qut

of
of
of
of
of
of
of

of

di sk
di sk
di sk
di sk
di sk
di sk
di sk
di sk

space
space
space
space
space
space
space

space

(source- addr ess)

Qut of disk space
(1 abel - addr ess)

for
for
for
for
for
for
for

for

for

work file

object file

token file

relocation infornation file
cross reference file

synbol file

conpile list file

debug information file

debug information file

Qut of disk space for debug information file
(variabl e-i ntermedi ate code)

Source file I/ O error

Cannot find XXXX. SRC

Error count exceeds 500

Qut of nenory

(interna

Contro

| abel s exceed 3000)

structure nesting exceeds 30

Expr essi on type stack exceeds 50

Programtoo | arge (Object area overflow)

468

Appendices

Error code & Message

f at al
fatal
fat al

f at al

fat al
fatal
fatal
fatal

f at al

f at al

f at al

error

error

error

error

error

error

error

error

error

error

error

29:
30:
31:
32:

33:
34:
35:
36:
37:

38:
39:

Qut of nenory for cross reference
Cannot find include file
Cannot nest include file

Internal menory allocation error (tag list buffer)
[function nane]

(Preprocess) Source file I/O error
(Preprocess) Internal nenory overfl ow
(Preprocess) Macro work file I/O error
(Preprocess) Macro doubl e defined [Macro nane]

(Preprocess) Internal nenory overflow
(unread buffer)

(Preprocess) Menory allocation error

(Preprocess) Macro circular reference [Macro nane]

469

m Syntax Errors

Error code & Message

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

1
2

10

11:

12

13

14:

15

16

17

18

19

20

| mpr oper | abel fornat

| mpr oper | abel nane
(redefinition, variable nane, or reserved word used)

""’'m ssing
| npr oper expression
Vari abl e nane redefinition

(comon variable already defined as |abel nane or vari-
abl e nane)

Vari abl e nane redefinition
(register variable already defined as | abel nane or vari-
abl e nane)

Vari abl e name redefinition
(variable already defined as |abel nane, non-array string
work variable, register variable, or common variabl e)

Too many vari abl es
(work integer non-array)

Too many vari abl es
(work float non-array)

Too many vari abl es
(work string non-array)

Too many vari abl es
(register integer non-array)

Too many vari abl es
(register float non-array)

Too many vari abl es
(register string non-array)

Too many vari abl es
(comon i nteger non-array)

Too many vari abl es
(common float non-array)

Too many vari abl es
(comon string non-array)

Too many vari abl es
(work integer array)

Too many vari abl es
(work float array)

Too many vari abl es
(work string array)

Too many vari abl es
(register integer array)

470

Appendices

Error code & Message

error 21: Too many variabl es
(register float array)

error 22: Too many variabl es
(register string array)

error 23: Too many variabl es
(comon integer array)

error 24: Too many variabl es
(comon float array)

error 25: Too many vari abl es
(comon string array)

error 26: Too many variabl es
(work integer array, two-dinensional)

error 27: Too many vari abl es
(work float array, two-dinmensional)

error 28: Too many variabl es
(work string array, two-dinensional)

error 29: Too many vari abl es
(register integer array, two-dinensional)

error 30: Too many variabl es
(register float array, two-dinensional)

error 31: Too many variabl es
(register string array, two-dinmensional)

error 32: Too many variabl es
(comon integer array, two-dinensional)

error 33: Too many variabl es
(comon float array, two-dinensional)

error 34: Too many variabl es
(comon string array, two-dinensional)

error 35: Source line too |long

error 36

error 37

error 38

error 39

error 40

error 41: Value out of range for integer constant
error 42: Value out of range for float constant

error 43: Value out of range for integer constant
(hexadeci mal expression)

error 44: | npr oper hexadeci mal expression

error 45: Synbol too |ong

471

Error code & Message

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

46
47
48
49
50
51:

52
53

54.
55
56

57
58

59
60

61:
62

63

64:
65

66

67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

Incorrect use of IF...THEN...ELSE...END F

I nconpl ete control structure
(I'F... THEN. .. ELSE. .. END F)

Incorrect use of FOR. ..NEXT

I nconpl ete control structure
(FOR. . . NEXT)

Incorrect FOR index variable
Incorrect use of SELECT...CASE...END SELECT

I nconpl ete control structure
(SELECT. . . CASE. . . END SELECT)

I ncorrect use of WHI LE...WEND

I nconpl ete control structure
(WHI LE. . . \END)

Incorrect use of DEF FN...EXIT DEF...END DEF

I nconpl ete control structure
(DEF FN...END DEF)

Cannot use DEF FN in control structure
Operator stack overfl ow

I nside function definition

Function redefinition

Function definitions exceed 200
Argument s exceed 50

Total argunents exceed 500

M smat ch argunent type or nunber
Functi on undefi ned

Label redefinition

Synt ax error

Vari abl e name redefinition

| nproper string length

| nproper array el enents nunber

Qut of space for register variable area

Qut of space for work, common vari able area

472

Appendices

Error code & Message

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

77:
78:

79:
80:
81:

82:
83:
84:
85:
86:
87:
88:
89:
90:
91:

92:
93:

94:
95:
96:

97:
98:

Initial string too |ong

Array synbols exceed 30 for one DIM G.OBAL, or PRI VATE
st at enent

Record nunber out of range (1 to 32767)
Label undefi ned

Must be DATA statenent | abel
(in RESTORE st atenent)

"(’ mssing

")’ mssing

"]’ missing

", mssing

;7 mssing

"DEF’ m ssing

"TO missing

"I NPUT" mi ssing

"{’ mssing

I nproper initial value for integer variable
(not integer or out of range)

Incorrect use of SUB, EXIT SUB, or END SUB

I nconpl ete control structure
(SUB. .. END SUB)

Cannot use SUB statenent in control structure
I ncorrect use of FUNCTION, EXIT FUNCTI ON, or END FUNCTI ON

I nconpl ete control structure
(FUNCTI ON. . . END FUNCTI ON)

Cannot use FUNCTION statenent in control structure

I ncorrect use of CONST

473

m Linking Errors

Error Message

PRC area size different

Qut of space in REG area

Qut of space in PRD area

Cannot open project file

Cannot open object file [object nane]

Cannot open MAP file

Cannot open PD3 file [PD3 fil enane]

Cannot close PD3 file [PD3 fil enane]

Wite error to PD3 file [PD3 fil enane]

Seek error: Cannot nove to the fil enanme position
Seek error: Cannot nove to the head of the bl ock
Fil enane area too |arge

Synbol nanme area too | arge

Too many records in synbol table

Too many nodul es

Too many libraries

Too many obj ects

Failed to allocate nmenory in TAG area

Failed to allocate menory in link TAG area

Undefi ned value set to variable type [Value at variable type]
Undefined value set to tag type [Value at tag type]
Modul e [nodul enane] not defined

Synbol [synbol nane] not defined

Cannot regi ster synbol

More than one synbol type [variable type*] existing
Defined [variable types*] over the maximumlimt
More than one synbol [synbol nane] defined

Nunmber of descriptors over the limt

Common vari abl e [vari abl enane] defined out of main nodul e
Common data area overfl ow

Wrk data area overflow

Synbol nane area overfl ow

474

Appendices

Error Message

Non-array integer register variable area overfl ow

Non-array float register variable area overflow

Regi ster menory pool area overflow

Failed to set up initial setting of register data

* To the [Variable type], any of the following character strings applies:

Non-array integer common variable

Non-array float common variable

Non-array string common variable

Non-array integer work variable

Non-array float work variable

Non-array string work variable

Non-array integer register variable

Non-array float register variable

Non-array string register variable
One-dimensional array integer common variable
One-dimensional array float common variable
One-dimensional array string common variable
One-dimensional array integer work variable
One-dimensional array float work variable
One-dimensional array string work variable
One-dimensional array integer register variable
One-dimensional array float register variable
One-dimensional array string register variable
Two-dimensional array integer common variable
Two-dimensional array float common variable
Two-dimensional array string common variable
Two-dimensional array integer work variable
Two-dimensional array float work variable
Two-dimensional array string work variable
Two-dimensional array integer register variable
Two-dimensional array float register variable

Two-dimensional array string register variable

475

m Library Errors

Error Message

Cannot find object to be del eted [objectnane]
Desi gnat ed obj ect al ready existing [objectnane]
Cannot find object to be updated [objectnane]
Modul e al ready defined [npdul enane]

Fil enane area too | arge

Too many bl ock information pieces

Cannot open library file

Seek error: Cannot nove to the filenane position

Seek error: Cannot nove to the head of the block

m No error code precedes any linking error or library error.

476

Appendix B
Reserved Words

Appendices

The following list shows reserved words (keywords) of BHT-BASIC. Any of these words must
not be used as a variable name or label name.

A

ABS
AND
APLOAD
AS

ASC
BCC$
BEEP
CALL
CASE
CHAI' N
CHKDGT
CHR
CLFI LE
CLGSE
CLS
CCDE
COMMON
CONT
COUNTRY
CSRLIN
CURSOR
DATA
DATES$
DEF
DEFREG
D M
ELSE
END
EOF
ERASE
ERL
ERR
ERROR
ETB
ETX
EXIT

FI ELD P
FN

FOR

FRE

GET

&0 R
GosuB

G&oro

HEX

I F

$1 NCLUDE

I NKEY

I NP S
I NPUT

I NSTR

I NT

KEY

Kl LL

KPLOAD

LEFT

LEN T
LET

LI NE
LCC
LOCATE
LCOF
MARK
M D

s<c

NEXT

OFF X

OPEN

g3

477

PCS
PONER
PRI NT
PRI NT#
PUT
READ
RECORD

RESTORE
RESUME
RETURN
Rl GHT$
SCREEN
SEARCH
SELECT
SEP
SCH
STEP
STR
STX
THEN
TI ME
TI MEA
TI MEB
TI MEC
TO

USI NG
VAL
VAIT
VAEND
VWHI LE
XFI LE
XOR

Appendix C
Character Sets

C1l. Character Set

The table below lists the character set which the BHT can display on the LCD screen. It is
based on the ASCII codes.

NOTE 1

NOTEZ2:

NOTE 3:
NOTE 4:
NOTE &:
NOTE 6:

Upper 4 bits
o E|__ol@P]| |p _—15lz]alp
8| 1[1]/AlQ]aq . |7 /F|4Lala
47 [2/B[R|b| T BB
3k #3[C[S|c|s 1|97 E €|
4% _|s/4/D|T|d|t EANSEIEe
5B _, 9% 5 E|U e|u AlFalolu
W61t &6 |FV|flV I AH=3p|Z
Sl P [7law glw 7| ¥[x[5]an
g8 esc| (|8 /H|X|h|x RIEIDINEE
Sfel L)9y iy 54/ LY
Al xlldz gz T/ an L iF
Bl .+t K [[k|T +elnlx |5
Tl I<ILIN] ¥ o7 /7¢ 0
DIcRl_I—I=M1m } ARANVS|=
o IsINT R ERNEN
Tl /1?0 ol IVIEAE

You can assign user-defined fonts to codes from 80h to 9Fh with APLOAD state-
ment. (Refer to APLOAD statement in Chapter 14.)

Characters assigned to codes 20h to 7Fh are default national characters when the
English message version is selected on the menu screen* in System Mode.

* Menu screen for selecting the message version

BHT Series Menu screen
BHT-3000 Set Resume menu
BHT-4000/BHT-5000/BHT- SET DISPLAY menu
6000/

BHT-6500/BHT-7000/BHT-7500

They can be switched to other national characters (see Appendix C2) by COUN-
TRYS$ function. (Refer to COUNTRY$ function in Chapter 15.)

BS is a backspace code.
CRisacarriage return code.
Cisacancel code.

L isaspace code.

478

Appendices

C2. National Character Sets

You may switch characters assigned to codes 20h to 7Fh of the character set table listed in
Appendix C1 to one of the national character sets by using the COUNTRY$ function.

The default national character set is America (code A) or Japan (code J) depending upon the
English or Japanese message version selected on the menu screen* in System Mode, respec-
tively.

* Menu screen for selecting the message version

BHT Series Menu screen
BHT-3000 Set Resume menu
BHT-4000/BHT-5000/BHT- SET DISPLAY menu
6000/

BHT-6500/BHT-7000/BHT-7500

Listed below are national characters which are different from the defaults.

(Hex.)
23 24 40 5B 5C 5D 5E 60 7B 7C 7D 7E 7F

Country Country code**

America A # $ @ [\] A ’ { | } ~
(Default)

Denmark D Al D A ~
England E £ $ \ ~
France F a § R
Germany G § A O U B L
ltaly I \ a L
Japan J #19| @ [1¥/] " { | } =«
(Default)

Norway N o) E| A 0 A U L
Spain S Pt \ é P~
Sweden W s E AlO A U -

** Refer to COUNTRY$ function in Chapter 15.
COUNTRY$="count r ycode"

NOTE 1: .. isaspace code.

NOTE 2: Empty boxes in the above table are assigned the same characters as default ones
listed in Appendix C1.

479

C3. Display Mode and L etter Size

m Character frame and letter size

Screen mode Font size Character frame Letter size
(W x H) (W x H)
Single-byte Standard-size 6x8 5x7
ANK mode Small-size 6x6 5x5
(BHT-6000/BHT-6500/
BHT-7000/BHT-7500)
Two-byte Standard-size Full-width 16 x 16 15 x 16
Kanji mode Half-width 8 x 16 7 x 16
Small-size Full-width 12 x 12 11 x 12
(BHT-6000/BHT-6500/ Half-width 6 x 12 5x 12
BHT-7000/BHT-7500)
Condensed two-byte Kanji mode Full-width 12 x 16 11 x 16
(BHT-4000/BHT-5000) Half-width 6 x 16 5x 16

m Generating the condensed two-byte Kanji patterns (BHT-4000/BHT-5000)

To display condensed two-byte Kanji characters, the Interpreter generates their font patterns
by condensing the Kanji fonts stored in the Kanji ROM (in the BHT-4000) or by condensing the
JIS Level 1 and Level 2 Kanji fonts stored in the flash ROM (in the BHT-5000).

The Interpreter can condense also Kaniji patterns loaded by the KPLQOAD statement. If the
condensed two-byte Kanji mode is to be used, it is necessary to take into account the conden-
sation when defining Kanji patterns.

The condensing process is as follows: The Interpreter ORs adja-

1 5 15
1 BEOO00000RCO0OROOED
cent vertical two rows--2nd and 3rd rows, 6th and 7th rows, 10th OWCCmsmEmmmEEEEC
i oomood coomod
and 11th rows, and 14th and 15th rows--to produce a single row o1 T
i i [_[m] Oom ENEEEE
each. Other rows will be displayed as they are. 5l Inintnl telalsl talalslan]
oOoOoEOROOOCOROO0ORO0O
i i i i i OOOEONEEEEEEEECD
In the figure shown at right, rows marked with o will be displayed DogE EEREREEEEL
. i i i 1 OOEO0ONEEEEEEEECD
as they are; adjacent two rows without o will be condensed into a panCUEEEREEEREE_ L
single row ORCCEEEEEEEEEEND
) OROO0OO000mOoROOogo
OROOOOoOoeCOoOomOoodn
OROOOERODO00mROO00
OmOERO0000000ONED
BOOOOROOROEO
CECOEEEEEEEEC]
m]_|mimim] |mis] jww]]
o o o o o
EOOCOEEEEEEND
OROOROORCONO
oOoEOROOROCOEO
OOECOEEEEEENC]
omOoOooomoodg
m) |mimi 1] 0 00| m
EROOOO00OROO00
CCNEEEEEEE]
OROOO0OEECogOoo
m]_|mimim] |mis] jww
OROOEOO00OmEO0
OmEECOO0000OmO

480

Appendices

m Generating the small-size font patterns

BHT-6000/BHT-6500
- Single-byte ANK characters

To display single-byte ANK characters in small size of fonts, their small-size font patterns
stored in the flash ROM will be used and no condensation will take place.

For the patterns loaded by the APLOAD statement, the Interpreter condenses them as follows:

123456
IOEEECCO

Y (inl [w OmmEmO0
smooOm0— 1L mooomo
s@000m00 - mO0om0
5.."...[]::::]‘4444444*..l"l.D
N EEEE ISR =
‘00000 — .0Doono
soO00000

The Interpreter ORs adjacent horizontal two rows--2nd and 3rd rows and 5th and 6th rows--to
produce a single row each. Other rows will be displayed as they are. In the figure shown
above, rows marked with o will be displayed as they are; adjacent two rows without o will be
condensed into a single row.

- Two-byte Kanji characters

To display two-byte Kanji characters (full-width and half-width) in small size of fonts, the Inter-
preter generates their font patterns by condensing the JIS Level 1 and Level 2 Kanji fonts
stored in the flash ROM. Also for Kanji patterns loaded by the KPLOAD statement, the Inter-
preter condenses them in the same way.

If Kanji patterns loaded by the KPLQOAD statement are to be displayed in small size of fonts, it
is necessary to take into account the condensation when defining Kanji patterns.

The condensing process is as follows:
The Interpreter ORs adjacent vertical

will be displayed as they are; adja-
cent two rows without o will be con-
densed into a single row.

two rows--2nd and 3rd rows, 6th and ﬁDDﬁDE:DlDOD.DDl.SD
7th rows, 10th and 11th rows, and aT[(aru[a(l uls(s s=/us
Ooooooooooooooad
14th and 15th rows--to produce a EOO0OEEEEEEEERCOD
. . OomoOOomcO0Omcoomcd
single row each. Other rows will be OoDmomoooECoo
i i 0
displayed as they are. In the fllgure EEEE
shown at right, rows marked with o mrEE
O
O
u

The Interpreter ORs adjacent hori-
zontal two rows--3rd and 4th rows,
7th and 8th rows, 11th and 12th lIDDDDDDIDDDIDDIDO—L
rows, and 15th and 16th rows--to Eégéééééééééééég:‘—
produce a single row each. Other SEOLOUENEEEEEEELL O ——) ——0
rows will be displayed as they are. In R e — bmg
the figure shown below, rows marked ,,E-a--asasmassa - o -8
with o will be displayed as they are; M asssssmsmsss — .m0
adjacent two rows without © will be SmonnoombOnES000 ?f’_ﬂﬁ

. . 15 ORO0CRECD0000R000
condensed into a single row. OmORRO0000000mE0

481

BHT-7000/BHT-7500
- Single-byte ANK characters

To display single-byte ANK characters in small size of fonts, their small-size font patterns
stored in the flash ROM will be used and no condensation will take place.

For the patterns loaded by the APLOAD statement, the Interpreter uses a total of 6 bits (bit O to
5) in each vertical row and ignores bits 6 and 7.

OEEEO0
mOO0OmO
mOOOmO
HOOOmO
EEEENC
_Imimim) [
mOOOm0
oooooo

- Two-byte Kanji characters

ONEENED
oomoom

To display two-byte Kanji characters (full-width and half-width) in small size of fonts, small-size
font patterns of the JIS Level 1 and Level 2 Kaniji stored in the user area of the memory will be

used and no condensation will take place.

For the patterns loaded by the KPLQOAD statement, the Interpreter uses a total of 12 bits (bit O
to 11) each on the 1st to 11th elements and ignores the 12th to 15th elements and bits 12 to 15.

0 15
Ooooooooooomoo
OooooooooommmD
OooooooooOaEEENE
Oooooogoommm u
OoooodCmEE N
OoooodnEEEn

HEE

oo

EEEEEEEEEEEEECC]
[|

482

0 11
Oooooooooooom

Bit0

Bit 11

Appendix D
/O Ports

D1. BHT-3000

m |nput Ports

Appendices

A user program can monitor the hardware status through the input ports by using the WAI T
statement or | NP function. BHT-BASIC defines each of these ports as a byte. The table

below lists the input ports and their monitoring function in the BHT.

Port No. Bit assignment " Monitors the following:
0 0 Keyboard buffer 0: No data 1: Data stored
1 Barcode buffer 0: No data 1: Data stored
2 Trigger switch 0: OFF 1: ON
3 Receive buffer? 0: No data 1: Data stored
4 Value of Tl MEA function 0: Nonzero 1: Zero
5 Value of Tl MEB function 0: Nonzero 1: Zero
6 Value of TI MEC function 0: Nonzero 1: Zero
7 CS (CTS) signal™® 0: OFF or file closed 1: ON
3 2-0 LCD contrast level™ ™ 0 to 7 (0: Lowest, 7: Highest)
4 0 Message version™ 6 0: Japanese 1: English
5 0 Alphabet entry function 0: Disabled 1: Enabled
10h-18Fh 7-0 VRAM™ 7 0: OFF 1: ON

"1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For

example, bit 0 means LSB; bit 7 means MSB.
*2

This status is produced by ORing the receive buffer of the optical interface and that of the

direct-connect interface. If either of these buffers has data, therefore, this bit goes ON (1).

*3

During the direct-connect interface operation, a user program can regard RD signal as CS

signal, provided that the returned value of CS should be specified by RS/ CS control

parameter in the OPEN" COM " statement as listed below.

OPEN "COM " state- Returned value of CS (CTS)

ment

OPEN "COM,,,, 0" Always 1

OPEN "COM, ,,, 1" Always 1

OPEN "COM, ,,, 2" 1 if RD signal is High.

OPEN "COM, ,,, 3" 1 if RD signal is Low.

OPEN "COM, ,, , 4" Depends upon the RD signal state.

If the communications device file is closed, the BHT-3000 returns the value 0.

483

"4 Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to
111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

"> The LCD contrast, message version (English/Japanese), and VRAM should not be moni-

tored by using a WAl T statement. These status may not change while a user program

monitors them by this statement. The WAI T statement used for this purpose may cause
the program to enter an infinite loop.

"6 In System Mode, the message version appears as Eng or Jpn on the LCD.

7 An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 18Fh (which read VRAM) rep-
resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

m Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

Port No. Bit assignment Controls the following:
1 0 Reading confirmation LED (red) 0: OFF 1: ON
1 Reading confirmation LED (green)? 0: OFF 1: ON
3 2-0 LCD contrast level™ 0'to 7 (0: Lowest, 7: Highest)
4 0 Message version 0: Japanese 1: English
5 0 Alphabet entry function 0: Disable 1: Enable
6 7-0 Sleep timer™ 0 to 255
10h-18Fh 7-0 VRAM™ 0: OFF 1: ON

"1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

"2 The reading confirmation LED is controllable only when the bar code device file is closed.

If the file is opened, the OUT statement will be ignored.

"3 Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111
in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest. Shown below are examples of OUT statements.

QuTt 3,7 "Contrast is highest
QUT 3, &07 ’'Contrast is highest

The sleep timer feature automatically interrupts program execution if the BHT-3000
receives no input within the specified length of time preset by bits 7 to 0. Shown below are
examples of OUT statements. Setting O to this byte disables the sleep timer feature. (Refer
to Chapter 10.)

QuT 6, 30 '3 seconds
QuJT 6,0 "No sl eep operation

"5 An 8-bit binary pattern (bits 7 to 0) on the output ports 10h to 18Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

*4

484

Appendices

D2. BHT-4000

Input Ports

A user program can monitor the hardware status through the input ports by using the WAI T
statement or | NP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

Port No. Bit assignment " Monitors the following:
0 0 Keyboard buffer 0: No data 1: Data stored
1 Barcode buffer 0: No data 1: Data stored
2 Trigger switch 0: OFF 1: ON
3 Receive buffer 0: No data 1: Data stored
4 Value of Tl MEA function 0: Nonzero 1: Zero
5 Value of Tl MEB function 0: Nonzero 1: Zero
6 Value of TI MEC function 0: Nonzero 1: Zero
7 CS (CTS) signal™ 0: OFF or file closed 1: ON
3 2-0 LCD contrast level™3 4 0to 7 (0: Lowest, 7: Highest)
4 0 Message version™ "> 0: Japanese 1: English
5 0 Alphabet entry function 0: Disabled 1: Enabled
Dh 0 ER signal*'® 0: OFF 1: ON
Dh 4 CD signal™® 0: OFF 1: ON
Eh 0 System status indication™"” 0: OFF 1: ON
Fh 7-0 Re-read prevention enabled 0 to 255
time”®
10h-64Fh 7-0 VRAM™ "0 0: OFF 1: ON

"1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

2 During the optical interface operation and direct-connect interface operation, a user pro-
gram can monitor CS (CTS) signal. If CS signal is received, bit 7 of this byte goes ON (1).
If the communications device file is closed, the BHT-4000 returns the value 0.

"3 Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to
111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

*4 The LCD contrast, message version (English/Japanese), ER signal, system status indica-
tion, and VRAM should not be monitored by using a WAl T statement. These status may
not change while a user program monitors them by this statement. The WAI T statement
used for this purpose may cause the program to enter an infinite loop.

"> In System Mode, the message version appears as English or Japanese on the LCD.

*6

*7

The ER and CD signals are supported on the direct-connect interface only. If the communi-
cations device file is closed, the BHT-4000 returns the value 0.

The BHT-4000 can display the system status on the bottom line of the LCD. If the system
status is displayed, the BHT-4000 returns the value 1; if not, it returns the value 0. For the
system status indication, refer to Chapter 7, Subsection 7.1.7.

485

*8

*9

The BHT-4000 returns the re-read prevention enabled time length in units of 100 ms. If the
returned value is zero (0), it means that the re-read prevention is permanently enabled so
that the BHT-4000 does not read same bar codes in succession.

An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 64Fh (which read VRAM) rep-
resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

PortNo. Bit assignment "1 Controls the following:

1 0 Reading confirmation LED (red)? 0: OFF 1: ON
1 Reading confirmation LED (green)? 0: OFF 1: ON

2 0 RS (RTS) signal™® 0: OFF (Low) 1: ON (High)
3 2-0 LCD contrast level™ 0to 7 (0: Lowest, 7: Highest)
4 0 Message version 0: Japanese 1: English
5 0 Alphabet entry function 0: Disable 1: Enable
6 7-0 Sleep timer™® 0to 255
Dh 0 ER signal™® 0: OFF 1: ON
Eh 0 System status indication”” 0: OFF 1: ON
Fh 7-0 Re-read prevention enabled time"® 0to 255

10h-64Fh 7-0 VRAM"™ 0: OFF 1: ON

*1

*2

*3

*4

*5

*6

BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

The RS (RTS) signal is controllable when the communications device file is opened. If the
file is closed, this signal specification will be ignored.

Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111
in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest. Shown below are examples of OQUT statements.

Qur 3,7 "Contrast is highest

QUT 3,&h07 ' Contrast is highest
The sleep time feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting O to this byte disables the sleep timer feature. (Refer to Chapter 10.)

QJT 6, 30 '3 seconds

QuJT 6,0 "No sl eep operation

Available on the direct-connect interface. If the communications device file is closed, this
specification will be ignored.

486

*7

*8

*9

Appendices

The BHT-4000 may display the system status on the bottom line of the LCD. To display the
system status, set 1 to this port; to erase it, set 0. For the system status indication, refer to
Chapter 7, Subsection 7.1.7.

This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-4000 does not read
same bar codes in succession.

An 8-hit binary pattern (bits 7 to 0) on the output ports 10h to 64Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

If you send graphic data to the VRAM area (assigned to the bottom line of the LCD) by
using the OUT statement when the system status is displayed on the LCD, the sent data
will be written into that VRAM area but cannot be displayed on the bottom line of the LCD.

487

D3. BHT-5000

m |nput Ports

A user program can monitor the hardware status through the input ports by using the WAI T
statement or | NP function. BHT-BASIC defines each of these ports as a byte. The table

below lists the input ports and their monitoring function in the BHT.

Port No. Bit assignment "

Monitors the following:

0 0 Keyboard buffer 0: No data 1: Data stored
1 Barcode buffer 0: No data 1: Data stored
2 Trigger switch 0: OFF 1: ON
3 Receive buffer 0: No data 1: Data stored
4 Value of Tl MEA function 0: Nonzero 1: Zero
5 Value of Tl MEB function 0: Nonzero 1: Zero
6 Value of TI MEC function 0: Nonzero 1: Zero
7 CS (CTS) signal™? 0: OFF or file closed 1: ON
3 2-0 LCD contrast level™3 " 0 to 7 (O: Lowest, 7: Highest)
4 0 Message version™ ™ 0: Japanese 1: English
5 0 Alphabet entry function 0: Disabled 1: Enabled
8 0 Wakeup function 0: Deactivated 1: Activated
1 Initiation of BHT™® 0: Initiated by the 1: Initiated by the
power key wakeup function
2 TI MES$ function 0: System time 1: Wakeup time
selected selected
3 Wakeup time 0: Not set 1: Set
Eh 0 System status indication™"” 0: OFF 1: ON
Fh 7-0 Re-read prevention enabled time”® 0 to 255
10h-40Fh 7-0 VRAM™"® 0: OFF 1: ON
6010h 7-0 Battery voltage level™° 0to 255
6011h 0 Battery type 0: Rechargeable 1: Dry battery car-
battery cartridge tridge
6040h 0 Magic key 1 0: Released 1: Held down
1 Magic key 2 0: Released 1: Held down
6050h 0 Keyboard type 0: 26-key pad 1: 32-key pad
6060h 7-0 Communications protocol ! 0: BHT-protocol 1: Multilink protocol
6061h 7-0 ID (lower byte)™2 0to 255
6062h 7-0 ID (upper byte)™? 0to 255
“1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.
*2

signal is received, bit

7 of this byte goes ON (1).

488

During the optical interface operation, a user program can monitor CS (CTS) signal. If CS

*3

*4

*5
*6
*7

*8

*9

*10

*11

*12

Appendices

During the direct-connect interface operation, a user program can regard RD signal as CS
signal, provided that the returned value of CS should be specified by RS/ CS control
parameter in the OPEN" COM " statement as listed below.

OPEN "COM " state- Returned value of CS (CTS)

ment

OPEN "COM,,,, 0" Always 1

OPEN "COM, ,,, 1" Always 1

OPEN "COM, ,,, 2" 1 if RD signal is High.

OPEN "COM, ,,, 3" 1 if RD signal is Low.

OPEN "COM, ,, , 4" Depends upon the RD signal state.

If the communications device file is closed, the BHT-5000 returns the value 0.

Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to
111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

The LCD contrast, message version (English/Japanese), system status indication, and
VRAM should not be monitored by using a WAI T statement. These status may not change
while a user program monitors them by this statement. The WAI T statement used for this
purpose may cause the program to enter an infinite loop.

In System Mode, the message version appears as English or Japanese on the LCD.
If the BHT-5000 is initiated by the wakeup function, this bit goes ON (1).

The BHT-5000 can display the system status on the bottom line of the LCD. If the system
status is displayed, the BHT-5000 returns the value 1; if not, it returns the value 0. For the
system status indication, refer to Chapter 7, Subsection 7.1.7.

The BHT-5000 returns the re-read prevention enabled time length in units of 100 ms. If the
returned value is zero (0), it means that the re-read prevention is permanently enabled so
that the BHT-5000 does not read same bar codes in succession.

An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 40Fh (which read VRAM) rep-
resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

A user program returns the A/D converted value (0 to 255) of the battery voltage level (0 to
5V). The returned value is an instantaneous value when data on the input port is read. The
voltage level varies depending upon the BHT-5000 operation and it is not in proportion to
the battery capacity, so use this voltage level as a reference value.

A user program returns the communications protocol type used for file transmission with
the XFI LE statement.

A user program returns the BHT’s ID number which is required for the use of the multilink
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper
byte on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number
is 1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

489

m Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

Port No. Bit assignment " Controls the following:
1 0 Reading confirmation LED (red)? 0: OFF 1: ON
1 Reading confirmation LED (green)® 0: OFF 1: ON
2 0 RS (RTS) signal™® 0: OFF (Low) 1: ON (High)
3 2-0 LCD contrast level 0to 7 (0: Lowest, 7: Highest)
4 0 Message version 0: Japanese 1: English
5 0 Alphabet entry function 0: Disable 1: Enable
6 7-0 Sleep timer"® 0to 255
8 0 Wakeup function*® 0: Deactivate 1: Activate
2 TI ME$ function”™ 0: Select the sys- 1: Select the
tem time wakeup time
Eh 0 System status indication™® 0: OFF 1: ON
Fh 7-0 Re-read prevention enabled time™® 0 to 255
10h-40Fh 7-0 VRAM™10 0: OFF 1: ON
6000h 0 Initiation of System Mode™! 0: Do not 1: Initiate
initiate
6020h 0 LCD backlight'12 0: Turns OFF 1: Turns ON
6021h 7-0 LCD backlight ON-duration™? 0to 255
6030h 7-0 Effective held-down time of power1to 255
key*l3
6060h 7-0 Communications protocol ™4 0: BHT-protocol 1: Multilink proto-
col
6061h 7-0 ID (lower byte)™® 0 to 255
6062h 7-0 ID (upper byte)1® 0 to 255

“1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

"2 The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

If you have set the confirmation LED to OFF in the OPEN " BAR: " statement, a user pro-
gram can control the reading confirmation LED although the bar code device file is opened.

"3 The RS (RTS) signal is controllable on the optical interface.

4 Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111
in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest. Shown below are examples of OUT statements.

QuT 3,7 "Contrast is highest
QUT 3, &07 ’'Contrast is highest

490

*5

*6
*7

*8

*9

*10

*11

*12

*13

*14

*15

Appendices

The sleep timer feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting O to this byte disables the sleep timer feature. (Refer to Chapter 10.)

QJT 6, 30 '3 seconds
aJT 6,0 "No sl eep operation

To activate the wakeup function, set 1 to this bit; to deactivate it, set 0.

To make the Tl ME$ function return or set the system time, set 0 to this bit; to make the
TI MES$ function return or set the wakeup time, set 1.

Execution of the TI ME$ function after selection of the wakeup time will automatically reset
this bit to zero.

The BHT-5000 may display the system status on the bottom line of the LCD. To display the
system status, set 1 to this port; to erase it, set 0. For the system status indication, refer to
Chapter 7, Subsection 7.1.7.

This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-5000 does not read
same bar codes in succession. The default is 10 (1 second).

An 8-bit binary pattern (bits 7 to 0) on the output ports 10h to 40Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

If you send graphic data to the VRAM area (assigned to the bottom line of the LCD) by
using the OUT statement when the system status is displayed on the LCD, the sent data
will be written into that VRAM area but cannot be displayed on the bottom line of the LCD.

Refer to Appendix H, “[3] Program file named APLINT.PD3.”

If the backlight function is activated with the OUT statement, the specification by the KEY
statement will be ignored. For details, refer to Chapter 13.

If you set 0 to the ON-duration (6021h), the backlight will not come on; if you set 255, it will
be kept on.

You can set the held-down time of the power key required for powering off the BHT-5000.
The setting range is from 0.1 to 25.5 seconds in increments of 0.1 second. The default is 5
(0.5 second).

You can set the communications protocol type for transmitting files with the XFI LE state-
ment. To transmit files between the host computer and more than one BHT-5000 (placed
on the multilinked CU-5003s), set 1 (multilink protocol) to this port. The file transmission by
using the multilink protocol requires also Multilink Transfer Utility (MLTU3.EXE) to be run in
the host computer, Multilink Protocol System (MLTU3.EX3) to be run in the BHT-5000, and
the CU-5003(s).

If Multilink Protocol System (MLTU3.EX3) has not been downloaded to the BHT-5000, the
BHT-protocol will be used instead of the multilink protocol even if this port is set to 1 (multi-
link protocol).

You may set the BHT's ID number to be used for the multilink protocol. The ID number is
expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h. The set-
ting range is from 1 to FFFFh. To set the ID number to 1234h, write as follows:

QUT &h6061h, &34 ' Sets 34h to the |lower byte of the ID
QUT &h6062h, &12 ' Sets 12h to the upper byte of the ID

491

D4. BHT-6000/BHT-6500

m |nput Ports

A user program can monitor the hardware status through the input ports by using the WAI T
statement or | NP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

Port No. Bit assignment " Monitors the following:

0 0 Keyboard buffer 0: No data 1: Data stored
1 Barcode buffer 0: No data 1: Data stored
2 Trigger switch™ 0: OFF 1: ON
3 Receive buffer 0: No data 1: Data stored
4 Value of Tl MEA function 0: Nonzero 1: Zero
5 Value of Tl MEB function 0: Nonzero 1: Zero
6 Value of TI MEC function 0: Nonzero 1: Zero
7 CS (CTS) signal™ 0: OFF or file closed 1: ON
3 3-0 LCD contrast level "> 0to 11 (0: Lowest, 11: Highest)
4 0 Message version™ "8 0: Japanese 1: English
5 0 Alphabet entry function 0: Disabled 1: Enabled
8 0 Wakeup function 0: Deactivated 1: Activated
1 Initiation of BHT™” 0: Initiated by the 1: Initiated by the
power key wakeup function
2 TI MES$ function 0: System time 1: Wakeup time
selected selected
3 Wakeup time 0: Not set 1: Set
Eh 0 System status indication>8 0: OFF 1: ON
Fh 7-0 Re-read prevention enabled time™ 0 to 255
10h-24Fh 7-0 VRAM™ "10 0: OFF 1: ON
6010h 7-0 Battery voltage level™® 0to 255
6011h 0 Battery type 0: Battery cartridge 1: Dry batteries
6040h 0 Magic key 1 0: Released 1: Held down
1 Magic key 2 0: Released 1: Held down
212 Magic key 3 0: Released 1: Held down
3112 Magic key 4 0: Released 1: Held down
6060h 7-0 Communications protocol ™3 0: BHT-protocol 2: BHT-Ir protocol
6061h 7-0 ID (lower byte)™14 0to 255
6062h 7-0 ID (upper byte)* 0to 255
6070h 0 Output pulse width of IR beam 0:1.63 us 1: 3/16 bit time
6080h 0 Display font size"® 0: Standard-size 1: Small-size
6090h"12 0 Beeper 0: Deactivated 1: Activated
1 Vibrator 0: Deactivated 1: Activated

492

*1

*2

*3

*4

*5

*6
*7

*8

*9

*10

*11

*12

*13

Appendices

BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

Only when the trigger switch function is assigned to any of the magic keys, a user program
returns the ON/OFF state of the switch.

During the direct-connect interface operation, a user program can regard RD signal as CS
signal, provided that the returned value of CS should be specified by RS/ CS control
parameter in the OPEN" COM " statement as listed below.

OPEN "COM " state- Returned value of CS (CTS)

ment

OPEN "COM,,,, 0" Always 1

OPEN "COM, ,,, 1" Always 1

OPEN "COM, ,,, 2" 1 if RD signal is High.

OPEN "COM,,,, 3" 1 if RD signal is Low.

OPEN "COM, ,, , 4" Depends upon the RD signal state.

If the direct-connect interface is closed, the BHT-6000/BHT-6500 returns the value 0.

Lower four bits (bit 3 to bit 0) in this byte represent the contrast level of the LCD in 0000 to
1011 in binary notation or in 0 to 11 in decimal notation. 0 means the lowest contrast; 11
means the highest.

The LCD contrast, message version (English/Japanese), system status indication, and
VRAM should not be monitored by using a WAI T statement. These status may not change
while a user program monitors them by this statement. The WAI T statement used for this
purpose may cause the program to enter an infinite loop.

In System Mode, the message version appears as English or Japanese on the LCD.
If the BHT-6000/BHT-6500 is initiated by the wakeup function, this bit goes ON (1).

The BHT-6000/BHT-6500 can display the system status on the bottom line of the LCD. If
the system status is displayed, the BHT-6000/BHT-6500 returns the value 1; if not, it
returns the value 0. For the system status indication, refer to Chapter 7, Subsection 7.1.7.

The BHT-6000/BHT-6500 returns the re-read prevention enabled time length in units of 100
ms. If the returned value is zero (0), it means that the re-read prevention is permanently
enabled so that the BHT-6000/BHT-6500 does not read same bar codes in succession.

An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 24Fh (which read VRAM) rep-
resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

A user program returns the A/D converted value (0 to 255) of the battery voltage level (0 to
5V in the BHT-6000 and 0 to 3.5V in the BHT-6500). The returned value is an instanta-
neous value when data on the input port is read. The voltage level varies depending upon
the BHT-6000/BHT-6500 operation and it is not in proportion to the battery capacity, so use
this voltage level as a reference value.

Supported by the BHT-6500 only.

A user program returns the communications protocol type used for file transmission with
the XFI LE statement. For details about the communications protocol, refer to the "BHT-
6000 User's Manual" or "BHT-6500 User’'s Manual."

493

*14 A user program returns the BHT's ID number which is required for the use of the BHT-Ir
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper
byte on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number
is 1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

*15 If the value of this bit is 0 (standard-size), characters will be displayed as follows:

(W) x (H)
Single-byte ANK mode 6 dots x 8 dots
Two-byte Kanji mode Full-width 16 dots x 16 dots
Half-width 8 dots x 16 dots

If the value of this bit is 1 (small-size), characters will be displayed as follows:

(W) x (H)
Single-byte ANK mode 6 dots x 6 dots
Two-byte Kanji mode Full-width 12 dots x 12 dots
Half-width 6 dots x 12 dots

494

m Output Ports

Appendices

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

Port No. Bit assignment "

Controls the following:

1 0 Reading confirmation LED (red)"? 0: OFF 1: ON
1 Reading confirmation LED (green)® 0: OFF 1: ON
3 3-0 LCD contrast level™ 0 to 11 (0: Lowest, 11: Highest)
4 0 Message version 0: Japanese 1: English
5 0 Alphabet entry function 0: Disable 1: Enable
6 7-0 Sleep timer™ 0to 255
8 0 Wakeup function™ 0: Deactivate 1: Activate
2 TI MES$ function™® 0: Select the sys- 1: Select the
tem time wakeup time
Eh 0 System status indication™’ 0: OFF 1: ON
Fh 7-0 Re-read prevention enabled time™® 0 to 255
10h-24Fh 7-0 VRAM™® 0: OFF 1: ON
6000h 0 Initiation of System Mode™° 0: Do not 1: Initiate
initiate
6020h 0 LCD backlight™! 0: Turns OFF 1: Turns ON
6021h 7-0 LCD backlight ON-duration™* 0to 255
6030h 7-0 Effective held-down time of power1to 255
key'12
6060h 7-0 Communications protocol ™3 0: BHT-protocol 2: BHT-Ir protocol
6061h 7-0 ID (lower byte)™14 0 to 255
6062h 7-0 ID (upper byte)14 0 to 255
6070h 0 Output pulse width of IR beam™® 0:1.63 s 1: 3/16 bit time
6080h 0 Display font size™8 0: Standard-size 1: Small-size
6090h"17 0 Beeper 0: Deactivate 1: Activate
1 Vibrator 0: Deactivate 1: Activate

495

*1

*2

*3

*4

*5
*6

*7

*8

*9

*10

*11

*12

BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

If you have set the confirmation LED to OFF in the OPEN " BAR: " statement a user pro-
gram can control the reading confirmation LED although the bar code device file is opened.

Lower four bits (bit 3 to bit 0) in this byte control the contrast level of the LCD in 0000 to
1011 in binary notation or in 0 to 11 in decimal notation. 0 means the lowest contrast; 11
means the highest. Shown below are examples of OUT statements.

aur 3,11 "Contrast is highest
QUT 3,&h0B ' Contrast is highest

The sleep timer feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting O to this byte disables the sleep timer feature. (Refer to Chapter 10.)

QJT 6, 30 '3 seconds
aJT 6,0 "No sl eep operation

To activate the wakeup function, set 1 to this bit; to deactivate it, set 0.

To make the Tl ME$ function return or set the system time, set 0 to this bit; to make the
TI1 MES$ function return or set the wakeup time, set 1.

Execution of the TI ME$ function after selection of the wakeup time will automatically reset
this bit to zero.

The BHT-6000/BHT6500 may display the system status on the bottom line of the LCD. To
display the system status, set 1 to this port; to erase it, set 0. For the system status indica-
tion, refer to Chapter 7, Subsection 7.1.7.

This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-6000/BHT6500
does not read same bar codes in succession. The default is 10 (1 second).

An 8-bit binary pattern (bits 7 to 0) on the output ports 10h to 24Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

If you send graphic data to the VRAM area (assigned to the bottom line of the LCD) by
using the OUT statement when the system status is displayed on the LCD, the sent data
will be written into that VRAM area but cannot be displayed on the bottom line of the LCD.
Refer to Appendix H, "[3] Program file named APLINT.PD3."

If the backlight function is activated with the OUT statement, the specification by the KEY
statement will be ignored. For details, refer to Chapter 13.

If you set 0 to the ON-duration (6021h), the backlight will not come on; if you set 255, it will
be kept on.

You can set the held-down time of the power key required for powering off the BHT-6000/
BHT6500. The setting range is from 0.1 to 25.5 seconds in increments of 0.1 second. The
default is 5 (0.5 second).

496

Appendices

*13 You can set the communications protocol type for transmitting files with the XFI LE state-
ment.

*14 You may set the BHT's ID number to be used for the BHT-Ir protocol. The ID number is
expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h. The set-
ting range is from 1 to FFFFh. To set the ID number to 1234h, write as follows:

QUT &h6061h, &34 ' Sets 34h to the |lower byte of the ID
QUT &h6062h, &12 ' Sets 12h to the upper byte of the ID

*15 For data transmission via the optical interface, this bit sets the output pulse width of IR
beam in accordance with the IrDA physical layer (IrDA-SIR 1.0). The default width is 1.63
us.

*16 If you set 0 (standard-size) to this bit, characters will be displayed as follows:

(W) x (H)
Single-byte ANK mode 6 dots x 8 dots
Two-byte Kanji mode Full-width 16 dots x 16 dots
Half-width 8 dots x 16 dots

If you set 1 (small-size) to this bit, characters will be displayed as follows:

(W) x (H)
Single-byte ANK mode 6 dots x 6 dots
Two-byte Kanji mode Full-width 12 dots x 12 dots
Half-width 6 dots x 12 dots

17 Supported by the BHT-6500 only. If you set 0 (Deactivates) to both bits 0 and 1, only the
beeper will work.

497

D5. BHT-7000/BHT-7500

m |nput Ports

A user program can monitor the hardware status through the input ports by using the WAI T
statement or | NP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

Port No. Bit assignment " Monitors the following:
0 0 Keyboard buffer 0: No data 1: Data stored
1 Barcode buffer 0: No data 1: Data stored
2 Trigger switch"? 0: OFF 1: ON
3 Receive buffer 0: No data 1: Data stored
4 Value of Tl MEA function 0: Nonzero 1: Zero
5 Value of Tl MEB function 0: Nonzero 1: Zero
6 Value of TI MEC function 0: Nonzero 1: Zero
7 CS (CTS) signal™ 0: OFF or file closed 1: ON
3 2-0 LCD contrast level™ 0to 7 (0: Lowest, 7: Highest)
4 0 Message version”> 0: Japanese 1: English
5 0 Alphabet entry function 0: Disabled 1: Enabled
8 0 Wakeup function 0: Deactivated 1: Activated
1 Initiation of BHT™® 0: Initiated by the 1: Initiated by the
power key wakeup function
2 TI MES$ function 0: System time 1: Wakeup time
selected selected
3 Wakeup time 0: Not set 1: Set
Fh 7-0 Re-read prevention enabled time™” 0 to 255
10h-40Fh 7-0 BHT-7000 VRAM'® 0: OFF 1: ON
10h-C8Fh 7-0 BHT-7500 VRAM'® 0: OFF 1: ON
6010h 7-0 Battery voltage level™ 0to 255
6011h 0 Battery type 0: Rechargeable 1: Dry battery car-
battery cartridge tridge
6012h 0 BHT onloff the CU™0 0: Off the CU
1: On the CU
2: Loaded with dry battery cartridge
6040h 0 Magic key 1 0: Released 1: Held down
1 Magic key 2 0: Released 1: Held down
2 Magic key 3 0: Released 1: Held down
3 Magic key 4 0: Released 1: Held down
6060h 7-0 Communications protocol ™ 0: BHT-protocol 2: BHT-Ir protocol
6061h 7-0 ID (lower byte)™2 0 to 255
6062h 7-0 ID (upper byte)™? 0to 255
6070h 0 Output pulse width of IR beam™3 1: 3/16 bit time
6080h 0 Display font size™* 0: Standard-size 1: Small-size

498

Appendices

Port No. Bit assignment " Monitors the following:
6090h 0 Beeper 0: Deactivated 1: Activated
1 Vibrator 0: Deactivated 1: Activated
60B0Oh"15 7-0 Key entry system 0: Numeric entry 1: Alphanumeric
entry
60B1h"15 7-0 Key entry mode 0: Numeric 1: Alphabet
60COh 7-0 Beeper volume ™16 0to3
60EOh 7-0 Drive size to be defragmented 0to 255
(lower byte)'1?
60E1h 7-0 Drive size to be defragmented 0to 255
(upper byte)™7
60FOh 7-0 Remote wakeup function™® 0: Deactivated 1: Activated
60F1h 7-0 Transmission speed for remote 1: 9600 bps 2: 19200 bps
wakeup'® 3: 38400 bps 4: 57600 bps
5: 115200 bps
60F2h 0 Execution record of remote 1: Woke up remotely
wakeup 20
1 Termination of remote wakeup™?! 1: Terminated normally
60F3h 7-0 Timeout for remote wakeup™? 1 to 255 (seconds)
"1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For

*2

*3

*4

*5
*6

*7

example, bit 0 means LSB; bit 7 means MSB.

Only when the trigger switch function is assigned to either of the magic keys, a user pro-
gram returns the ON/OFF state of the switch.

During the direct-connect interface operation, a user program can regard RD signal as CS
signal, provided that the returned value of CS should be specified by RS/ CS control
parameter in the OPEN" COM " statement as listed below.

OPEN "COM " state- Returned value of CS (CTS)

ment

OPEN "COM,,,, 0" Always 1

OPEN "COM, ,,, 1" Always 1

OPEN "COM, ,,, 2" 1 if RD signal is High.

OPEN "COM,,,, 3" 1 if RD signal is Low.

OPEN "COM, ,,, 4" Depends upon the RD signal state.

If the direct-connect interface is closed, the BHT-7000/BHT-7500 returns the value 0.

Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to
111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

In System Mode, the message version appears as English or Japanese on the LCD.
If the BHT-7000/BHT-7500 is initiated by the wakeup function, this bit goes ON (1).

The BHT-7000/BHT-7500 returns the re-read prevention enabled time length in units of 100
ms. If the returned value is zero (0), it means that the re-read prevention is permanently
enabled so that the BHT-7000/BHT-7500 does not read same bar codes in succession.

499

*8

*9

*10

*11

*12

*13

*14

*15
*16

An 8-bit binary pattern (bits 7 to 0) on the input ports (which read VRAM) 10h to 40Fh in the
BHT-7000 or 10h to C8Fh in the BHT-7500 represents a basic dot pattern column of the
LCD. Bit value 1 means a black dot. The port number gives the dot column address.

On input ports BEOh to C8Fh, which represents the bottom line of the LCD, is a 7-bit binary
pattern (bits 6 to 0) only. If "1" is set to bit 7 for output, bit 7 returns "1"; if "0," bit 7 returns
"o

A user program returns the A/D converted value (0 to 255) of the battery voltage level (0 to
7V). The returned value is an instantaneous value when data on the input port is read. The
voltage level varies depending upon the BHT-7000/BHT-7500 operation and it is not in pro-
portion to the battery capacity, so use this voltage level as a reference value.

If the BHT is placed on the CU and is ready to be charged (or being charged), "1" will be
returned. In this condition, the indicator LED on the BHT is lit in red or green showing the
charging state.

In either of the following cases, "0" will be returned even if the BHT is placed on the CU:
- No power is supplied to the CU.

- The BHT cannot be recognized as being placed on the CU due to contact failure of charg-
ing terminals.

A user program returns the communications protocol type used for file transmission with
the XFI LE statement. For details about the communications protocol, refer to the "BHT-
7000 User’s Manual" or "BHT-7500 User’s Manual."

A user program returns the BHT’s ID number which is required for the use of the BHT-Ir
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper
byte on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number
is 1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

Fixed to 3/16 bit time.
If the value of this bit is O (standard-size), characters will be displayed as follows:
(W) x (H)
Single-byte ANK mode 6 dots x 8 dots
Two-byte Kanji mode Full-width 16 dots x 16 dots
Half-width 8 dots x 16 dots

If the value of this bit is 1 (small-size), characters will be displayed as follows:

(W) x (H)
Single-byte ANK mode 6 dots x 6 dots
Two-byte Kanji mode Full-width 12 dots x 12 dots
Half-width 6 dots x 12 dots

Valid only in the BHT-7000 with 26-key pad.

A user program returns the beeper volume level--1 (Low), 2 (Medium), or 3 (High). 0
means no beeping.

500

Appendices

*17 A user program returns the currently specified size of the empty area to be defragmented in
units of 4 kilobytes. The size is expressed by two bytes: lower byte on port 60EOh and
upper byte on port 60E1h. The range of the returned value is from 1 to FFFFh. (The actu-
ally allowable maximum value is the size of the empty user area. If a value exceeding the
size is returned, it means that the whole empty area is specified to be defragmented.)

If the size is 2048 kilobytes, for example, the value on 60EOh is 00h and that on 60E1h is
02h (2048 kilobytes/4 kilobytes = 512 or 200h). 0 means the whole empty area to be
defragmented.

*18 |f 0" is returned, the remote wakeup function is deactivated; if "1," the function is activated.

*19 The transmission speed to be applied when activating the remote wakeup will be returned.

*20 |f the BHT was woke up remotely at the last powering on, "1" will be returned; if the BHT is

initiated from any other means, "0" will be returned.

*21 |f a user program executed by the remote wakeup has been terminated with END, PONER

OFF, or PONER O statement, then “1" will be returned; in any other cases, "0" will be
returned.

22 A user program returns the timeout length during which the BHT will wait for proper data

(specified remote wakeup character string) after receiving any data via the CU from the
host.

m Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

Port No. Bit assignment " Controls the following:
1 0 Reading confirmation LED (red)*? 0: OFF 1: ON
1 Reading confirmation LED (green)*? 0: OFF 1: ON
3 2-0 LCD contrast level™ 0to 7 (0: Lowest, 7: Highest)
4 0 Message version 0: Japanese 1: English
5 0 Alphabet entry function 0: Disable 1: Enable
6 7-0 Sleep timer™ 0to 255
8 0 Wakeup function™ 0: Deactivate 1: Activate
2 TI MES$ function™® 0: Select the sys- 1: Select the
tem time wakeup time
Fh 7-0 Re-read prevention enabled time*” 0to 255
10h-40Fh 7-0 BHT-7000 VRAM'® 0: OFF 1: ON
10h-C8Fh 7-0 BHT-7500 VRAM'® 0: OFF 1: ON
6000h 0 Initiation of System Mode™ 0: Do not 1: Initiate
initiate
6020h 0 LCD backlight™© 0: Turn OFF 1: Turn ON
6021h 7-0 LCD backlight ON-duration™° 0'to 255
6030h 7-0 Effective held-down time of power key™! 1 to 255

501

Port No. Bit assignment " Controls the following:

6060h 7-0 Communications protocol™? 0: BHT-protocol 2: BHT-Ir protocol
6061h 7-0 ID (lower byte)™13 0to 255
6062h 7-0 ID (upper byte)13 0to 255
6080h 7-0 Display font size™* 0: Standard-size 1: Small-size
6090h 0 Beeper'1® 0: Deactivates 1: Activates

1 Vibrator™1® 0: Deactivates 1: Activates
60B0Oh"16 7-0 Key entry system 0: Numeric entry 1: Alphanumeric

entry

60B1h™16 7-0 Key entry mode 0: Numeric 1: Alphabet
60COh 7-0 Beeper volume™’ 0to3
60DOh 7-0 System modification 8 0: Power off after modification

1: Software-reset after modification

60EOh 7-0 Drive size to be defragmented 0to 255

(lower byte)1®

60E1h 7-0 Drive size to be defragmented 0 to 255

(upper byte)™1?

60E2h 7-0 Execution of defragmentation2° 0: Defragments w/o bar graph
1: Defragments w/ absolute bar graph
2: Defragments w/ relative bar graph

60F0h 7-0 Remote wakeup function?! 0: Deactivated 1: Activated

60F1h 7-0 Transmission speed for remote 1: 9600 bps 2:19200 bps

wakeup'?2 3: 38400 bps 4: 57600 bps

5: 115200 bps

60F2h 0 Execution record of remote wakeup 1: Woke up remotely

1 Termination of remote wakeup 1: Terminated normally
60F3h 7-0 Timeout for remote wakeup™?3 1 to 255 (seconds)
*1

*2

*3

*4

*5

BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

If you have set the confirmation LED to OFF in the OPEN" BAR: " statement, a user pro-
gram can control the reading confirmation LED although the bar code device file is opened.

Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111
in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest.

QuTt 3,7 "Contrast is highest

QUT 3, &07 ’'Contrast is highest
The sleep timer feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting O to this byte disables the sleep timer feature. (Refer to Chapter 10.)

QuT 6, 30 '3 seconds

QuJT 6,0 "No sl eep operation

To activate the wakeup function, set 1 to this bit; to deactivate it, set 0.

502

*6

*7

*8

*9

*10

*11

*12

*13

*14

*15
*16

*17

Appendices

To make the Tl ME$ function return or set the system time, set 0 to this bit; to make the
TI MES$ function return or set the wakeup time, set 1.

Execution of the TI ME$ function after selection of the wakeup time will automatically reset
this bit to zero.

This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-7000/BHT7500
does not read same bar codes in succession. The default is 10 (1 second).

An 8-hit binary pattern (bits 7 to 0) on the output ports (which are stored in the VRAM) 10h
to 40Fh in the BHT-7000 or 10h to C8Fh in the BHT-7500 represents a basic dot pattern
column of the LCD. Bit value 1 means a black dot. The port number gives the dot column
address.

On input ports BEOh to C8Fh, which represents the bottom line of the LCD, is a 7-bit binary
pattern (bits 6 to 0) only. If you set "1" to bit 7, it will be displayed as 1; if "0," it will be as 0.

Refer to Appendix H, "[3] Program file named APLINT.PD3."

If the backlight function is activated with the OUT statement, the specification by the KEY
statement will be ignored. For details, refer to Chapter 13.

If you set 0 to the ON-duration (6021h), the backlight will not come on; if you set 255, it will
be kept on.

You can set the held-down time of the power key required for powering off the BHT-7000/
BHT7500. The setting range is from 0.1 to 25.5 seconds in increments of 0.1 second. The
default is 5 (0.5 second).

You can set the communications protocol type for transmitting files with the XFI LE state-
ment.

You may set the BHT's ID number to be used for the BHT-Ir protocol. The ID number is
expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h. The set-
ting range is from 1 to FFFFh. To set the ID number to 1234h, write as follows:
QUT &h6061h, &34 ' Sets 34h to the |lower byte of the ID
QUT &h6062h, &12 ' Sets 12h to the upper byte of the ID

If you set O (standard-size) to this bit, characters will be displayed as follows:

(W) x (H)
Single-byte ANK mode 6 dots x 8 dots
Two-byte Kanji mode Full-width 16 dots x 16 dots
Half-width 8 dots x 16 dots

If you set 1 (small-size) to this bit, characters will be displayed as follows:

(W) x (H)
Single-byte ANK mode 6 dots x 6 dots
Two-byte Kanji mode Full-width 12 dots x 12 dots
Half-width 6 dots x 12 dots

If you set 0 (Deactivates) to both bits 0 and 1, only the beeper will work.
Valid only in the BHT-7000 with 26-key pad.

The beeper volume level may be adjusted to four levels--1 (Low), 2 (Medium), 3 (High), and
0 (OFF).

503

*18

*19

*20

*21
*22

*23

To update the BHT system by using an application program, download an update file to the
BHT and then execute an OUT statement. Updating the system will take approx. 30 sec-
onds. During updating, the BHT power should be kept on. If an execution program has
been set, execution of OUT &H60DO0, 1 may cold-start the application.

You may specify the size of the empty user area to be defragmented in units of 4 kilobytes.
The size is expressed by two bytes: lower byte on port 60EOh and upper byte on port
60E1h. The setting range is from 1 to FFFFh. (The actually allowable maximum value is
the size of the empty user area. If you specify a value exceeding the size, the whole empty
area will be defragmented.)

To defragment 2048 kilobytes of area, write as follows:
2048 kilobytes/4 kilobytes = 512 (200h), so

QUT &h60EO, 0 "Sets 00h to the | ower byte
QUT &h60E1, 2 "Sets 02h to the upper byte

If "0" is set, the whole empty user area will be defragmented.

To defragment the drive, set "0," "1," or "2." Setting "1" or "2" will display an absolute bar
graph or relative bar graph indicating the defragmentation progress during drive defrag-
mentation, respectively. The bar graph will disappear after completion of defragmentation
and the previous screen will come back.

To defragment the drive while showing a relative bar graph, write as follows:
QUT &h60E2,1 ' Defragnent the drive showing relative bar
gr aph

To activate the remote wakeup, set "1"; to deactivate, set "0."

Set the transmission speed to be applied for remote wakeup.

You may set the timeout length during which the BHT will wait for proper data (specified
remote wakeup character string) after receiving any data via the CU from the host.

504

Appendices

Appendix E
Key Number Assignment on the Keyboard

E1. BHT-3000

m Key Number Assignment

The keys on the BHT-3000 keyboard are assigned numbers as shown below.

Non-shift mode Shift mode
8 1 8 9
| I || o L e e]
5 4 5
| | || | Lo L2 |[= |
2 1 2 3
| CC] L |l s J[o |
. ENT 0 . ENT
C (I . Lz L= |
|1||2||3||| |9||10||H||12|

] GGG

PWR SFT
I | L2 2 []

m Default Data Assignment

The default data assignment is shown below.

Non-shift mode Shift mode
7 8 9 7 8 9
L e JLe | Lo e JLs]
4 5 6 4 5 6
I | | e AR |
1 2 3 1 2 3
Lol JLe] L e L. |
0 ENT 0 . ENT
N | R ST e O |
F1 F2 F3 F4 F1 F2 F3 F4
Lol e J[o | Lo Jbe Jle JLe |
F5 F6 F7 F8 F5 F6 F7
: FIIGIIHI L Lo JLe |
PWR BS CLR SFT PWR BS CLR SFT
Les JLen [| e]

“1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)
code, respectively.

505

E2. BHT-4000

m Key Number Assignment
The keys on the BHT-4000 keyboard are assigned numbers as shown below.

Non-shift mode Shift mode

O 2O GO 3D O 0O (D (2D
)] L) s L]
EEREERER Le] (s] (e]

6 8

e Je Lo) (e J e]
eI EBIERIED
eI EBIERIED
=50 BEC
I EREN

)] L ()
ISRERREE [

E]
I
non oo
ﬁﬁ” mm{]

“1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)
code, respectively.

5

=2

2 3

~
. J _J _J
- J _J _J

L2
L2
L2

. J _J _J

506

Appendices

E3. BHT-5000
[1] 32-key pad

m Key Number Assignment
The keys on the BHT-5000 keyboard are assigned numbers as shown below.

Non-shift mode Shift mode
OB

DA
DAd
DA
DA

D))
(I
)] (]

AWEEE]
BEHEME

F@0

HEE

LA

KO MM
LEQE

LEGEM () (9 (1 [2)
EBeEE] (13) (4) (5) (18)

m Default Data Assignment

The default data assignment is shown below.
Non-shift mode Shift mode
() () @) (&) (W &) () (&)
(rEn) () (o) (icn) WMWK
OOUA [mwe OU®EA |mwe

*1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)

code, respectively.

507

m Alphabet Letter Assignment

Shown below are the alphabet letter assignments which are available when the alpha-
bet input function is activated.

Non-shift mode Shift mode
AECEE] (J (I
TRG @A DE] |mwe

(D]
()] (]
(RJG]E)

(DG
)G
()]

A EE)

(18h), and space (20h) code, respectively.

508

“IBS, CR, C, and SPC are a backspace (08h), carriage return (ODh), cancel

Appendices

[2] 26-key pad

m Key Number Assignment

The keys on the BHT-5000 keyboard are assigned numbers as shown below.

Non-shift mode Shift mode

0000~
0IO

O
(®
(®
O

)
(£

OO00
OO0
OO00
B
O®®E
O®®E

N

(=]

ol

(=] N
(o=} .
=)

~ w
w
~ o

o —_

m Default Data Assignment

The default data assignment is shown below.

(%))
=y
=
3
]
a
@

Non-shift mode

O
©
©,
O
O
O,
©
O

TRG

TRG

O
O

O
O

OO
OGO

BHOOG
QOO
OGO
OOOG

(] [>]
(][«
(][]
= o

*1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)
code, respectively.

509

E4. BHT-6000

m Key Number Assignment
The keys on the BHT-6000 keyboard are assigned numbers as shown below.

Non-shift mode Shift mode

o)
o)
o)
g

) EERERREN
) (2] (=] (=]
CJ) ENRENNED
CJ) ENRENNEN
C) (o) () (a2
&) &)@l
(I G I G O (D &) = (I
m Default Data Assignment

)
°)
)
)

—
~
©

—

—

o
w
N

=

—
~
=

—

—

[=
=

—

—
w
—
—
—<
+
)

..
)) N N
.‘!‘Ia —_— —_— —_— —_—
—_— —_— —_— —_—
N N N N

o —

00 U

o

=

X
—

BB ==
0B 6
086 [

CJ &9 €]

*1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)
code, respectively.

510

ES. BHT-6500

m Key Number Assignment

Appendices

The keys on the BHT-6500 keyboard are assigned numbers as shown below.

Non-shift mode

35

36

G @O ®
OO0 .

m Default Data Assignment

The default data assignment is shown below.

Non-shift mode

TRG

TRG

9

)
~
J

8

J
5) [6

J

J

—
~
J

2 3

()

1
}
}
}

—

0 CR*!

()

)
(&)
) 69 (€3 (]

aa
Ha
a

code, respectively.

511

Shift mode

37

38

CORCD

(17] (18] (19)
(21] [22] (23]
(25] [26] [27)
Lee) (2] [
() () G0 (2]

[ja
N
ga
N [—
aa
—_
(=2}

Shift mode

*1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)

E6. BHT-7000/BHT-7500

[1] 32-key pad

m Key Number Assignment

The keys on the BHT-7000/BHT-7500 keyboard are assigned numbers as shown

below.

47

Non-shift mode

000

DA
DA
DA

DA

LEGEME
EBEOE

m Default Data Assignment

The default data assignment is shown below.

TRG

Non-shift mode

O®00
BEOE
OO@O0

I
(I
(DG

)] (]

WECEE]

48
32

49

TRG

TRG

Shift mode

O®OO
@HH@
EOD®

)]
DOOE
DEEE

Shift mode
U100
0OE®O

HEE
ICIE]
()]

A

KO MM
LERE]

50

TRG

*1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)
code, respectively.

512

m Alphabet Letter Assignment

Appendices

Shown below are the alphabet letter assignments which are available when the alpha-
bet input function is activated.

TRG

Non-shift mode

U000
AWEEE
EBEGCMH

(D]
0]
()]

(RICs](x)

TRG

TRG

UeI0
(]I
(JEH 0]

(OG0
mie3rn
L]l

(DIG])

WML
JJEHE)

TRG

“IBS, CR, C, and SPC are a backspace (08h), carriage return (ODh), cancel

(18h), and space (20h) code, respectively.

513

[2] 26-key pad (BHT-7000 only)

m Key Number Assignment

The keys on the BHT-7000 keyboard are assigned numbers as shown below.

Shift mode

Non-shift mode

|
@

or

) ()

&)
) (=) (=)
=) (=) (=)

or

[

nn
~ ~
nn
~— ~
nn
— —
@a

—

nn
n.
n@
.a

m Default Data Assignment

The default data assignment is shown below.

Shift mode

Non-shift mode

JEIED

OO =

[

=0

)]
(<)o}
(]
-]

)]
(][]
[=J[+]
[<J[+]

*1BS, CR, and C are a backspace (08h), carriage return (ODh), and cancel (18h)

code, respectively.

514

Appendices

Appendix F
Memory Area

= Memory Map

The memory maps are shown below.

BHT-3000 BHT-4000
System program area ROM System program area (16 KB)
(128 KB)
System work area) JIS Kaniji font area L ROM
(24 KB) (256 KB)
User area L RAM Systemlpz)r:gKrgm area
(104 or 488 KB) ()
System work area
(28 or 48 KB)
’ > RAM
User area

(100,612 or 1872 KB)

BHT-5000 BHT-6000
System program area System program area
(132 KB) (192 or 200 KB)
JIS Level 1 Kanji font area JIS Level 1 Kaniji font area
(128 KB) (128 KB)
———————— r ROM —— — — — — — —| ¢ ROM
JIS Level 2 Kanji font area JIS Level 2 Kaniji font area
(128 KB) (128 KB)
User area (124 KB) User area (64 or 568 KB)
System work area System work area
(36, 48, 60 or 72 KB) (48 KB)
User area r RAM User area (RAM
(92, 464, 964 or 1976 KB) (464 KB)

515

BHT-6500

System program area
(196 KB)

JIS Level 1 Kaniji font area
(128 KB)

JIS Level 2 Kanji font area
(128 KB)

User area (60 KB)

System work area
(48 or 72 KB)

User area
(464 or 1976 KB)

J

BHT-7500

System work area
(512 or 1024 KB)

System program area
(1728 KB)

Font area

JIS Level 1 font, 16-dot (120 KB)
JIS Level 2 font, 16-dot (112 KB)
JIS Level 1 font, 12-dot (88 KB)
JIS Level 2 font, 12-dot (84 KB)

User area
(6060 KB)

BHT-7000

System work area
(512 KB)

System program area
(1536 KB)

Font area

JIS Level 1 font, 16-dot (120 KB)
JIS Level 2 font, 16-dot (112 KB)
JIS Level 1 font, 12-dot (88 KB)
JIS Level 2 font, 12-dot (84 KB)

User area
(2156 KB)

This area may be used
as a user area if you
delete these fonts.

516

This area may be used
as a user area if you
delete these fonts.

Appendices

The size and area allocation of the memory incorporated in the BHT differ depending upon the
models as listed below.

BHT series Models User area User area in drive B (B:)
BHT-3000 BHT-3041 104
BHT-3045 488
BHT-4000 BHT-4082 100
BHT-4086 612
BHT-4089 18721
BHT-5000 BHT-5071 92 124
BHT-5075 464 124
BHT-5077 964 124
BHT-5079 19761 12474
BHT-6000 BHT-6045 46472 644
BHT-6047 4642 568"
BHT-6049 4642 1584 1"
BHT-6500 BHT-6505 464 604
BHT-6509 19761 604
BHT-7000 BHT-7064 21563
BHT-7500 BHT-7508 6060 "3

*"1The cluster size is 8 KB.

2468 KB in System version 2.00 or newer
*3plus a maximum of 404 KB if you delete fonts
*4Plus a maximum of 256 KB if you delete fonts

m Memory Management

The BHT manages the user area of the memory for user programs and data files by a unit
of segment called "cluster." The cluster size is usually 4 kilobytes. In some models or
drives, the cluster size is 8 kilobytes as listed above.

The maximum allowable size for a single user program is 64 kilobytes excluding register
variables.

m Battery Backup of Memory

The BHT-3000 backs up user programs and data files stored in the memory with alkaline
manganese batteries. The BHT-4000 backs up them with a rechargeable battery cartridge.
The BHT-5000/BHT-7000/BHT-7500 backs up them with a rechargeable battery cartridge
or dry battery cartridge. The BHT-6000/BHT-6500 backs up them with dry batteries or
rechargeable battery cartridge. Therefore, those data will not be lost if the BHT power is
turned off.

517

Memory Space Available for Variables

Listed below are the maximum memory spaces available for work, common, and register
variables.

Variables Max. memory space
Work and common variable area 6 KB*
Register variable area 64 KB

*32 KB in the BHT-7000/BHT-7500

Each variable occupies the memory space as listed below.

Variables Max. memory space
An integer variable 2 bytes

A real variable 6 bytes

A string variable 2 to 256 bytes

(Including a single character count byte)

An array variable occupies the memory space by (number of bytes per array element x
number of array elements).

518

Appendices

Appendix G
Handling Space Char acters
In Downloading

m Space characters used as padding characters

A data file can be downloaded with System Mode or an XFI LE statement according to the
communications protocol which is designed to eliminate space characters padded in the tail of
each data field. That is, such space characters in a data file will not be handled as data in the
BHT-3000/BHT-4000 since the BHT-3000/BHT-4000 has no feature for regenerating those
eliminated ones automatically.

The BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 has a new feature which can handle
space characters placed in the tail of a data field as data.

The figure below shows the process in which the space characters used as padding characters
are eliminated. (Note that space characters between a and b and between b and c in field 3
are not padding characters.)

Host computer

Field 1 Field 2 Field 3

1|234ABCD a b

C

(. denotes a space character.)

Downloading a data file

BHT
Field 1 Field 2 Field 3
Alty2 3 4141A 8 00) 183 ey g |
|1|2|3|4| |AIBICID|
D is the count byte of a
significant data length
in a field.

519

m To handle space characters as data
To handle space characters in the tail of a data field as data (not as padding characters), you
must take special considerations in programming.

If you want to search for a field data containing space characters in its tail by using a SEARCH
function, for instance, use any of the following methods:

[Example 1] After downloading a data file, fill the unused spaces in each field with space
characters and then search for the target field data.

A B C . Send data

A B, C Receive data

A B C . Filling with space characters
A B C, _,_,| Searchdatato be specified

(- denotes a space character.)

[Example 2] Before downloading a data file, substitute any of the characters which will not
be used as effective data, e.g., an asterisk (*), for the space characters in the
host computer.

A B C * * Send data

A B C, * * Receive data

>
©
(@]

Data to be searched

[
[

A B C * * Search data to be specified

(- denotes a space character.)

520

Appendices

[Example 3] When specifying a field data to be searched, do not include space characters
in the tail of the data field.

B

>
0

N —

I -

Send data

Receive data

Data to be searched

Search data to be specified

(. denotes a space character.)

521

m To make the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 handle space
characters as data

You can specify the handling of space characters in the tail of a data field with System Mode or
an XFI LE statement.

System Mode: To handle space characters as data, select "Data" on the field space
setting screen on the communications parameter setting menu called
up from the SET SYSTEM menu.

XFI LE statement: To handle space characters as data, specify T to " pr ot ocol spec"
in the XFI LE statement.

XFI LE "d2.dat","T"
The figure below shows the process in which the space characters in the tail of a data field are
handled as data in the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.

Host computer

Field 1 Field 2 Field 3

12 3 A e D B D e

(. denotes a space character.)

Downloading a data file

BHT-5000
Field 1 Field 2 Field 3
At 2,3,4181A,8,¢ 0|8 a||—'|b||—'|c||—'||—'||—'|
|l|2|3|4| |A|B|C|D|'—'|'—'| |a|'—'|b|'—'|°|'—'|'—'|'—'|
D is the count byte of a significant
data length in a field.

522

Appendices

Appendix H
Programming Notes

[1] Flash ROM

m BHT-5000/BHT-6000/BHT-6500

You can store user program files and data files in the flash ROM as well as in the RAM.
The following tips help you use the flash ROM correctly.

(1) Memory areas required for user programs

If you store a user program into the flash ROM, the area for its register variables is also
reserved in the flash ROM. When starting the user program for the first time, the Inter-
preter copies the register variables stored in the flash ROM into the RAM (so that both the
flash ROM and RAM store the register variables). The user program uses the register vari-
ables stored in the RAM.

That is, a user program even stored in the flash ROM requires the RAM area for storing its
register variables. If the RAM has no sufficient area for storing the register variables, a run-
time error will occur.

When uploading a program file stored in the flash ROM, the BHT-5000/BHT-6000/BHT-
6500 combines the program (except for the register variables in the flash ROM) with the
register variables stored in the RAM.

(2) Retained contents of the flash ROM

Files stored in the RAM are backed up by the built-in rechargeable lithium battery. It means
that those files may be damaged if the BHT-5000/BHT-6000/BHT-6500 is left unused for a
long time so that the battery voltage drops below the specified level.

Unlike files stored in the RAM, files stored in the flash ROM are retained independently of
the voltage level of the lithium battery. Once data is written onto the flash ROM, it will be
retained until you delete it.

523

[2] BHT-2000 compatible mode

m BHT-5000

You can run user programs written for the BHT-2000 on the BHT-5000 without any program
modification if you select the BHT-2000 compatible mode on the OTHERS menu of the
SET SYSTEM menu in System Mode.

When those user program are running, they appear only in the middle section of the LCD
as shown below. This is because the BHT-5000 is larger than the BHT-2000 in the num-
bers of columns and lines.

‘ 128 ‘
| \77
16
16 96 16
a0 64
16 (Unit: dots)

The following items are not compatible in the BHT-2000 compatible mode:

(1) Frequencies of the beeper when 0, 1, or 2 is set to the f r equency option in the BEEP
statement

(2) Auto-repeat of keys

BHT-2000 BHT-2000 compatible mode
Frequency O 1046 Hz 1015 Hz
1 2092 Hz 2142 Hz
2 3922 Hz 4200 Hz
Keys Auto-repeat Not auto-repeat

NOTE Some user programs written for the BHT-2000 may not work correctly in the
—— BHT-2000 compatible mode.

Before the practical use of user programs written for the BHT-2000 in this mode,
check the program operation sufficiently.

524

Appendices

[3] Program filenamed APLINT.PD3

m BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500

If a program file named APLINT.PD3 is stored in the BHT-5000/BHT-6000/BHT-6500/BHT-
7000/BHT-7500, the System Mode initiation sequence (by pressing the PW key with the SF
and 1 keys held down) will not start System Mode but execute that user program.

Making a program file named APLINT.PD3 allows you to:
- enter an ID number at the start of System Mode and
- set the condensed System Mode which is used for maintenance of user programs.

To terminate the APLINT.PD3 file, you use the END or POAER OFF statement. When ter-
minating the file with the END statement, you may start System Mode by setting the port
6000h as listed below.

Port No. Bit assignment Controls the following:

6000h 0 0: Does not start System Mode (default)
1: Starts System Mode

525

Appendix |
Program Samples

Writing the function for receiving both bar code entry and key entry

Feature: This function receives earlier one of either bar code entry or key entry. If bar
code reading is completed, the function returns the scanned bar code data; if
key entry comes first, the function inhibits bar code reading and echoes back
the key entry data, then returns the key entry data when the ENT key is
pressed.

If pressing the Backspace key or Clear key makes the input string empty,
then the function becomes ready to receive the subsequent bar code entry or
key entry.

Returned value: The function returns bar code data or key entry data which has come in until
the ENT key is pressed, as a string.

Arguments: f. no% Specifies the file number which opens the bar code device file.
(Invariant allowed)

bar $ Specifies bar code reading. (Invariant allowed)
Ex. "M:10-20"

max% Specifies the maximum length of a returned string

esc$ If a key(s) contained in this string is entered, the function returns
the key entry only.
Work: .kb$and.rt$

If you use an invariant for f . no%or bar $, it is not necessary to pass the value as an argu-
ment.

The bar $ can pass a single type of bar code. If two or more types are required, directly
describe necessary invariants.

def fnbarkey$(f. no% bar$, max% esc$)

while 1
open "BAR " as #f. no% code bar$
wait 0, 3 " Wait for completion of bar code reading or key press.
if loc(#f. no% then
beep ' Beep when bar code reading is completed.
fnbarkey$ = input$(max% #f. no%

" For displaying:
"rt$ = input$(nmex% #. no¥wW : print .rt$;
" fnbarkey$ = .rt$

close #f. no%

exit def
el se
close #f. no% ' Receive only key entry.
rt$g ="
.kb$ = input$(1)
while . kbg<>""
if instr(esc$, .kb$) then ' Key designated in esc$?

526

fnbar key$ = . kb$

exit def
endi f
sel ect .kb$

case chr$(13)

fnbarkey$ = .rt$

exit def
case chr$(8)

if len(.rt$) then
print chr$(8);
rt$ = left$(.rt$,

endi f
case chr$(24)
while len(.rt$)

print chr$(8);
rt$ = left$(.rt$,

wend
case el se

Appendices

' Then, return the character.

'BS key.

' Erase one character.
len(.rt$)-1)

' Clear key.
' Erase all characters entered.

len(.rt$)-1)

if len(.rt$)<max%then

print .kb$;
rtd = rt$ +
el se
beep
endi f
end sel ect

if .rt$="" then

. kb$
el se
. kb$
end if
wend
endi f
wend
end def

i nput $(1)

" Check if only numeric data should be
' received.
" Echo back.

. kb$

' Exceeded number of characters error.

"If input string is empty, go back to the
"initial state.

' Subsequent key entry.

527

Testing the written function

while 1 'Infinite loop
a$ = fnbarkey$ (1, "A", 15, "DL") 'F4 and SFT/F4 as escape characters.
print
if a$<>"D' and a$<>"L" then
print "Data="; a$
el se
print "ESC(";a$;") key push”
endi f
wend
end

528

Appendices

Appendix J
Quick Reference
for Satements and Functions

Controlling program flow

Statements

CALL
CHAI'N
END
FOR...NEXT

GOsuB

(€]]0)

| F...THEN...ELSE...END | F

ON..GOsuUB

ON..GOTO

RETURN

SELECT...CASE...END SELECT

VHI LE..V\END

Calls an FN3 or SUB function.
Transfers control to another program.
Terminates program execution.

Defines a loop containing statements to be exe-
cuted a specified number of times.

Branches to a subroutine.
Branches to a specified label.

Conditionally executes specified statement blocks
depending upon the evaluation of a conditional
expression.

Branches to one of specified labels according to
the value of an expression.

Branches to one of specified labels according to
the value of an expression.

Returns control from a subroutine or an event-han-
dling routine (for keystroke interrupt).

Conditionally executes one of statement blocks
depending upon the value of an expression.

Continues to execute a statement block as long as
the conditional expression is true.

529

Handling errors

Statements

ON ERROR GOTO

Enables error trapping.

RESUME Causes program execution to resume at a speci-
fied location after control is transferred to an error-
handling routine.

Functions

ERL Returns the current statement location of the pro-
gram where a run-time error occurred.

ERR Returns the error code of the most recent run-time

error.

Defining and allocating variables

Statements

COMVON

CONST

DATA

DECLARE

DEFREG
DI M

ERASE
GLOBAL

LET
PRI VATE

READ

RESTCRE

Declares common variables for sharing between
user programs.

Defines symbolic constants to be replaced with
labels.

Stores numeric and string literals for READ state-
ments.

Declares user-created function FUNCTION or SUB
externally defined.

Defines register variables.

Declares and dimensions arrays; also declares the
string length for a string variable.

Erases array variables.

Declares one or more work variables or register
variables defined in a file, to be global.

Assigns a value to a given variable.

Declares one or more work variables or register
variables defined in a file, to be private.

Reads data defined by DATA statement(s) and
assigns them to variables.

Specifies a DATA statement location where the
READ statement should start reading data.

530

Appendices

Controlling the LCD screen

Statements

APLQAD Loads a user-defined font in the single-byte ANK
mode.

CLS Clears the LCD screen.

CURSOR Turns the cursor on or off.

KEY Assigns a string or a control code to a function key;
also defines a function key as the LCD backlight
function on/off key. This statement also defines a
magic key as the trigger switch, shift key, or battery
voltage display key.

KPLOAD Loads a user-defined Kanji font in the two-byte
Kanji mode. This statement also loads a user-
defined cursor for the BHT-7000/BHT-7500.

LOCATE Moves the cursor to a specified position and
changes the cursor shape.

PRI NT Displays data on the LCD screen.

PRI NT USI NG Displays data on the LCD screen under formatting
control.

SCREEN Sets the screen mode and the character attribute.

Functions

COUNTRY$ Sets a national character set or returns a current
country code.

CSRLI' N Returns the current row number of the cursor.

PGS Returns the current column number of the cursor.

531

Controlling the keyboard input

Statements
I NPUT
KEY

KEY ON

KEY OFF

LI NE | NPUT

ON KEY...GOSUB

Reads input from the keyboard into a variable.

Assigns a string or a control code to a function key;
also defines a function key as the LCD backlight
function on/off key. This statement also defines a
magic key as the trigger switch, shift key, or battery
voltage display key.

Enables keystroke trapping for a specified function
key.

Disables keystroke trapping for a specified function
key.

Reads input from the keyboard into a string vari-
able.

Specifies an event-handling routine for keystroke
interrupt.

Functions
| NKEY$ Returns a character read from the keyboard.
| NPUT$ Returns a specified number of characters read
from the keyboard or from a device file.
Beeping
Statements
BEEP Drives the beeper or vibrator. (The vibrator is pro-

vided in the BHT-6500/BHT-7000/BHT-7500.)

Manipulating the system date, the current time, or the timers

Functions

DATE$

TI ME$

TI MEA
TI MEB
TI MEC

Returns the current system date or sets a specified
system date.

Returns the current system time or wakeup time, or
sets a specified system time or wakeup time.

Returns the current value of timer A or sets timer A.
Returns the current value of timer B or sets timer B.

Returns the current value of timer C or sets timer C.

532

Appendices

Communicating with 1/0Os

Statements
ot Sends a data byte to an output port.
POVER Controls the automatic power-off facility.
WAl T Pauses program execution until a designated input
port presents a given bit pattern.
Functions
FRE Returns the number of bytes available in a speci-
fied area of the memory.
I NP Returns a byte read from a specified input port.

Communicating with the barcode device

Statements

CLOSE Closes file(s).

| NPUT# Reads data from a device /O file into specified
variables.

OPEN "BAR: " Opens the bar code device file. In the BHT-5000/
BHT-6000/BHT-6500/BHT-7000/BHT-7500, this
statement also activates or deactivates the reading
confirmation LED and the beeper (vibrator) individ-
ually. (Vibrator control valid only in the BHT-6500/
BHT-7000/BHT-7500)

Functions

CHKDGT$ Returns a check digit of bar code data.

ECF Tests whether the end of a device I/O file has been
reached.

| NPUT$ Returns a specified number of characters read
from the keyboard or from a device file.

LCC Returns the current position within a specified file.

MARKS Returns a bar code type and the number of digits of

the bar code.

533

Manipulating data files and user program files

Statements

CLFI LE Erases the data stored in a data file.

CLOSE Closes file(s).

FI ELD Allocates string variables as field variables.

CET Reads a record from a data file.

KI'LL Deletes a specified file from the memory.

OPEN Opens a file for I/O activities.

PUT Writes a record from a field variable to a data file.
Functions

LOC Returns the current position within a specified file.

LOF Returns the length of a specified file.

SEARCH Searches a specified data file for specified data,

and then returns the record number where the
search data is found.

Communicating with communications devices

Statements
CLGCSE
| NPUT#

LI NE | NPUT#

OPEN "COMm "
PRI NT#
XFI LE

Closes file(s).

Reads data from a device 1/O file into specified
variables.

Reads data from a device I/O file into a string vari-
able.

Opens a communications device file.
Outputs data to a communications device file.

Transmits a designated file according to the speci-
fied communications protocol.

534

Appendices

Functions

BCC$

EOF

ETX$

| NPUT$

LOC
LOF
SOH$

STX$

Returns a block check character (BCC) of a data
block.

Tests whether the end of a device I/O file has been
reached.

Modifies the value of a terminator (ETX) for the
BHT-protocol; also returns the current value of a
terminator.

Returns a specified number of characters read
from the keyboard or from a device file.

Returns the current position within a specified file.
Returns the length of a specified file.

Modifies the value of a header (SOH) for the BHT-
protocol; also returns the current value of a header.

Modifies the value of a header (STX) for the BHT-
protocol; also returns the current value of a header.

Commenting a program

Statements

REM

Declares the rest of a program line to be remarks
or comments.

Manipulating numeric data

Functions

ABS

I NT

Returns the absolute value of a numeric expres-
sion.

Returns the largest whole number less than or
equal to the value of a given numeric expression.

535

Manipulating string data

Functions
ASC
CHR$

HEX$

I NSTR

LEFT$

LEN

M D$

Rl GHT$

STR$
VAL

Returns the ASCII code value of a given character.

Returns the character corresponding to a given
ASCII code.

Converts a decimal number into the equivalent
hexadecimal string.

Searches a specified target string for a specified
search string, and then returns the position where
the search string is found.

Returns the specified number of leftmost charac-
ters from a given string expression.

Returns the length (number of bytes) of a given
string.

Returns a portion of a given string expression from
anywhere in the string.

Returns the specified number of rightmost charac-
ters from a given string expression.

Converts a numeric expression into a string.

Converts a string into a numeric value.

Defining user-created functions

Statements
DEF FN
DEF FN..END DEF
FUNCTI ON...END FUNCTI ON

SUB..END SUB

Names and defines a user-created function.
Names and defines a user-created function.

Names and defines user-created function FUNC-
TION.

Names and defines user-created function SUB.

Specifying included files

Statements
$1 NCLUDE
REM $I NCLUDE

Specifies an included file.

Specifies an included file.

536

Appendix K
Unsupported Satements and Functions

Appendices

BHT-BASIC does not support the following MS-BASIC statements and functions:

For handling sequential data files

CvD
Cvi
CvS
LSET

For RS-232C interface operation

PRI NT# USI NG
VRl TE#

For interrupt handling

COM OFF

COM ON

COM STOP

ON STCOM GOsuB

For graphics and color control

Cl RCLE
COLCR
CONSCLE
CSRLIN

For 1/0 control

DEFUSR
PEEK

For mathematical functions and trigonometric functions

ATN
Cos
EXP

VKD$
MKI $
VKS$
PRI NT#

ON STOP GOSUB
STOP OFF
STOP ON

DRAW
LI NE
PO NT
PSET

PCKE
VARPTR

LOG
SCNG
SI'N

537

PRI NT# USI NG
RSET
VRl TE#

W DTH
W NDOW

SR
TAN

- For others

CDBL

CI NT
CLEAR
CorPY
DEF DBL
DEF SNG
DEFI NT

FI X

| F GOTO
LPCS

CCT$

OPTI ON BASE
RANDOM ZE
RND

538

SGN

STRI NG$
SWAP
TAB

VWRI TE

| ndex

Symbols

_ (underline, underscore) 18, 36, 61,
62, 64, 79, 273, 299, 300, 301,
302, 458, 460

’ (single quotation, single quote,
apostrophe) 19, 60, 63, 313, 335

$INCLUDE 57, 313, 335, 477, 536

, (comma) 18, 36, 61, 64, 69, 70, 128,
214, 215, 239, 241, 260, 261,
262, 297, 298, 299, 300, 301,
302, 305

12-dot font 100, 104
16-dot font 100, 104

A

ACK 170, 171, 347

address-source list 33, 35, 36, 40, 43,
46, 356

alternate switching mode 144, 163,
276, 277, 278

ANDIiv, 61, 75, 76, 79, 83, 84, 132, 144,
326, 477

APLOAD 110, 113, 119, 180, 181, 183,
184, 192, 193, 201, 257, 477,
478, 481, 482, 531

application program i, ii, iii, vi, 4, 6, 7, 8,
9, 165, 219, 388, 406, 417, 426,
436, 439, 504

arithmetic operation 78, 79

arithmetic operator 75, 76, 78, 79, 81,
82

array integer type, array integer vari-
able 37, 72, 180, 181, 182, 198,
253, 254, 255

array real type, array real variable 37,

539

72,198
array register variable 214

array string type, array string variable,
arraystringvariabl e 19,
37, 71, 183, 198, 213, 214, 218,
220, 256, 306

ASCIl code 284, 340, 347, 403, 478,
536

auto-off mode 144, 163, 276, 277, 278
auto-repeat 130, 524

B

178, 246, 247, 389, 490, 491,
495, 496, 501, 503

backlight function on/off key 121, 177,
244, 246, 247, 249, 531, 532

backlightkeynumber 244, 245, 246, 248

bar code device file 145, 163, 242, 263,
273, 274, 275, 276, 277, 278,
286, 289, 292, 363, 370, 372,
398, 466, 484, 486, 490, 496,
502, 526, 533

bar code device, barcode device 132,
133, 135, 142, 143, 354, 533

BCC vii, 330, 331, 341, 477, 535
BEEP 131, 156, 185, 187,477, 524, 532

beeper ii, 131, 140, 145, 163, 167, 168,
185, 186, 187, 219, 275, 276,
278, 284, 492, 495, 497, 499,
500, 502, 503, 524, 532, 533

BHT-2000 compatible mode 524

BHT-BASIC i, ii, iii, iv, v, vii, 6, 7, 8, 9,
10, 11, 16, 17, 18, 19, 20, 56, 60,
71, 73, 75, 78, 79, 80, 85, 131,
135, 150, 151, 155, 238, 328,
333, 347, 375, 388, 399, 406,

412, 425, 427, 477, 483, 484,
485, 486, 488, 490, 492, 493,
495, 496, 498, 499, 501, 502,
537

BHT-BASIC 3.0 9, 21, 22

BHT-BASIC Compiler vi, 9, 11, 15, 16,
18, 20, 21, 22, 32, 35, 36, 41, 42,
43, 44, 45, 47, 419

BHT-BASIC Extension Library 6, 189,
190

BHT-BASIC Interpreter vi, 3, 4, 6, 415

BHT-Ir protocol 137, 148, 149, 150,
152, 330, 332, 333, 391, 492,
494, 495, 497, 498, 500, 502,
503

BHT-protocol 137, 149, 150, 151, 152,
330, 332, 358, 380, 382, 488,
490, 491, 492, 495, 498, 502,
535

block check character vii, 331, 341, 535
block-format user-defined function 55

block-structured statement 19, 53, 54,
55, 204, 206, 207, 210, 211, 224,
226, 228, 234, 237, 269, 272,
321, 323, 324, 328

build 9, 11, 17, 20, 21, 22, 23, 26, 27,
29, 39, 40, 42

C

CALL 9, 188, 189, 190, 322, 323, 325,
388, 389, 391, 392, 393, 399,
400, 401, 402, 403, 404, 431,
432, 433, 434, 435, 439, 441,
442, 443, 444, 445, 446, 447,
448, 449, 450, 451, 454, 455,
456, 457, 460, 461, 462, 463,
465, 477, 529

CHAI' N 56, 174, 180, 181, 192,
199, 254, 350, 477, 529

chain, chaining, chained ii, 56, 73, 174,
180, 181, 192, 198, 254, 350

198,

540

character attribute, charaattri bute
197, 201, 318, 319, 531

character code 86, 120, 152, 180, 181,
245, 253, 340, 341, 347, 361

check digit 7, 142, 143, 144, 276, 280,
281, 282, 283, 285, 343, 533

CLFI LE 64, 139, 141, 194, 195, 222,
252,477,534

CLGSE 135, 139, 141, 195, 196,
243, 252, 264, 274, 334,
412, 477,533, 534

close 8, 20, 135, 139, 141, 192,
219, 251, 276, 277, 278,
333, 396, 398, 402, 412,
416, 417, 418, 427, 429,
443, 448, 451, 452, 454,
459, 461, 467, 474, 483,
485, 486, 488, 489, 490,
493, 496, 498, 499, 502,
533, 534

CLS 19, 112, 113, 117, 118, 197,
298, 383, 477,531

cluster 359, 391, 517
code mark 143, 373
comment 19, 59, 60, 63, 313, 335, 535

COVMMON 56, 60, 71, 73, 181, 182, 184,
189, 192, 193, 198, 199, 220,
254, 255, 257, 337, 477, 530

common variable 33, 37, 38, 39, 43, 56,
73,198, 220, 221, 337, 470, 472,
474, 475, 518, 530

device iii, 135,
401, 402, 403,
412, 415, 416,

222,
398,

196,
295,
415,
436,
456,
484,
492,
526,

297,

146,
407,
448,

communications
396, 398,
409, 410,
534

communications
263, 273,
288, 289,

device file 163,
274, 276, 286,
291, 292, 295,
301, 333, 347, 354, 363, 370,
372, 398, 402, 403, 449, 466,
467, 483, 485, 486, 489, 534

communications parameter 49, 50,
147, 148, 522

242,
287,
300,

communications protocol 149, 330,
334, 391, 417, 488, 489, 490,
491, 492, 493, 495, 497, 498,
500, 502, 503, 519, 534

compilation error 57, 335, 468

compiler vi, 8, 9, 11, 15, 16, 17, 18, 20,
21, 22, 32, 34, 35, 36, 38, 40, 41,
42, 43, 44, 45, 47, 57, 62, 158,
192, 214, 218, 419

compiling option 33
concatenate ii, 78, 85

condensed two-byte Kanji mode 88, 89,
91, 93, 94, 96, 97, 108, 110, 113,
197, 201, 240, 254, 261, 266,
297, 318, 319, 351, 376, 480

CONST 9, 200, 473, 530

constant ii, 9, 10, 63, 69, 70, 78, 188,
200, 202, 203, 204, 205, 207,
211, 215, 217, 218, 225, 227,
232, 233, 239, 241, 471, 530

continuous reading mode 144, 163,
276, 278

control code 62, 63, 69, 120, 121, 244,
245, 298, 301, 347, 363, 531,
532

count 73, 187, 385
count er 295, 296

count rycode, country code 349, 350,
479, 531

CRC-16 341

cross reference 8, 33, 35, 38, 43, 46,
57, 335, 468, 469

CU vi, vii, 14, 152, 170, 173, 498, 500,
501, 504

CURSOR iv, 201, 240, 261, 361, 364,
477, 531

110, 111, 117,
181, 182, 1883,
240, 253, 254, 255, 256, 261,
265, 266, 267, 297, 298, 299,
305, 331, 351, 361, 376, 531

cursor 89,
180,

119,
197,

123,
201,

541

cursor shape 110, 119, 201, 239, 261,
265, 266, 363, 531

cursorsw tch 181, 254, 265, 266

D

DATA 60, 131, 189, 202, 311, 312, 314,
389, 390, 391, 392, 400, 401,
402, 403, 450, 451, 458, 465,
473,477,530

data file ii, 48, 67, 135, 136, 137, 138,
139, 140, 149, 150, 151, 152,
153, 163, 194, 196, 221, 222,
230, 231, 251, 273, 274, 276,
309, 310, 330, 332, 333, 334,
354, 355, 358, 359, 364, 370,
372, 378, 379, 380, 381, 382,
419, 422, 457, 458, 460, 466,
517, 519, 520, 523, 534, 537

debug information 17, 33, 34, 43, 45,
468

declarative statement 60, 198, 200,
202, 203, 213, 232, 306, 313

DECLARE 9, 10, 54, 190, 191, 208,
204, 227, 229, 324, 325, 530

DEF FN 53, 54, 63, 66, 74, 85, 205, 206,
207, 208, 209, 210, 211, 212,
236, 465, 472, 536

DEF FN...END DEF 53, 54, 85, 204, 206,
209, 210, 211, 224, 226, 234,
237, 238, 269, 272, 321, 323,
328, 472, 536

defragmentation 140, 502, 504

DEFREG 19, 60, 71, 73, 181, 182, 184,
189, 213, 214, 215, 216, 218,
220, 233, 254, 255, 257, 306,
307, 308, 337, 477, 530

delimiter 60, 108, 419, 421, 422, 424,
426, 457, 458, 460, 461

device /O file 135, 196, 242, 243, 263,
264, 354, 533, 534, 535

DM19, 71, 73, 181, 182, 184, 189,
216, 217, 218, 220, 233, 254,

255, 257, 307, 308, 473, 477,
530

direct-connect interface 14, 146, 147,
148, 276, 287, 288, 289, 290,
291, 292, 390, 483, 485, 486,
489, 493, 499

directory, directories 30, 41, 45, 46, 47,
137, 139, 194, 251, 419, 427,
452, 453, 454, 456, 457, 460,
462

display font size 97, 101, 105, 201, 240,
261, 298, 492, 495, 498, 502

double-touch reading 142

double-width 88, 89, 100, 101, 102,
103, 104, 105, 106, 107, 108,
110, 113, 119, 261, 267, 318,
376

drivers 3,4, 6

dummy argument 37, 38, 74
dummy character 344, 345, 346
dummy parameter 190, 212, 228

dummy parameter, dummypar anet er
190, 207, 212, 228, 322, 323,
325, 376

error-handling routine 53, 155, 158,
159, 268, 315, 316, 323, 357,
465, 530

ERRORLEVEL 32, 44

event polling ii, 154, 155, 156, 157
event trapping ii, 155, 160
event-handling routine 161
executable statement 313, 320

execution program 51, 56, 219, 392,
504

expression, gener al expr essi on i,
63, 75, 76, 77,78, 79, 80, 81, 82,
83, 84, 86, 205, 206, 207, 209,
211, 225, 227, 237, 258, 259,
269, 270, 302, 303, 304, 305,
320, 321, 328, 376, 465, 468,
470, 471, 529

extended function iii, 5, 6,
387, 388

extension library, extension libraries 4,
5, 6, 188, 189, 190, 407, 408,
410, 411, 412, 419, 421, 426,
457

extension program 6, 48, 190

189, 190,

E

F

Easy Pack vi, 6, 49, 136, 149, 150, 165

END 51, 159, 160, 165, 174, 196, 219,
234, 320, 321, 322, 323, 324,
325, 465, 473, 477, 501, 525,
529

ENQ 332, 347

environmental variable 44

ER 147, 287, 288, 291, 485, 486
ERASE 73, 181, 218, 220, 254,477,530
error trapping 81, 155, 158, 268, 530

error-/event-handling routine 53, 55,
155, 160, 204, 206, 210, 226,
249, 271, 272, 317, 323, 529,
532

542

FI ELD 61, 64, 137, 138, 139, 195, 221,
222, 230, 231, 309, 310, 334,
371, 378, 379, 466, 477, 534

field 137, 139, 221, 242, 304, 330, 331,
333, 378, 390, 422, 427, 458,
459, 519, 520, 521, 522

field length, field width, fi el dwi dth
137, 139, 149, 221, 222, 309,
422,427, 452, 458, 466

field variable, fi el dvari abl e 221,
230, 309, 378, 534

file number, fil enunber 64, 75, 76,
135, 194, 196, 221, 222, 230,
231, 242, 243, 263, 264, 273,
274, 275, 286, 287, 288, 292,

300, 301, 309, 310, 354, 355,
363, 364, 370, 371, 372, 378,
379, 398, 409, 412, 465, 466,
526

file type 34, 135, 194, 222, 231, 243,
264, 274, 301, 310, 334, 354,
355, 364, 370, 372, 379, 459,
465, 466

flash ROM vi, 4, 5, 50, 73, 141, 466,
480, 481, 482, 523

font size 88, 89, 97, 100, 101, 104, 105,
201, 240, 255, 261, 298, 393,
480, 492, 495, 498, 502

FOR...NEXT 53, 54, 55, 204, 206, 210,
223, 224, 226, 328, 472

frequency 4, 131, 185, 186, 378, 524

FTP client iii, 388, 406, 419, 420, 421,
422, 423, 424, 425, 426, 427,
452, 455, 456, 457, 459, 460,
461, 462, 463, 467

FTP library 397, 452

FTP server 388, 406, 419, 427, 452,
453, 455, 456, 457, 460, 461,
462, 463, 467

function operation 79
function operator 78, 85

FUNCTI ON...END FUNCTI ON53, 54, 85,
204, 206, 210, 224, 226, 227,
328

G

generative polynomial 341

CGET 140, 141, 222, 230, 231, 310, 370,
371, 372, 379, 466, 477, 534

GLOBAL 9, 10, 226, 232, 233, 307,
308, 323, 473, 530

global variable 9, 10, 36, 190, 206, 210,
211, 227, 323

GOSUB iv, 53, 54, 156, 160, 234, 235,
269, 270, 271, 272, 313, 317,
465, 477, 529

543

GOTO 19, 53, 55, 59, 124, 156, 234,
236, 269, 270, 313, 477, 529

H

header 35, 36, 149, 150, 151, 152, 279,
331, 334, 380, 382, 466, 535

heading text 380
highlighting characters 119

I/O ports iii, 116, 118, 140, 173,
186, 278, 293, 483

iconv, 20, 116, 126, 130

identifier 66, 67, 71, 72, 200, 428, 429,
431, 432, 433, 435, 436, 439,
440, 441, 442, 443, 444, 445,
446, 447, 448, 451, 467

| F.. THEN... ELSE...END | F 53,
206, 210, 224, 226, 328

illumination LED ii, 163, 168, 275, 276,
277,278

include file 336, 469
indicator LED 276, 284, 500

I NPUT v, 64, 124, 161, 201, 239, 240,
245, 250, 260, 262, 264, 364,
372,473,477

| NPUT # 140, 143, 242, 243, 263, 264,
355, 533, 534

input port 117, 118, 290, 326, 362, 483,
484, 485, 486, 488, 489, 492,
493, 498, 500, 503, 533

integer constant, i nt eger const ant
69, 188, 203, 204, 205, 207, 211,
213, 214, 215, 217, 218, 225,
227, 232, 233, 273, 274, 307,
324,471

interpreter vi, 3, 4, 6, 8, 11, 17, 39, 40,
51, 56, 60, 73, 74, 75, 76, 137,
138, 144, 155, 158, 181, 223,
234, 249, 254, 268, 272, 280,

175,

204,

281, 282, 285, 293, 359, 385,
415, 480, 481, 482, 523

interrupt 53, 155, 158, 160, 161, 163,
174, 175, 271, 317, 415, 416,
484, 486, 491, 496, 502, 529,
532, 537

IR interface port 14

Ir-Transfer Utility C vii, 15, 16, 17, 48,
152

K

KEY 120, 121, 123, 124, 144, 160, 161,
177, 178, 192, 244, 245, 246,
247, 248, 249, 250, 272, 477,
491, 496, 503, 531, 532

KEY OFF 121, 248, 249, 250, 272, 361,
532

KEY ON 121, 160, 161, 248, 249, 250,
271, 272, 361, 532

keyboard buffer 132, 133, 245, 483,
485, 488, 492, 498

keystroke trapping, event (of keystroke)
trapping ii, 53, 121, 124, 155,
160, 161, 249, 250, 271, 272,
361, 363, 532

Kl LL 139, 141, 251, 252, 477, 534

KPLOAD 99, 110, 113, 119, 184, 192,
193, 201, 253, 254, 257, 477,
480, 481, 482, 531

L

label ii, iv, 8, 9, 18, 34, 37, 38, 45, 59,
65, 66, 67, 124, 158, 159, 160,
200, 234, 236, 268, 269, 270,
271, 272, 313, 314, 315, 317,
337, 356, 389, 468, 470, 472,
473, 477, 529, 530

LET 258, 477, 530

LI NE | NPUT 161, 201, 241, 245, 250,
260, 261, 262, 364, 372, 532

544

LI NE| NPUT # 140, 143, 156, 243, 263,
264, 355, 534

local variable 9, 10, 36, 206, 210, 226,
323

LOCATE 89, 90,
110, 112,
201, 239,
265, 266,
351, 361,
531

logical operation 76, 83

91, 94, 97, 101, 105,
113, 117, 119, 181,
241, 254, 261, 262,
267, 297, 299, 334,
363, 364, 376, 477,

logical operator 78, 83

LSB 115, 184, 483, 484, 485, 486, 488,
490, 493, 496, 499, 502

M

M1 key 121, 246, 247, 389
M2 key 121, 122, 144, 247, 389

magic key 121, 128, 129, 132, 133,
144, 244, 247, 275, 276, 277,
278, 488, 492, 493, 498, 499,
531, 532

main routine 53, 54, 55, 158, 159, 160
mant i ssa 70

mapfile 34, 39, 40, 43, 46

master station 151

maximum length of a record 137

maximum number of registrable
records 137, 138, 274, 309

memory area iii, 8, 74, 137, 138, 194,
214, 359, 515, 523

memory space 72, 136, 191, 192, 193,
199, 208, 212, 218, 224, 228,
233, 235, 270, 272, 274, 308,
310, 325, 334, 459, 465, 518

MOD-10 280, 285, 343
MOD-16 281, 343

MOD-43 282, 343

modulo arithmetic 79, 81, 343

momentary switching mode 144, 163,
276, 278

MSB 115, 184, 483, 484, 485, 486, 488,
490, 493, 496, 499, 502

multilink protocol, Multilink Protocol
System 149, 151, 153, 330, 333,
488, 489, 490, 491

Multilink Transfer Utility vii, 151, 153,
491

multiple code reading 143
multi-statement 60

N

national character 119, 349, 350, 478,
479, 531

non-array integer type, non-array inte-
ger variable 37, 72, 198, 203,
205, 225, 322

non-array real type, non-array real vari-
able 37, 72, 198, 203, 205, 225,
322

non-array register variable 73

non-array string type, non-array string
variable, non-arraystring-
vari abl e 19, 37, 71, 72, 198,
203, 205, 213, 214, 218, 220,
221, 225, 306, 322, 378

normal display 318, 319
NOT 75, 76, 79, 83, 156, 477

null character, null character string 73,
120

number of written records 137, 139,
230, 372

numeric constant, nunmer i cconst ant
69, 213, 214, 306

numeric expression 78, 139, 180, 185,
188, 194, 196, 217, 221, 223,
230, 232, 237, 242, 244, 245,
248, 249, 253, 263, 265, 269,
271, 273, 275, 288, 293, 295,
300, 307, 309, 318, 326, 339,

545

341, 347, 354, 359, 360, 362,
363, 365, 367, 368, 370, 372,
374, 377, 378, 381, 385, 535,
536

O

object program vi, 6, 8, 9, 16, 17, 21,
34, 36, 45, 56, 192

of fdurati on 185, 186

ONERRORGOTO65, 159, 192, 268, 316,
356, 357, 415, 530

ONKEY...GOSUB 65, 121, 160, 248, 249,
250, 271, 272, 317, 532

ON...GCSUB, ON...GOT0 238, 269, 529

ondur ati on iv, 185, 186, 244, 245,
246

OPEN 64, 67, 135, 138, 139, 141, 195,
196, 221, 222, 230, 231, 273,
274, 277, 278, 284, 287, 289,
291, 301, 309, 310, 334, 371,
372,379, 397, 466, 477, 534

open 20, 22, 24, 25, 27, 32, 44, 135,
140, 141, 142, 252, 273, 274,
275, 276, 286, 287, 288, 289,
291, 292, 334, 396, 398, 402,
403, 409, 415, 416, 427, 449,
452, 453, 454, 455, 459, 461,
466, 467, 474, 476, 526, 533,
534

OPEN " BAR' 133, 142, 143, 144, 145,
156, 163, 242, 243, 263, 264,
274, 275, 276, 278, 279, 280,
281, 282, 283, 285, 346, 355,
364, 490, 496, 502, 533

OPEN " COM' 147, 163, 243, 264, 274,
287, 288, 291, 333, 334, 355,
358, 364, 372, 380, 382, 397,
398, 401, 402, 403, 404, 409,
416, 483, 489, 493, 499, 534

optical interface 147, 276, 286, 287,
288, 289, 290, 291, 292, 390,
398, 403, 483, 485, 488, 490,
497

optimizing drive 427
OR19, 61, 75, 76, 79, 83, 84, 477

QUT 89, 112, 113, 114, 115, 116, 117,
118, 122, 124, 130, 132, 140,
145, 150, 151, 163, 173, 178,
186, 278, 291, 293, 294, 327,
362, 384, 425, 427, 477, 484,
486, 487, 490, 491, 495, 496,
497, 501, 502, 503, 504, 533

output port 145, 293, 484, 486, 487,
490, 491, 495, 496, 501, 503,
533

P

parity 147, 148, 287, 288, 289, 290,
330, 331, 334, 390

port number, port No., port nunber
114, 133, 150, 151, 173, 175,
293, 294, 326, 327, 362, 435,
439, 443, 444, 452, 463, 483,
484, 485, 486, 487, 488, 489,
490, 491, 492, 493, 495, 496,
498, 500, 501, 503, 525

POVNER 51, 165, 174, 295, 296,
501, 525, 533

primary station 149, 150, 151

PRI NT iv, 18, 54, 60, 61, 62, 74, 85, 86,
112, 113, 131, 156, 159, 180,
184, 208, 212, 229, 238, 253,
257, 297, 298, 299, 305, 311,
312, 321, 325, 334, 344, 345,
346, 347, 348, 367, 369, 374,
381, 383, 386, 477, 531

PRI NT USI NG 18, 61, 63, 64, 299, 302,
303, 304, 305, 531, 537

PRI NT# 18, 61, 140, 300, 301, 347,
477,534, 537

PRIVATE 10, 226, 233, 306, 307, 323,
473, 530

program file 21, 30, 35, 47, 73, 135,
152, 153, 194, 204, 214, 251,
334, 359, 419, 420, 421, 426,

477,

546

458, 459, 460, 466, 523, 534

program file name, progranfil ena-
me 46, 192, 193, 525

protocol function 149, 150, 151, 152,
358, 380, 382

PUT 137, 138, 140, 141, 222, 231, 274,
309, 310, 371, 379, 466, 477,
534

R

RAM area 523

READ iv, 131, 202, 311, 312, 314, 465,
477, 530

real argument, real parameter 74,
188, 190, 205, 206, 207, 209,
211, 212, 225, 226, 227, 228,
322, 323, 325

real constant 69, 70

receive buffer 132, 133, 354, 370, 372,
428, 433, 435, 436, 437, 438,
439, 445, 483, 485, 488, 492,
498

record 47, 137,
221, 222,
334, 370,
421, 422, 423,
458, 459, 461,
499, 502, 534

register variable 9, 10, 33, 37, 38, 39,
40, 43, 63, 73, 163, 165, 213,
214, 215, 220, 221, 232, 306,
337, 470, 472, 475, 517, 518,
523, 530

relational operation 79
relational operator 63, 78, 82, 83, 86

REM 19, 57, 60, 202, 313, 335, 477,
535, 536

remote wakeup ii, 170, 171, 172, 173,
174, 175, 499, 501, 502, 504

re-read prevention, re-read prevention
enabled time 485, 486, 487, 488,

138,
230,
372,

139,
231,
378,
424,
466,

175,
274,
419,
427,
473,

194,
309,
420,
457,
474,

489, 490, 491, 492, 493, 495,
496, 498, 499, 501, 503

reserved word iii, iv, 65, 66, 67, 313,
470, 477

RESTORE 202, 312, 314, 473, 477, 530

RESUME 53, 65, 158, 159, 268, 315,
316, 356, 357, 415, 416, 465,

477, 530
resume function ii, 51, 164, 165, 174,
296, 391, 415

RETURN 53, 54, 156, 160, 161, 234,
235, 272, 317, 465, 477, 529

roaming 396, 410
ROM system 3, 6
RS 147, 287, 288, 291, 486, 490

RS/CS 147, 287, 288, 290, 291, 483,
489, 493, 499

RS-232C vii, 14, 147, 537

S

SCREEN 89, 112, 113, 119, 184, 257,
297, 299, 318, 319, 348, 351,
376, 477,531

screen mode 88, 89, 90, 91, 94, 97,
100, 101, 104, 105, 110, 116,
119, 181, 183, 197, 201, 240,
261, 297, 318, 319, 351, 376,
480, 531

secondary station 149, 150, 151

SELECT...CASE...END SELECT 53, 54,
204, 206, 210, 224, 226, 234,
237, 238, 269, 270, 272, 320,
321, 323, 328, 472, 529

shift JIS code 253, 348

single-byte ANK mode 89, 90, 91, 94,
97, 100, 101, 104, 105, 108, 110,
113, 116, 119, 180, 181, 197,
201, 240, 261, 265, 267, 297,
318, 319, 480, 494, 497, 500,
503, 531

547

sizes of variables 33, 46
slave station 151

sleep timer 132, 163, 484, 486, 490,
491, 495, 496, 501, 502

small-size font, small-size 88, 89, 97,
98, 99, 100, 101, 103, 104, 105,
107, 108, 109, 110, 111, 112,
113, 181, 182, 183, 201, 240,
254, 255, 256, 261, 265, 266,
319, 351, 376, 480, 481, 482,
492, 494, 497, 498, 500, 502,
503

socket API 413, 417, 429,
432, 433, 434, 435,
442, 443, 444, 445,
448

socket application program interface iii,
388, 406, 417

socket library 397, 409, 428

source program vi, 8, 9, 11, 16, 17, 18,
21, 30, 34, 35, 36, 45, 46, 56, 57,
190, 198, 200, 202, 204, 206,
210, 214, 217, 219, 227, 234,
324, 335

special character 119, 283

spread spectrum iii, 388, 394, 395, 396,
397, 399, 406, 407, 412

standard-size font, standard-size 97,
98, 99, 100, 101, 102, 104, 105,
106, 108, 109, 110, 111, 112,
113, 183, 201, 240, 256, 261,
265, 266, 351, 376

start character, start/stop character,
stop character 142, 143, 283,
284

statement i, iii, iv, v, 8, 9, 10, 11, 18, 19,
34, 36, 47,51, 53, 54, 55, 56, 57,
59, 60, 61, 62, 63, 64, 65, 66, 67,
71, 73, 85, 89, 90, 91, 94, 97, 99,
101, 105, 110, 113, 114, 115,
116, 117, 118, 119, 120, 121,
122, 123, 124, 127, 130, 131,
132, 133, 135, 137, 138, 139,
140, 141, 142, 143, 144, 145,

430,
439,
446,

431,
441,
447,

147, 149, 150, 151, 152, 153, string expression 78, 188, 192, 200,

158, 159, 160, 161, 163, 173, 205, 225, 244, 245, 251, 273,
174, 177, 178, 180, 181, 182, 275, 297, 300, 320, 322, 330,
184, 185, 186, 187, 188, 189, 341, 343, 349, 352, 358, 365,
190, 191, 192, 193, 194, 196, 368, 374, 377, 378, 380, 382,
197, 198, 199, 200, 201, 202, 383, 386, 536

203, 204, 205, 206, 207, 208,

200, 210, 211 212, 213, 214 string operation 63, 79, 359

216, 217, 218, 219, 220, 221, string operator 78, 85

222, 223, 224, 225, 226, 221, string variable 19, 64, 71, 72, 73, 143,
228, 229, 230, 231, 232, 233, 183, 188, 189, 191, 198, 199,
234, 235, 236, 237, 238, 239, 203, 205, 214, 215, 217, 218,
240, 241, 242, 243, 244, 245, 220, 221, 225, 239, 242, 256,
246, 247, 248, 249, 250, 251, 259, 260, 263, 311, 322, 375,
252, 253, 254, 255, 257, 258, 378, 400, 401, 428, 435, 439,
260, 261, 262, 263, 264, 265, 452, 466, 518, 530, 532, 534
268, 269, 270, 271, 272, 273,

274, 275, 278, 284, 287, 291 SUB...END SUB 9, 10, 53, 54, 85, 190,
203, 204 205 297, 298. 290, 191, 204, 206, 210, 224, 226,
300, 301, 302, 303, 304, 305 234, 237, 269, 272, 321, 322,
306, 307, 308, 309, 310, 311, 323, 324, 328, 473, 536

312, 313, 314, 315, 316, 317, subroutine 53, 54, 55, 57, 158, 204,
318, 319, 320, 321, 322, 323, 206, 210, 226, 234, 236, 317,
324, 325, 326, 327, 328, 329, 323, 335, 529

330, 331, 333, 334, 335, 337, ¢ \hecript 63, 71, 72, 180, 183, 198,
346, 347, 348, 350, 351, 355,

213, 215, 217, 218, 220, 232,
356, 357, 358, 361, 362, 363, S 2o ! 26 2
364, 370, 371, 372, 376, 378, ; 256, 306, 307,
379, 380, 382, 384, 388, 397, SUM 341
308, 399, 401, 402, 403, 404,

supplemental code 143, 279
409, 412, 415, 416, 425, 427,

465, 466, 473, 478, 480, 481, symbol table 17, 33, 35, 36, 37, 43, 46,
482, 483, 484, 485, 486, 487, 474
488, 489, 490, 491, 492, 493, synchronization 396, 399, 404, 410

495, 496, 497, 498, 499, 500,
501, 502, 503, 504, 519, 522,
524, 525, 529, 530, 531, 532,
533, 534, 535, 536, 537

System Mode 3, 4, 6, 49, 50, 51, 56, 73,
116, 118, 126, 130, 149, 150,
151, 152, 153, 165, 174, 175,
219, 280, 281, 285, 289, 319,

statement block 53, 54, 55, 59, 210, 333, 350, 388, 389, 390, 391,
211, 226, 228, 236, 237, 238, 392, 407, 408, 478, 479, 484,
269, 320, 321, 323, 324, 328, 485, 489, 490, 493, 495, 499,
329, 465, 529 501, 519, 522, 524, 525

stop bit 147, 148, 288, 290, 390 system program 3, 5, 6, 51, 254

string 189 system status 110, 111, 116, 117, 118,

string constant, st ri ngconst ant 63, 126, 130, 197, 265, 266, 267,
69, 200, 202, 213, 214, 239, 241, 351, 485, 487, 489, 491, 493,
260, 262, 264, 306 496

548

14, 15, 16, 17, 20, 21, 22, 23, 26,
T 27,29, 39, 40, 41, 42, 45, 47, 48,
49, 50, 51, 56, 57, 73, 94, 97,
116, 118, 122, 123, 124, 127,
136, 140, 145, 155, 158, 163,

tag-jump function, tag jump 30

terminator 149, 150, 151, 152, 331, 165, 169, 170, 174, 175, 180,
358, 535 181, 192, 194, 198, 201, 214,
text control character 331, 358, 380, 219, 245, 254, 314, 326, 327,
382 390, 391, 395, 396, 407, 408,

413, 415, 419, 426, 457, 459,
483, 484, 485, 486, 488, 489,
222’ 530910'5324* 410, 441, 451, 490, 492, 493, 494, 495, 496,
» 501, 498, 499, 500, 501, 502, 517,

timer ii, 131, 132, 157, 163, 385, 433, 523, 524, 525 530

jgg :'9561’5324’5042865’3390' 491, user-defined font 53, 54, 63, 74, 85, 99,
’ ’ ’ ’ 113, 180, 181, 192, 203, 225,

timeout 131, 173, 287, 288, 291, 332,

Transfer Utility vii, 15, 16, 17, 48, 147, 254, 322, 478, 531
149, 152 user-defined function 10, 34, 36, 37, 38,
transmission speed, baud 147, 173, 40, 54, 55, 57, 63, 64, 74, 78,
174, 287, 289, 501, 504 158, 190, 191, 204, 206, 207,
trap ii, 53, 81, 121, 159, 160, 192, 249, 210, 211, 212, 226, 227, 228,
268, 272, 317 323, 325, 335, 359
trigger switch 51, 121, 122, 123, 124,
125, 126, 132, 133, 144, 163, \
177, 244, 245, 246, 247, 249,
275, 276, 277, 278, 295, 389, variable iv, 8, 10, 33, 34, 36, 37, 39, 40,
483, 485, 488, 492, 493, 498, 43, 45, 46, 47, 56, 57, 59, 60, 63,
499, 531, 532 66, 67, 71, 72, 73, 75, 76, 78,

163, 165, 180, 181, 182, 188,
189, 190, 192, 193, 198, 199,
202, 203, 205, 206, 207, 210,
211, 212, 214, 215, 217, 218,
220, 221, 223, 224, 225, 226,
228, 232, 233, 239, 240, 241,
242, 243, 253, 254, 255, 258,

two-byte Kanji mode 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 100, 102,
104, 106, 108, 109, 110, 111,
113, 116, 119, 197, 201, 240,
253, 254, 261, 266, 297, 318,
319, 351, 480, 494, 497, 500,

503, 531 250, 260, 262, 263, 307, 308,

type conversion 75, 76, 83, 258 309, 311, 312, 313, 322, 323,
325, 335, 428, 435, 436, 439,

U 443, 444, 452 466, 468, 470,

471, 472, 473, 474, 475, 477,
518, 530, 532, 533, 534

UDP 413, 417, 418, 428, 429, 439, 443,

444, 447 VRAMVvii, 114, 115, 117, 118, 197, 483,

: 484, 485, 486, 487, 488, 489,

unoccupied area 372 490, 491, 492, 493, 495, 496,
user datagram protocol 413, 417, 418 498, 500, 501, 503

user program vi, 2, 3, 4, 5, 6, 8, 9, 11,

549

wW

WAI T 131, 133, 143, 144, 156, 173,
291, 294, 326, 327, 477, 483,
484, 485, 488, 489, 492, 493,
498, 533

wakeup ii, 169, 170, 171, 172, 173,
174, 175, 383, 384, 488, 489,
490, 491, 492, 493, 495, 496,
498, 499, 501, 502, 503, 504,
532

VHI LE...\VEEND 53, 54, 204, 206, 210,
224, 226, 234, 237, 238, 269,
272, 321, 323, 328, 329, 472,
529

wireless block 399, 400, 401, 402, 403,
404, 409, 410, 412

wireless communication library 399

wireless communications device iii,
396, 398, 401, 402, 403, 407,
409, 410, 412, 415, 416, 467

work variable 9, 10, 33, 37, 38, 39, 43,
73,198, 232, 306, 337, 359, 470,
475, 530

X

XFILE 73, 138, 141, 149, 150, 151,
152, 153, 330, 331, 332, 333,
334, 358, 380, 382, 477, 4809,
491, 493, 497, 500, 503, 519,
522, 534

XOR 75, 76, 79, 83, 84, 341, 477

550

BHT-BASIC

Programmer’s Manual

First Edition, May 1993
Fifth Edition, October 2000

DENSO CORPORATION

Industrial Systems Product Division

The purpose of this manual is to provide accurate information in the development of application
programs in BHT-BASIC. Please feel free to send your comments regarding any errors or

omissions you may have found, or any suggestions you may have for generally improving the
manual.

In no event will DENSO be liable for any direct or indirect damages resulting from the applica-
tion of the information in this manual.

	Preface
	How this book is organized

	Chapter 1 Software Overview for the BHT
	1.1 Software Overview
	1.1.1 Software Structure of the BHT
	1.1.2 Overview of BHT-BASIC

	1.2 BHT-BASIC
	1.2.1 Features
	1.2.2 What's New in BHT-BASIC 3.5 Upgraded from BHT-BASIC 3.0?
	[1] Compiler
	[2] Statements

	1.3 Program Development and Execution
	1.3.1 Compiler
	1.3.2 Interpreter

	Chapter 2 Development Environment and Procedures
	2.1 Overview of Development Environment
	2.1.1 Required Hardware
	2.1.2 Required Software

	2.2 Overview of Developing Procedures
	2.2.1 Developing Procedures
	2.2.2 Functions of BHT-BASIC 3.5

	2.3 Writing a Source Program
	2.3.1 Writing a Source Program by an Editor
	2.3.2 Rules for Writing a Source Program

	2.4 Producing a User Program
	2.4.1 Starting the BHT-BASIC 3.5 Compiler
	2.4.2 Outline of User Program or Library Production Procedure
	[1] Building a user program out of a single source program file
	[2] Building a library out of a single source file, or building a user program or library out o...

	2.4.3 Designating a Single Source File or a Project File
	2.4.3.1 Designating a single source file
	[1] Select a source file

	2.4.3.2 Designating a project file
	[1] Create a new project
	[2] Select an existing project file
	[3] Add files to a project file
	[4] Select files in the active project

	2.4.4 Compiling and Building
	[1] Specifying the compiling and linking options
	[2] Compiling
	[3] Building

	2.4.5 Setting the Editor for Displaying Files
	2.4.6 Error Messages and Their Indication onto the Main Window
	[1] Selecting either an editor or main window as an error message output device
	[2] How error messages are displayed on the editor or main window

	2.4.7 Options
	[1] Compiling options
	[2] Linking options
	[3] Outputting debug information files
	[4] Outputting list files
	[5] Outputting a mapfile
	[6] Calculating the address for a statement causing a run-time error

	2.4.8 Starting the BHT-BASIC Compiler from the Command Line
	[1] Syntax
	[2] Options
	[3] Error Level Indication by ERRORLEVEL

	2.4.9 Output from the BHT-BASIC 3.5 Compiler
	2.4.10 Structure of User Programs and Libraries

	2.5 Downloading
	2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/ Ir-Transfer Utility E
	2.5.2 Setting up the BHT

	2.6 Executing a User Program
	2.6.1 Starting
	2.6.2 Execution
	2.6.3 Termination

	Chapter 3 Program Structure
	3.1 Program Overview
	3.1.1 Statement Blocks
	[1] Subroutines
	[2] Error-/Event-handling Routines
	[3] User-defined Functions
	[4] Block-structured Statements

	3.1.2 Notes for Jumping into/out of Statement Blocks

	3.2 Handling User Programs
	3.2.1 User Programs in the Memory
	3.2.2 Program Chaining
	3.2.3 Included Files

	Chapter 4 Basic Program Elements
	4.1 Structure of a Program Line
	4.1.1 Format of a Program Line
	[1] Labels
	[2] Statements
	[3] Comments

	4.1.2 Program Line Length

	4.2 Usable Characters
	4.2.1 Usable Characters
	4.2.2 Special Symbols and Control Codes

	4.3 Labels
	4.4 Identifiers
	4.5 Reserved Words

	Chapter 5 Data Types
	5.1 Constants
	5.1.1 Types of Constants
	[1] String Constants
	[2] Numeric Constants

	5.2 Variables
	5.2.1 Types of Variables according to Format
	[1] String Variables
	[2] Numeric Variables

	5.2.2 Classification of Variables

	5.3 User-defined Functions
	5.4 Type Conversion
	5.4.1 Type Conversion
	5.4.2 Type Conversion Examples

	Chapter 6 Expressions and Operators
	6.1 Overview
	6.2 Operator Precedence
	6.3 Operators
	6.3.1 Arithmetic Operators
	6.3.2 Relational Operators
	6.3.3 Logical Operators
	[1] The NOT operator
	[2] The AND operator
	[3] The OR operator
	[4] The XOR operator

	6.3.4 Function Operators
	6.3.5 String Operators

	Chapter 7 I/O Facilities
	7.1 Output to the LCD Screen
	7.1.1 Display Fonts
	[1] Fonts available on each BHT
	[2] Switching the fonts

	7.1.2 Number of Characters and Coordinates on the LCD
	[1] BHT-3000
	[2] BHT-4000
	[3] BHT-5000
	[4] BHT-6000/BHT-6500
	[5] BHT-7000
	[6] BHT-7500

	7.1.3 Dot Patterns of Fonts
	7.1.4 Mixed Display of Different Character Types or Different-size Fonts
	[1] Displaying ANK, Kanji, and Condensed Kanji in One Line
	[2] Displaying Standard- and Small-size Fonts on the Same Screen
	[3] Displaying Normal- and Double-width Characters on the Same Screen

	7.1.5 Displaying User-defined Characters
	7.1.6 VRAM
	7.1.7 Displaying the System Status (BHT-4000/BHT- 5000/BHT-6000/BHT-6500)
	[1] BHT-4000
	[2] BHT-5000/BHT-6000/BHT-6500

	7.1.8 Other Facilities for the LCD

	7.2 Input from the Keyboard
	7.2.1 Function Keys
	7.2.2 Keystroke Trapping
	7.2.3 Alphabet Entry Function
	[1] BHT-3000/BHT-4000/BHT-6000/BHT-6500
	[2] BHT-5000/BHT-7000/BHT-7500 (32-key pad models)
	[3] BHT-7000 (26-key pad model)

	7.2.4 Other Facilities for the Keyboard
	[1] Auto-repeat
	[2] Shift key

	7.3 Timer and Beeper
	7.3.1 Timer Functions
	7.3.2 BEEP Statement

	7.4 Controlling and Monitoring the I/Os
	7.4.1 Controlling by the OUT Statement
	7.4.2 Monitoring by the INP Function
	7.4.3 Monitoring by the WAIT Statement

	Chapter 8 Files
	8.1 File Overview
	8.1.1 Data Files and Device I/O Files
	8.1.2 Access Methods

	8.2 Data Files
	8.2.1 Overview
	8.2.2 Naming Files
	8.2.3 Structure of Data Files
	8.2.4 Data File Management by Directory Information
	8.2.5 Programming for Data Files
	8.2.6 About Drives

	8.3 Bar Code Device
	8.3.1 Overview
	8.3.2 Programming for Bar Code Device

	8.4 Communications Device
	8.4.1 Hardware Required for Data Communications
	[1] BHT-3000/BHT-4000/BHT-5000
	[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

	8.4.2 Programming for Data Communications
	[1] BHT-3000/BHT-4000/BHT-5000
	[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

	8.4.3 Overview of Communications Protocols
	[1] BHT-protocol
	[2] BHT-Ir protocol (BHT-6000/BHT-6500/BHT-7000/BHT- 7500)
	[3] Multilink protocol (BHT-5000 only)

	8.4.4 File Transfer Tools
	[1] Transfer Utility
	[2] Ir-Transfer Utility C
	[3] Ir-Transfer Utility E
	[4] Multilink Transfer Utility (BHT-5000 only)

	Chapter 9 Event Polling and Error/Event Trapping
	9.1 Overview
	9.2 Event Polling
	[1] Programming sample
	[2] I/O devices capable of being monitored by the event polling

	9.3 Error Trapping
	[1] Overview
	[2] Programming for trapping errors

	9.4 Event (of Keystroke) Trapping
	[1] Overview
	[2] Programming for trapping keystrokes

	Chapter 10 Sleep Function
	10.1 Sleep Function

	Chapter 11 Resume Function
	11.1 Resume Function

	Chapter 12 Power-related Functions
	12.1 Low Battery Warning
	12.2 Prohibited Simultaneous Operation of the Beeper*, Illumination LED (Laser Source**), and LCD...
	12.3 Wakeup Function
	12.4 Remote Wakeup Function (BHT-7000/BHT-7500)
	[1] Outline
	[2] Remote wakeup operation
	[3] Remote wakeup program

	Chapter 13 LCD Backlight Function
	13.1 LCD Backlight Function

	Chapter 14 Statement Reference
	APLOAD
	BEEP
	CALL
	CHAIN
	CLFILE
	CLOSE
	CLS
	COMMON
	CONST
	CURSOR
	DATA
	DECLARE
	DEF FN (Single-line form)
	DEF FN...END DEF (Block form)
	DEFREG
	DIM
	END
	ERASE
	FIELD
	FOR...NEXT
	FUNCTION…END FUNCTION
	GET
	GLOBAL
	GOSUB
	GOTO
	IF...THEN...ELSE...END IF
	INPUT
	INPUT #
	KEY
	KEY ON and KEY OFF
	KILL
	KPLOAD
	LET
	LINE INPUT
	LINE INPUT #
	LOCATE
	ON ERROR GOTO
	ON...GOSUB and ON...GOTO
	ON KEY...GOSUB
	OPEN
	OPEN "BAR:"
	OPEN "COM:"
	OUT
	POWER
	PRINT
	PRINT #
	PRINT USING
	PRIVATE
	PUT
	READ
	REM
	RESTORE
	RESUME
	RETURN
	SCREEN
	SELECT...CASE...END SELECT
	SUB...END SUB
	WAIT
	WHILE...WEND
	XFILE
	$INCLUDE
	Additional Explanation for Statements

	Chapter 15 Function Reference
	ABS
	ASC
	BCC$
	CHKDGT$
	CHR$
	COUNTRY$
	CSRLIN
	DATE$
	EOF
	ERL
	ERR
	ETX$
	FRE
	HEX$
	INKEY$
	INP
	INPUT$
	INSTR
	INT
	LEFT$
	LEN
	LOC
	LOF
	MARK$
	MID$
	POS
	RIGHT$
	SEARCH
	SOH$
	STR$
	STX$
	TIME$
	TIMEA/TIMEB/TIMEC
	VAL

	Chapter 16 Extended Functions
	16.1 Overview
	16.2 Reading or writing system settings from/to the memory (SYSTEM.FN3)
	16.2.1 Function Number List of SYSTEM.FN3
	16.2.2 Detailed Function Specifications

	Chapter 17 Spread Spectrum Communication (BHT-7500S only)
	17.1 Overview
	17.2 Programming for Wireless Communication
	17.3 Wireless Communications- related Statement
	17.4 Wireless Communication Library (SS.FN3)
	17.4.1 Overview
	17.4.2 Detailed Function Specifications

	Chapter 18 TCP/IP
	18.1 Two Sides
	18.1.1 BHT-7500S
	18.1.2 Hosts

	18.2 TCP/IP over Spread Spectrum System
	18.2.1 General Procedure
	[1] Configure Wireless Communications Device
	[2] Configure TCP/IP System
	[3] Declare TCP/IP Communications Pathway
	[4] Open Wireless Communications Device
	[5] Check Wireless Communications Device Synchronization with Master
	[6] Connect to TCP/IP Communications Pathway
	[7] Transfer Data or File via Socket Interface
	[8] Disconnect TCP/IP Communications Pathway
	[9] Close Spread Spectrum Wireless Device

	18.2.2 Programming Notes for Socket API According to UDP
	18.2.3 Programming Notes for Resume Function

	18.3 Socket API
	18.3.1 Overview

	18.4 FTP Client
	18.4.1 Overview
	18.4.2 File Formats
	[1] User Programs (*.PD3)
	[2] Extension Libraries (*.FN3 and *.EX3)
	[3] Data Files

	18.4.3 Using FTP Client
	[1] Basic Procedure
	[2] Configuring FTP Client
	[3] Calculating Memory Requirements
	[4] Optimizing Drive (Recommended)
	[5] FTP Transfers

	18.5 Socket Library (SOCKET.FN3)
	18.5.1 Overview
	18.5.2 Detailed Function Specifications

	18.6 FTP Library (FTP.FN3)
	18.6.1 Overview
	18.6.2 Detailed Function Specifications

	Appendices
	Appendix A
	A1. Run-time Errors
	A2. Compilation Errors

	Appendix B
	Appendix C
	C1. Character Set
	C2. National Character Sets
	C3. Display Mode and Letter Size

	Appendix D
	D1. BHT-3000
	D2. BHT-4000
	D3. BHT-5000
	D4. BHT-6000/BHT-6500
	D5. BHT-7000/BHT-7500

	Appendix E
	E1. BHT-3000
	E2. BHT-4000
	E3. BHT-5000
	[1] 32-key pad
	[2] 26-key pad

	E4. BHT-6000
	E5. BHT-6500
	E6. BHT-7000/BHT-7500
	[1] 32-key pad
	[2] 26-key pad (BHT-7000 only)

	Appendix F
	Appendix G
	Appendix H
	[1] Flash ROM
	[2] BHT-2000 compatible mode
	[3] Program file named APLINT.PD3

	Appendix I
	Appendix J
	Appendix K

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

