

Copyright © DENSO CORPORATION, 2000

All rights reserved. No part of this publication may be reproduced in any form or by any means
without permission in writing from the publisher.

Specifications are subject to change without prior notice.

All products and company names mentioned in this manual are trademarks or registered trade-
marks of their respective holders.

BHT, CU, BHT-protocol, BHT-Ir protocol, and BHT-BASIC are trademarks of DENSO CORPO-
RATION.

Preface

This manual describes the syntax and development procedure of BHT-BASIC 3.5 which is a
programming language for developing application programs of the BHT-3000/BHT-4000/BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 Bar Code Handy Terminals.

It is intended for programmers who already have some experience in BASIC programming.
For the basic description about the BASIC language, refer to documentations concerning

Microsoft BASIC® or QuickBASIC®. For the details about Windows™, refer to the Microsoft
Windows documentations.
i

How this book is organized

This manual is made up of 18 chapters and appendices.

Chapter 1. Software Overview for the BHT
Surveys the software structure of the BHT and introduces the programs integrated in the ROM
and the language features of BHT-BASIC.

Chapter 2. Development Environment and Procedures
Describes hardware and software required for developing application programs and the devel-
oping procedure.

Chapter 3. Program Structure
Summarizes the basic structure of programs and programming techniques, e.g., program
chaining and included files.

Chapter 4. Basic Program Elements
Describes the format of a program line, usable characters, and labels.

Chapter 5. Data Types
Covers data which the programs can handle, by classifying them into data types--constants
and variables.

Chapter 6. Expressions and Operators
Surveys the expressions and operators to be used for calculation and for handling concate-
nated character strings. The operators connect, manipulate, and compare the expressions.

Chapter 7. I/O Facilities
Defines I/O facilities and describes output to the LCD, input from the keyboard, and control for
the timer, beeper, and other I/Os by the statements and functions.

Chapter 8. Files
Describes data files and device files.

Chapter 9. Event Polling and Error/Event Trapping
Describes the event polling and two types of traps: error traps and event (of keystroke) traps
supported by BHT-BASIC.

Chapter 10. Sleep Function
Describes the sleep function.

Chapter 11. Resume Function
Describes the resume function.

Chapter 12. Power-related Features
Describes low battery warning, the prohibited simultaneous operation of the beeper/illumina-
tion LED (or laser source)/LCD backlight, the wakeup, and remote wakeup.
ii

Chapter 13. LCD Backlight Function
Describes the LCD backlight function

Chapter 14. Statement Reference
Describes the statements available in BHT-BASIC, including the error codes and messages.

Chapter 15. Function Reference
Describes the functions available in BHT-BASIC, including the error codes and messages.

Chapter 16. Extended Functions
Describes the extended functions newly added in the BHT-7000/BHT-7500.

Chapter 17. Spread Spectrum Communications
(available with the BHT-7500S)

Summarizes the spread spectrum communication system that may be configured with the
BHT-7500S. This chapter also explains wireless-related statements and the function library
SS.FN3 to be used in wireless communications programming.

Chapter 18. TCP/IP
Surveys the socket application program interface (API) and FTP client. This chapter also
describes the two function libraries--SOCKET.FN3 and FTP.FN3, which are built in the BHT-
7500S for providing BHT-BASIC programs with access to a subset of the TCP/IP family of pro-
tocols over wireless communications devices.

Appendix A: Error Codes and Error Messages

B: Reserved Words

C: Character Sets

D: I/O Ports

E: Key Number Assignment on the Keyboard

F: Memory Area

G: Handling Space Characters in Downloading

H: Programming Notes

I: Program Samples

J: Quick Reference for Statements and Functions

K: Unsupported Statements and Functions
iii

■ Notational Conventions Used in This Book
Several notational conventions are used in this book for the sake of clarity.

1. Reserved words are printed in UPPERCASE. These are BHT-BASIC’s keywords. You
should not use them as label names or variable names.

Example: CHAIN, GOSUB, and ABS

2. Parameters or arguments which should be specified in the statements or functions are
expressed in italics.

Example: characode and onduration

3. Items enclosed in square brackets [] are optional, which can be omitted.

Example: [commonvariable]

4. Items enclosed in braces { } and separated by vertical bars | represent alternative items.
You should choose either item.

Example: CURSOR {ON|OFF}

5. An ellipsis . . . indicates that you can code the previous item described in one line two or
more times in succession.

Example: READ variable[,variable...]

6. Hexadecimal values are followed by h. In many cases, hexadecimal values are
enclosed with parentheses and preceded by decimal values.

Example: 65 (41h) and 255 (FFh)

In program description, hexadecimal values are preceded by &H.

Example: &H41 and &HFF

7. Programs make no distinction between uppercase and lowercase letters, except for
character string data.

The uppercase-lowercase distinction used in this manual is intended to increase the
legibility of the statements. For example, reserved words are expressed in uppercase;
label names and variable names in lowercase. In practical programming, it is not nec-
essary to observe the distinction rules used in this manual.

The examples below are regarded as the same.

Example 1: &HFFFF, &hffff, and &hFFFF
Example 2: A AND B, a and b, and a AND b
Example 3: PRINT STR$(12), Print Str$(12), and print str$(12)
iv

■ Icons Used in This Book

Statements and functions unique to BHT-BASIC.

■ Syntax for the Statement Reference and Function Reference
The syntax in programming is expressed as shown in the example below.

For the INPUT statement

Syntax: INPUT [;]["prompt"{,|;}]variable

According to the above syntax, all of the following samples are correct:

INPUT;keydata
INPUT keydata
INPUT "input =",keydata
INPUT;"input =";keydata
v

■ Technical Terms Used in This Manual

Compiler and Interpreter
The BHT-BASIC Compiler, which is a development tool, is expressed as Compiler.

The BHT-BASIC Interpreter, which runs in the BHT, is expressed as Interpreter.

Source Program and Object Program (User Program)
Generally, a source program is translated into an object program by a compiler. This
manual calls an object program a user program.

Easy Pack
Easy Pack is an application program suitable for data collection. Listed below are the
versions and memories in which Easy Pack is to be stored. For details about each ver-
sion of Easy Pack, refer to the respective manual shown below.

BHT and CU
This manual expresses the BHT-3000/BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-
7000/BHT-7500 as BHT. To designate each of them, it expresses the series or model
as listed below.

In the same way as above, the CU-3000/CU-4000/CU-5000/CU-6000/CU-7000 are
expressed as CU.

BHT Series
Version of Easy
Pack

Memory Refer to:

BHT-3000 Easy Pack 4.1 ROM "BHT-3000 User’s Manual"

BHT-4000 Easy Pack 4.2 User area of RAM "BHT-4000 User’s Manual"

BHT-5000
BHT-6000
BHT-6500

Easy Pack Pro User area of RAM
or flash ROM

"Easy Pack Pro User’s Manual"

Series Model RAM Capacity Flash ROM Capacity

BHT-3000 BHT-3041
BHT-3045

128KB
512KB

—
—

BHT-4000 BHT-4082
BHT-4086
BHT-4089

256KB
768KB

2048KB

—
—
—

BHT-5000 BHT-5071
BHT-5075
BHT-5077
BHT-5079

128KB
512KB

1024KB
2048KB

512KB
512KB
512KB
512KB

BHT-6000 BHT-6045
BHT-6047
BHT-6049

512KB
512KB
512KB

512KB
1024KB
2048KB

BHT-6500 BHT-6505
BHT-6509

512KB
2048KB

512KB
512KB

BHT-7000 BHT-7064 512KB 2048KB

BHT-7500 BHT-7508
BHT-7508S

1024KB
512KB

8192KB
8192KB
vi

■ Abbreviations
ANK AlphaNumerics and Katakana

BASIC Beginners All purpose Symbolic Instruction Code

BCC Block Check Character

BHT Bar code Handy Terminal

CTS (CS) Clear To Send (RS-232C signal control line)

CU Communications Unit

I/F Interface

I/O Input/Output

LCD Liquid Crystal Display

LED Light-Emitting Diode

MOD Modulo

MS-DOS Microsoft-Disk Operating System

RAM Random Access Memory

ROM Read Only Memory

RTS (RS) Request To Send (RS-232C signal control line)

VRAM Video RAM

■ Related Publications
For BHT-3000 BHT-3000 User’s Manual

For BHT-4000 BHT-4000 User’s Manual

For BHT-5000 BHT-5000 User’s Manual
Multilink Transfer Utility Guide

For BHT-6000 BHT-6000 User’s Manual

For BHT-6500 BHT-6500 User’s Manual

For BHT-7000 BHT-7000 User’s Manual

For BHT-7500 BHT-7500 User’s Manual

For all of the BHTs Transfer Utility Guide

For BHT-6000/BHT-6500/BHT-7000/BHT-7500 Ir-Transfer Utility C Guide
Ir-Transfer Utility E Guide

For BHT-4000R/BHT-5000R BHT-BASIC Programmer’s Manual
For Radio Communications

■ Screen Indication
The lettering in the screens of the BHT and host computer in this manual is a little differ-
ent from that in the actual screens. File names used are only for description purpose,
so they will not appear if you have not downloaded files having those names to the BHT.
vii

Chapter 1
Software Overview for the BHT

CONTENTS

1.1 Software Overview... 2

1.1.1 Software Structure of the BHT ... 2
1.1.2 Overview of BHT-BASIC .. 7

1.2 BHT-BASIC.. 8

1.2.1 Features ... 8
1.2.2 What’s New in BHT-BASIC 3.5 Upgraded from BHT-BASIC 3.0? 9

[1] Compiler .. 9
[2] Statements .. 9

1.3 Program Development and Execution ... 11

1.3.1 Compiler ... 11
1.3.2 Interpreter... 11
1

1.1 Software Overview

1.1.1 Software Structure of the BHT

The structure of software for the BHT is shown below.

■ BHT-3000

When downloaded, user programs will be stored in the RAM. Other programs reside in the
ROM.

User programs User data

Easy Pack

BHT-BASIC Interpreter

System Mode

Drivers

Hardware

RAM

ROM

Application
programs

System
programs
2

Chapter 1. Software Overview for the BHT
■ BHT-4000

Of all the system programs, the drivers, BHT-BASIC Interpreter, and System Mode will be
stored in the system area of the RAM when downloaded. The ROM system resides in the
ROM.

User programs downloaded will be stored in the user area of the RAM.

(For the downloading procedure of the system programs, refer to the "BHT-4000 User’s Man-
ual.")

ROM system
ROM

RAM
(User area)

Application
programs

System
programs

RAM (System area)

BHT-BASIC Interpreter

System Mode

Drivers

Hardware

User programs User data
3

■ BHT-5000/BHT-6000/BHT-6500

The BHT-5000/BHT-6000/BHT-6500 has a flash ROM and RAM. In the flash ROM reside the
drivers, BHT-BASIC Interpreter, System Mode, and font files. Extension libraries and user pro-
grams will be stored in the user area of the RAM (or in the flash ROM) when downloaded.

NOTE Unlike the RAM, the flash ROM requires no power for retaining stored files. There-
fore, leaving the BHT with no rechargeable battery cartridge or dry batteries loaded
will not damage those files stored in the flash ROM while it may damage those files
in the RAM.

The flash ROM has the following restrictions so that you cannot use it like the RAM:

• The frequency of rewriting operations is limited to approx. 100,000 times.
• In application programs, you cannot write data onto the flash ROM.

User programs

RAM or flash ROM

Flash ROM

Application
programs

System
programs

BHT-BASIC Interpreter

System Mode

Drivers

Extension libraries

Font files

Hardware

User data
4

Chapter 1. Software Overview for the BHT
■ BHT-7000/BHT-7500

The BHT-7000/BHT-7500 has a flash ROM and RAM. All of the system programs, user pro-
grams, extension libraries, and extended functions are stored in the flash ROM. The RAM is
used to run those programs efficiently.

User programs

Flash ROM
Application
programs

System
programs

BHT-BASIC Interpreter

System Mode

Drivers

Extension libraries
and extended functions

Font files

Hardware

User data
5

� System Programs

Drivers
A set of programs which is called by the BHT-BASIC Interpreter or System Mode and
directly controls the hardware. The drivers include the Decoder Software used for bar
code reading.

BHT-BASIC Interpreter
Interprets and executes user programs and Easy Pack commands.

System Mode
Sets up the execution environment for user programs or Easy Pack.

ROM System (BHT-4000)
Required for downloading the system programs listed above to the BHT-4000.

Extension Library (BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)
A set of programs which extends the function of the BHT-BASIC to enable the following:

• Displaying ruled lines on the LCD

• Transmitting/receiving files by using the X-MODEM and Y-MODEM protocols

These extension programs are stored in files having an FN3 extension, in each file per
function. You should download a xxxx.FN3 file containing the necessary function from
the BHT-BASIC Extension Library (sold separately) to the user area.

Extended Functions (BHT-7000/BHT-7500)
A set of functions integrated in system programs, which extends the function of the
BHT-BASIC. No downloading is required for those functions since they are integrated
in System. For details, refer to Chapter 16, "Extended Functions."

� Application Programs

User Programs
User-written object programs which are ready to be executed.

Easy Pack
Application program used for bar code data collection.

NOTE The extension libraries for the BHT-5000/BHT-6000/BHT-6500 are different from
those for the BHT-7000/BHT-7500. Use extension libraries suited for your BHT.
6

Chapter 1. Software Overview for the BHT
1.1.2 Overview of BHT-BASIC

With BHT-BASIC, you can customize application programs for meeting your specific needs as
given below.

• Retrieving products names, price information, etc. in a master file.

• Making a checking procedure more reliable with check digits in bar code reading.

• Improving the checking procedure by checking the number of digits entered from the
keyboard.

• Calculating (e.g., subtotals and totals).

• Supporting file transmission protocols (or transmission procedures) suitable for host
computers and connected modems.

• Downloading master files.

• Supporting a program capable of transferring control to several job programs depending
upon conditions.
7

1.2 BHT-BASIC

1.2.1 Features

BHT-BASIC is designed as an optimal programming language in making application programs
for the bar code handy terminal BHT, and to enable efficient program development, with the fol-
lowing features:

■ Syntax Similar to Microsoft™ BASIC
BHT-BASIC uses the BASIC language which is the most widely used one among the high-level
languages. The syntax of BHT-BASIC is as close as possible to that used in Microsoft BASIC
(MS-BASIC).

■ No Line Numbers Required
BHT-BASIC requires no line number notation. You can write a branch statement with a label
instead of a line number so that it is possible to use cut and paste functions with an editor in
developing source programs, thus facilitating the use of program modules for development of
other programs.

■ Program Development in Windows95/98 or WindowsNT/Windows2000
You may develop programs with BHT-BASIC on those computers operating on Windows95/98
or WindowsNT4.0/Windows2000.

■ Advantages of the Dedicated Compiler
The dedicated compiler outputs debugging information including cross reference lists of vari-
ables and labels, enabling the efficient debugging in program development.

The Compiler assigns variables to fixed addresses so that it is not necessary for the Interpreter
to allocate or release memories when executing user programs, making the execution time
shorter.

■ Program Compression by the Dedicated Compiler
The Compiler compresses a source program into the intermediate language to produce an
object program (a user program).

(When a compiled user program is downloaded to the BHT, the BHT packs a pair of ASCII
bytes into a single byte by converting each byte into a 4-bit hexadecimal number for more effi-
cient use of the memory area in the BHT.)
8

Chapter 1. Software Overview for the BHT
1.2.2 What’s New in BHT-BASIC 3.5 Upgraded from
BHT-BASIC 3.0?

Based on BHT-BASIC 3.0, BHT-BASIC 3.5 newly supports the following functions:

[1] Compiler

■ Object linkage editor, Linker
While BHT-BASIC 3.0 Compiler compiles a single source program into a single user program,
BHT-BASIC 3.5 Compiler can convert more than one source program into individual object
programs (intermediate code files for a user program) and then combine them together
through Linker to build a user program. With Linker, you may use existing object programs for
development of user programs.

■ Libraries
The Librarian allows you to build libraries out of object files resulting from compiling, which
makes it easier to use existing application programs. This facilitates the use of existing appli-
cation programs for development of other programs.

■ Projects
BHT-BASIC 3.5 has added a concept of Project that makes it easier to use multiple source pro-
grams for producing a user program.

[2] Statements

■ Added statements
Based on BHT-BASIC 3.0, BHT-BASIC 3.5 newly supports several statements for making dis-
tinction between global variables and local variables, and for defining functions and constants.

Newly added statements

CALL Calls a SUB function in addition to an FN3 function.

CONST Defines symbolic constants to be replaced with labels.

DECLARE Declares user-created function FUNCTION or SUB exter-
nally defined.

FUNCTION…END FUNCTION Names and defines user-created function FUNCTION.

GLOBAL Declares one or more work variables or register variables
defined in a file, as global variables.

PRIVATE Declares one or more work variables or register variables
defined in a file, as local variables.

SUB...END SUB Names and defines user-created function SUB.
9

■ Defining and declaring user-defined functions more easily

BHT-BASIC 3.5 has added FUNCTION…END FUNCTION, SUB...END SUB, and DECLARE
statements. With the former two, you may easily define your own functions—FUNCTION and
SUB. With the latter one, you may declare FUNCTION and SUB functions which are defined
in any other source files.

■ Distinction between local variables and global variables
(defined by PRIVATE and GLOBAL statements)

BHT-BASIC 3.5 makes distinction between local variables and global variables to restrict the
access to the variables.

Both local variables and global variables may be defined for work variables and register vari-
ables. Local variables can only be accessed by any routine in the file where that variable is
defined. Global variables can be accessed by any routine in a program.

However, variables used without declaration inside FUNCTION or SUB function are regarded
as local variables and can be accessed only within that function.

Since local variables are restricted in access, you can define them with the same name in dif-
ferent files.

■ Defining constants
BHT-BASIC 3.5 can define constants.
10

Chapter 1. Software Overview for the BHT
1.3 Program Development and Execu-
tion

BHT-BASIC consists of Compiler and Interpreter.

1.3.1 Compiler

BHT-BASIC 3.5 Compiler consists of the following Compiler, Linker and Librarian:

■ Compiler
Compiler, which is one of the development tools, compiles source programs written on a PC
into the resulting "object files."

It checks syntax of source programs during compilation and makes an error file if any syntax
error is found.

■ Linker
Linker, which is one of the development tools, combines object files (translated by Compiler)
together to build a "user program" in the intermediate language.

If linking does not end normally, Linker makes an error file.

■ Librarian
Librarian, which is one of the development tools, builds "library files" out of object files trans-
lated by Compiler.

If Librarian does not end normally, it makes an error file.

1.3.2 Interpreter

Interpreter interprets and executes a user program downloaded to the BHT, statement by state-
ment.
11

Chapter 2
Development Environment and Procedures

CONTENTS

2.1 Overview of Development Environment .. 14

2.1.1 Required Hardware .. 14

2.1.2 Required Software.. 15

2.2 Overview of Developing Procedures ... 16

2.2.1 Developing Procedures .. 16

2.2.2 Functions of BHT-BASIC 3.5.. 17

2.3 Writing a Source Program ... 18

2.3.1 Writing a Source Program by an Editor.. 18

2.3.2 Rules for Writing a Source Program... 18

2.4 Producing a User Program .. 20

2.4.1 Starting the BHT-BASIC 3.5 Compiler ... 20

2.4.2 Outline of User Program or Library Production Procedure................. 21

[1] Building a user program out of a single source program file 21

[2] Building a library out of a single source file, or building a user program
or library out of multiple source files 21

2.4.3 Designating a Single Source File or a Project File 22

2.4.3.1 Designating a single source file... 22

[1] Select a source file .. 22

2.4.3.2 Designating a project file ... 23

[1] Create a new project ... 23

[2] Select an existing project file... 24

[3] Add files to a project file .. 25

[4] Select files in the active project ... 26

2.4.4 Compiling and Building... 28

[1] Specifying the compiling and linking options............................. 28

[2] Compiling .. 29

[3] Building ... 29

2.4.5 Setting the Editor for Displaying Files .. 30

2.4.6 Error Messages and Their Indication onto the Main Window............. 31

[1] Selecting either an editor or main window as an error
message output device 31

[2] How error messages are displayed on the editor or
main window 32

2.4.7 Options ... 33
12

Chapter 2. Development Environment and Procedures
[1] Compiling options.. 33

[2] Linking options .. 34

[3] Outputting debug information files... 34

[4] Outputting list files ... 35

[5] Outputting a mapfile .. 39

[6] Calculating the address for a statement causing a run-time
error 40

2.4.8 Starting the BHT-BASIC Compiler from the Command Line.............. 41

[1] Syntax ... 41

[2] Options .. 42

[3] Error Level Indication by ERRORLEVEL 44

2.4.9 Output from the BHT-BASIC 3.5 Compiler... 45

2.4.10 Structure of User Programs and Libraries.. 47

2.5 Downloading .. 48

2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E .. 48

2.5.2 Setting up the BHT ... 49

2.6 Executing a User Program... 51

2.6.1 Starting ... 51

2.6.2 Execution.. 51

2.6.3 Termination .. 51
13

2.1 Overview of Development Environ-
ment

The following hardware and software are required for developing user programs:

2.1.1 Required Hardware

■ Personal computer
Use a computer operating with Windows95/98 or WindowsNT4.0/Windows2000.

■ BHT (Bar code handy terminal)
Any of the following BHTs is required:

• BHT-3000

• BHT-4000

• BHT-5000

• BHT-6000

• BHT-6500

• BHT-7000

• BHT-7500

■ CU (Optical communications unit)
For optical communications, any of the following CUs is required. Note that no CU is required
if the BHT is directly connected with the host computer via the direct-connect interface.

• CU-3000 (for BHT-3000)

• CU-4000 (for BHT-4000)

• CU-5000 (for BHT-5000)

• CU-6000 (Option for BHT-6000/BHT-6500. Required if the host computer has no
IR interface port.)

• CU-7000 (Option for BHT-7000/BHT-7500. Required if the host computer has no
IR interface port.)

■ RS-232C interface cable
This cable connects the CU with the personal computer.

NOTE The RS-232C interface cable should have the connector and pin assignment required
by the personal computer.

(For information about the connector configuration and pin assignments of the CU,
refer to the BHT’s User’s Manual.)
14

Chapter 2. Development Environment and Procedures
2.1.2 Required Software

• OS Windows95/98 or WindowsNT4.0/Windows2000

• Editor

• BHT-BASIC 3.5 Compiler BHTC35W.EXE (Integrated environment manager)

BHT35CPL.DLL (Compiler)

BHT35LNK.DLL (Linker)

BHT35LIB.DLL (Librarian)

BHTC35W.MSG (Error message file)

• Transfer Utility (option) TU3.EXE (MS-DOS–based)

TU3W.EXE (16-bit Windows-based)

TU3W32.EXE (Windows-based)

• Ir-Transfer Utility C (option) IT3C.EXE (MS-DOS–based)

IT3CW32.EXE (Windows-based)

• Ir-Transfer Utility E (option) IT3EW32.EXE (Windows-based)

Transfer Utility, Ir-Transfer Utility C, or Ir-Transfer Utility E is an essential tool for downloading
user programs to the BHT.

Each of the BHT-BASIC Compiler, Transfer Utility, Ir-Transfer Utility C, Ir-Transfer Utility E is
optionally provided in a CD or floppy disk.

NOTE Prepare editor versions which are operable with the personal computer on which user
programs are to be developed.

For the manufacturers and models of computers to which Transfer Utility, Ir-Transfer
Utility C, or Ir-Transfer Utility E is applicable, refer to the “Transfer Utility Guide,”
“Ir-Transfer Utility C Guide,” or “Ir-Transfer Utility E Guide,” respectively.
15

2.2 Overview of Developing Proce-
dures

2.2.1 Developing Procedures

The program developing procedures using BHT-BASIC 3.5 are outlined below.

• Making source programs

Make source programs with an editor according to the syntax of BHT-BASIC.

• Producing a user program (compiling and linking)

Compile the source programs into object programs by BHT-BASIC Compiler. Then
combine those object programs or libraries (made up by Librarian) together through
Linker to produce a user program in the intermediate language format.

• Downloading the user program

Download the user program to the BHT by using Transfer Utility/Ir-Transfer Utility C/
Ir-Transfer Utility E.

• Executing the user program

Execute the user program on the BHT.
16

Chapter 2. Development Environment and Procedures
2.2.2 Functions of BHT-BASIC 3.5

BHT-BASIC 3.5 contains Compiler, Linker, and Librarian whose functions are listed below.

Functions of Compiler Description

Syntax check Detects syntax errors in source programs.

Output of object files Translates source programs into object files and
outputs them.

Output of debug information Outputs list files and debug information files
required for debugging.

Functions of Linker Description

Output of a link map file Outputs a symbol table along with its memory
address.

Output of a user program Integrates more than one object program or
library to produce a user program in the interme-
diate language format. When downloaded to the
BHT by Transfer Utility/Ir-Transfer Utility C/Ir-
Transfer Utility E, the user program will be com-
pressed into programs that the Interpreter can
translate.

Functions of Librarian Description

Output of a library Builds a library out of multiple object files. The
library is a collection of object files that Linker
will use.
17

2.3 Writing a Source Program

2.3.1 Writing a Source Program by an Editor

To write a source program, use an editor designed for operating environments where the BHT-
BASIC 3.5 Compiler will execute. The default editor is Windows Notepad.

2.3.2 Rules for Writing a Source Program

When writing a source program according to the syntax of BHT-BASIC 3.5, observe the follow-
ing rules:

• A label name should begin in the 1st column.

• A statement should begin in the 2nd or the following columns.

• One program line should be basically limited to 512 characters (excluding a CR code)
and should be ended with a CR code (by pressing the carriage return key).

If you use an underline (_) preceding a CR code, however, one program line can be
extended up to 8192 characters. For statements other than the PRINT, PRINT#, and
PRINT USING statements, you may use also a comma (,) preceding a CR code, instead
of an underline.

TIP To write a source program efficiently, use of a commercially available editor is rec-
ommended. For the operation of such an editor, refer to the instruction manual for
the editor.

ABC

2000

PRINT
FOR I=1 TO 100 : NEXT I
18

Chapter 2. Development Environment and Procedures
• Comment lines starting with a single quotation mark (') and those with a REM should have
the following description rules each.

A single quotation mark (') can be put starting from the 1st or the following columns, or
immediately following any other statement.

A REM should be put starting from the 2nd column or the following columns. To put a
REM following any other statement, a colon (:) should precede the REM.

• It is necessary to end the IF statement with an END IF or ENDIF, since the IF state-
ment will be treated as a block-structured statement.

• The default number of characters for a non-array string variable is 40; that for an array
string variable is 20.

Specifying the DIM or DEFREG statement allows a single string variable to treat 1
through 255 characters.

NOTE BHT-BASIC does not support some of the statements and functions used in
Microsoft BASIC or QuickBASIC. For details, refer to Appendix K, “Unsupported
Statements and Functions.”

‘Comment
CLS ‘Comment

REM Comment
CLS :REM Comment

IF a$ = “Y” OR a$ = “y” THEN
GOTO SUB12

END IF

DIM b$[255]
DIM c$(2,3)[255]
DEFREG d$[255]
DEFREG e$(2,3)[255]
19

2.4 Producing a User Program

2.4.1 Starting the BHT-BASIC 3.5 Compiler

Start the Compiler, e.g., by choosing the "BHTC35W.EXE" from the Windows Explorer or the
"BHT-BASIC 3.5" registered to the Start menu.

The BHT-BASIC 3.5 Compiler supports the following menus and icons which provide quick
ways to do tasks:

Menus Commands Icons Functions

File New
Open

Close
Open Project
Close Project

Exit

(Yellow)

Creates a new project.
Opens an existing file.

Closes the active file.
Opens an existing project.
Closes the active project.

Quits the BHT-BASIC 3.5 Compiler.

View Toolbar
Status Bar

Clear Screen

Shows or hides the toolbar.
Shows or hides the status bar.

Clears the screen.

Project Select File

Add File

(Red)
Selects or deletes a file in the active project.

Adds one or more files to the active project.

Build Compile

Build

Compiles one or more active files (or active
project) to produce an object file(s).

Compiles one or more active files (or active
project) and then links them to produce a user
program.

Tools Options
Run Editor
Set Editor

Sets compiling options and linking options.
Runs the editor.
Selects the editor you want to run.

Help About BHT-BASIC 3.5 Displays the program information, version
number and the copyright.

Menu bar

Tool bar

Main window
20

Chapter 2. Development Environment and Procedures
2.4.2 Outline of User Program or Library Production
Procedure

Unlike the BHT-BASIC 3.0 Compiler that converts a single source program into a user program
(file named XXX.PD3), the BHT-BASIC 3.5 Compiler converts source programs into object pro-
grams (files named XXX.OBJ) and then links those object programs to produce a user program
(XXX.PD3). A sequence of the compiling and linking processes is called "Build."

The BHT-BASIC 3.5 Compiler can also build a library (XXX.LIB). You may select whether you
build a user program or library on the Project Configuration Files dialog box.

You may build a user program or library out of either multiple files or a single file (as in the
BHT-BASIC 3.0 Compiler).

Note that to build a library out of a single source file, you need to create a project file for a sin-
gle source file.

[1] Building a user program out of a single source program file

What follows is a general procedure for building a user program out of a single source program
file.

(1) Designate a file that you want to use. (For details, refer to Subsection 2.4.3.1, "Designat-
ing a single source file.")

(2) Build a user program out of the designated file. (For details, refer to Subsection 2.4.4, [3
], "Building.")

[2] Building a library out of a single source file, or building a user program or
library out of multiple source files

What follows is a general procedure for building a library out of a single source file or for build-
ing a user program or library out of multiple source files.

(1) Designate a project that you want to use. (For details, refer to Subsection 2.4.3.2, "Desig-
nating a project file.")

(2) Build a user program or library out of the designated project. (For details, refer to Subsec-
tion 2.4.4, [3], "Building.")
21

2.4.3 Designating a Single Source File or a Project File

2.4.3.1 Designating a single source file

Just as in the conventional BHT-BASIC 3.0 Compiler, you may designate a single source file to
build a user program or library.

[1] Select a source file

(1) In any of the following methods, display the Open File dialog box shown below:

■ From the File menu, choose the Open command.

■ Click the open file button in the toolbar.

■ While holding down the Ctrl key, press the O key.

(2) Select a source file you want to use and then click the Open button.

Then the source file opens.

(3) Proceed to Section 2.4.4, "Compiling and Building."
22

Chapter 2. Development Environment and Procedures
2.4.3.2 Designating a project file

To build a library out of a single source file or to build a user program or library out of multiple
source files, you need to create a project file (described in [1] later) or select an existing
project file (in [2]).

You may add files or delete existing files to/from the designated project file (described in [3]
and [4], respectively).

[1] Create a new project

(1) In any of the following methods, display the Create File dialog box shown below:

■ From the File menu, choose the New command.

■ Click the new file button in the toolbar.

■ While holding down the Ctrl key, press the N key.

(2) Designate a project file you want to create (Projtest.bhp in this example), and then click
the Save button.

If you create a project file having the same name as one already used, the warning mes-
sage dialog box will appear. If you want to overwrite, click the OK button; if you do not,
click the Cancel button to quit the project creating procedure.

(3) The Add File(s) dialog box appears. Into the newly created project, you need to put files
which should configure the project, according to the statements given in [3], "Add files to
a project file."
23

[2] Select an existing project file

You may select an existing project file in the Select Project File dialog box or in the Open File
dialog box.

Selecting in the Select Project File dialog box

(1) In any of the following methods, display the Select Project File dialog box shown below:

■ From the File menu, choose the Open Project command.

■ Click the open project button (yellow) in the toolbar.

■ While holding down the Ctrl key, press the P key.

(2) Select an existing project file you want to use (Projtest.bhp in this example), and then
click the Open button.

(3) Proceed to Section 2.4.4, "Compiling and Building."

Selecting in the Open File dialog box

(1) Display the Open File dialog box, referring to Subsection 2.4.3.1, [1].

(2) Select an existing project file you want to use (Projtest.bhp in this example), and then
click the Open button.

(3) Proceed to Section 2.4.4, "Compiling and Building."
24

Chapter 2. Development Environment and Procedures
[3] Add files to a project file

You may add one or more source files and libraries to a project file.

(1) Create a new project (Refer to [1] in this subsection) or select an existing project file to
which you want to add files (Refer to [2] in this subsection).

(2) In either of the following methods, display the Add File(s) dialog box shown below:

■ From the Project menu, choose the Add File command.

■ Click the add file button in the toolbar.

(3) Select files you want to add to the active project file and then click the Open button.

(4) The Project Configuration Files dialog box will appear which lists files in the project. For
details about the Project Configuration Files dialog box, refer to [4], "Select files in the
active project" given later.
25

[4] Select files in the active project

From files existing in the active project, you may select files that you want to compile or build.

(1) In either of the following methods, display the Project Configuration Files dialog box
shown below:

■ From the Project menu, choose the Select File command.

■ Click the select file button (red) in the toolbar.

(2) Select files you want to compile or build.

(3) In the Project Configuration Files dialog box are the following display areas and buttons
from which you may also select a user program or library to be built, may start compiling
or building, and may run the editor, as well as adding or deleting files to/from the active
project.

• List of Files in a Project

This display area shows a list of files which configures the active project. The filenames
are displayed as a relative path.

TIP The Project Configuration Files dialog box will appear also following the new
project creation process (see [1] earlier) or the file addition process to an exist-
ing project (see [3] earlier).

Project configuration
files display area

Drive buttons

Main object display area
Selection buttons for user
program or library to be created
26

Chapter 2. Development Environment and Procedures
• Main Object

This display area shows the name of a main object in a user program if you have
selected "User program (PD3)" with the "Type of File to be Created" selection button. If
you have selected "Create library (LIB)," nothing will appear on this area.

• Type of File to be Created

Lets you select whether you create a user program (PD3) or library (LIB).

• Add File button

Adds the currently selected files to the active project. (Refer to “[3] Add files to a
project file.”)

• Delete File button

Deletes the currently selected file(s) from the active project.

• Main Object button

Specifies the currently selected file as a main object if you have selected "User program
(PD3)" with the “Type of File to be Created” selection button. A library cannot be speci-
fied as a main object.

This button will be disabled if more than one file is selected or “Create library (LIB)” is
selected with the “Type of File to be Created” selection button.

• Run Editor button

Opens a file currently selected by the editor.

• Compile button

Compiles currently selected source files into object files.

• Build button

Builds a user program out of the active project.
27

2.4.4 Compiling and Building

First specify the options and then proceed to the compiling or building process.

[1] Specifying the compiling and linking options

(1) In either of the following methods, display the Set Options dialog box shown below:

■ From the Tools menu, choose the Options command.

■ Click the option button in the toolbar.

(2) Select the check boxes of the options you want to specify.

For details about the options, refer to Subsection 2.4.7.
28

Chapter 2. Development Environment and Procedures
[2] Compiling

In any of the following methods, compile the currently selected source file(s) into an object
file(s):

■ From the Build menu, choose the Compile command.

■ In the Project Configuration Files dialog box, click the Compile button. (For details
about the Project Configuration Files dialog box, refer to Subsection 2.4.3.2, [4].)

■ Click the compile start button in the toolbar.

■ While holding down the Ctrl key, press the G key.

If compiling ends normally, the screen shown below will appear.

[3] Building

In any of the following methods, build a user program or library out of object files:

■ From the Build menu, choose the Build command.

■ In the Project Configuration Files dialog box, click the Build button. (For details about
the Project Configuration Files dialog box, refer to Subsection 2.4.3.2, [4].)

■ Click the build start button in the toolbar.

■ While holding down the Ctrl key, press the B key.

If building ends normally, the screen shown below will appear.
29

2.4.5 Setting the Editor for Displaying Files

Set the editor that you want to use for displaying source files and error message files
(XXX.ERR) according to the steps below.

(1) From the Tools menu, choose the Set Editor command.

The Set Editor dialog box appears as shown below.

(2) In the Command line edit box, type the filename of the editor. If the editor is not located in
the current directory or working directory, type the absolute path or relative path. (The
default editor is Windows NotePad.)

If you don’t know the editor’s filename or directory path, choose the Browse button in the
Set Editor dialog box to display the Select Editor dialog box. From a list of files and direc-
tories displayed, select the appropriate filename and then choose the OK button.

TIP Setting the editor having the tag-jump function allows you to efficiently cor-
rect a source program file which has caused an error. For details about the
tag-jump function, refer to the user’s manual of the editor.
30

Chapter 2. Development Environment and Procedures
2.4.6 Error Messages and Their Indication onto the
Main Window

[1] Selecting either an editor or main window as an error message output
device

According to the procedure below, you may select whether error messages should be output-
ted to an editor or main window if an error message file (XXX.ERR) is produced.

(1) From the Tools menu, choose the Options command.

The Set Options dialog box appears as shown below.

(2) In the Set Options dialog box, select either "To the Editor" or "To the Window" check box.
(The default output device is Editor.)
31

[2] How error messages are displayed on the editor or main window

During building, the BHT-BASIC 3.5 Compiler may detect errors which can be divided into two
types: syntax errors and fatal errors.

■ Syntax errors

If the Compiler detects a syntax error, it outputs the error message to the XXX.ERR file. For
details about the file, refer to Subsection 2.4.9, "Output from the BHT-BASIC 3.5 Compiler."

If the "To the Editor" check box of the Error Message Output is selected in the Set Options dia-
log box, the editor will automatically open and show the detected errors. If the "To the Window"
check box is selected, those errors will be outputted to the main window.

The total number of detected syntax errors always displays on the main window.

- Error messages displayed on the editor

- Error messages displayed on the main window

■ Fatal errors

If the Compiler detects a fatal error, it outputs the error message to the main window.

■ ERRORLEVEL

The ERRORLEVEL function is supported only when a +E option is specified at the command
line. (Refer to Subsection 2.4.8, "Starting the BHT-BASIC 3.5 Compiler from the Command
Line," [3].)
32

Chapter 2. Development Environment and Procedures
2.4.7 Options

To specify compiling options and linking options, select the check-box options you want in the
Set Options dialog box. Each of available options is explained below.

[1] Compiling options

Compiling Options Description

Debug information file Outputs debug information files (XXX.ADR, XXX.LBL, and
XXX.SYM files).

If this option is not selected, no debug information file will be
outputted. (default)

(For details, refer to [3].)

Address-source List Outputs an address-source list to the file XXX.LST.

If this option is not selected, no address-source list will be
outputted. (default)

(For details, refer to [4].)

Symbol table Outputs a symbol table to the file XXX.LST.

If this option is not selected, no symbol table will be output-
ted. (default)

(For details, refer to [4].)

X (Cross) reference Outputs a cross reference to the file XXX.LST.

If this option is not selected, no cross reference will be out-
putted. (default)

(For details, refer to [4].)

Variable size Outputs the sizes of common variables, work variables, and
register variables to the file XXX.ERR. or main window.

If this option is not selected, no variable size will be output-
ted. (default)

The output example (TESTA.err) is as follows:

Common area = XXXXX bytes (XXXXX bytes on memory.

XXXXX bytes in file)

Work area = XXXXX bytes (XXXXX bytes on memory.

XXXXX bytes in file)

Register area = XXXXX bytes in file
33

[2] Linking options

[3] Outputting debug information files

If you select the "Debug information file" check box in the Set Options dialog box and run the
Compiler, then the Compiler will output three types of debug information files.

Each information file will be given the same name as the source program and annexed one of
the three extensions .ADR, .LBL, and .SYM according to the file type as listed below.

• Source line–address file (.ADR)
Indicates the correspondence of line numbers in a source program to their
addresses in the object program written in intermediate language.

Each line consists of a four-digit line number in decimal notation and a four-digit
address in hexadecimal notation.

• Label–address file (.LBL)
Indicates the correspondence of labels and user-created functions defined in a
source program to their addresses in the object program written in intermediate lan-
guage.

For user-defined functions in the one-line format, the first addresses of those func-
tions in the object program are listed in this file; for those in the block format, the
addresses of the first statements in the blocks are listed.

Each line consists of a label name or a user-defined function name, and a four-digit
address in hexadecimal notation.

• Variable–intermediate language file (.SYM)
Indicates the correspondence of variables used in a source program to the interme-
diate language.

Each line consists of a variable and its intermediate language.

Linking Options Description

Mapfile Outputs map information to the file XXX.MAP.

If this option is not selected, no map information will be
outputted. (default)

(For details, refer to [5] in this subsection.)

Debug Information Files Filename Extension

Source line–address file
Label-address file
Variable–intermediate language file

.ADR

.LBL

.SYM
34

Chapter 2. Development Environment and Procedures
[4] Outputting list files

The Compiler may output three types of list files as listed below depending upon the options

specified at the start of compiling, in order to help you program and debug efficiently.

The list file will be given the same name as the source program file and annexed with an exten-
sion .LST.

When outputted, each list file has the header format as shown below.

BHT-BASIC 3.5 Compiler Version X.XX ←Version of BHT35CPL.DLL
Copyright (C) DENSO CORPORATION 1998. All rights reserved.
source = Source filename.ext (to be given as an absolute path)

■ Address-source list
Select the Address-source List check box and run the Compiler, and the following information
will be outputted:

BHT-BASIC 3.5 Compiler Version X.XX

Copyright (C) DENSO CORPORATION 1998. All rights reserved.

source = C:\TEST.SRC

List File Option Filename Extension

Address-source list
Symbol table
Cross reference

Select the Address-source List check box.
Select the Symbol table check box.
Select the X (Cross) reference check box.

.LST

0000 0001 '* * * * * * * * * * * * *

0000 0002 '*

0000 0014 ON ERROR GOTO ErrorProg

0003 0015

0003 0016 DEFREG vF% = 0

0003 0017 DEFREG ConF% = 0

0003 0018 DEFREG RecF% = 0

0003 0019 DEFREG FreeSpace

0003 0020 DEFREG ESC = -1

0003 0021 DEFREG bps$ = "9600"

0003 0022

0338 0023 REM $ INCLUDE : 'SAKeyFnc. SRC'

0338 0024

0338 0025 Master$ = "Master92. DAT"

034A 0026 Workfile$ = "WrkFils. DAT"

035C 0027 Sales$ = "SalesSA. DAT"

036D 0028

036D 0029 IF vf% = 0 THEN

0377 0030 GOSUB cautionB

037A 0031 CLOSE

037E 0032 Freespace = FRE(1)

0387 0033 vF% = 1

038E 0034 END IF

038E 0035 MainProg:

038E 0036 GOSUB filOpen

 0000 Error Statement Compiled End.

Addr Line Statement
Address of object program in
intermediate language

Line number in source
program

Source program statement
35

• Address of object program in intermediate language

Shows an intermediate language address corresponding to a source program line in
four-digit hexadecimal notation.

• Line number in source program

Shows a line number for a source program statement in four-digit decimal notation.

• Source program statement

Shows the same content as a statement written in a source program.

Notes for address-source lists

(1) If a source program statement contains line feeding caused by a CR code preceded by an
underline (_) or a comma (,), the line number will increase, but no address will appear.

(2) Neither page headers nor new page codes will be inserted.

(3) If a syntax error occurs, the error message will be outputted on the line following the error
statement line.

(4) If more than one syntax error occurs in a statement, the error message only for the first
detected error will appear.

(5) A TAB code will be replaced with eight space codes.

The total number of syntax errors will be outputted at the end of the list.

■ Symbol table
Select the Symbol table check box and run the Compiler, and the following information will be
outputted:

BHT-BASIC 3.5 Compiler Version X.XX
Copyright (C) DENSO CORPORATION 1998. All rights reserved.
source = C:\Test.SRC

Variables will be outputted in the following format:

In case of global variables Variablename

In case of local variables Variablename:Filename (no extension)-

In other cases Variablename:Name of user-defined function defining the
variable

C O M M O N S Y M B O L
W O R K S Y M B O L

F% INPUTERR% J2% SEQNO% SREC%

L A B E L S Y M B O L

AMOUNT AMOUNTKYIN CAUTIONB COMRETRY DATASET

L A B E L S Y M B O L

FNKEYINPUT FNSPAT FNXCENTER FNZPAT

SU% SUBC% SUBFLAG% WREC% X1%

R E G I S T E R S Y M B O L

COMF% RECNO%

Symbol table for common variables

Symbol table for register variables

Symbol table for work variables

Symbol table for labels

Symbol table for user-defined
function
36

Chapter 2. Development Environment and Procedures
• Symbol table for common variables

Lists common variables arranged according to their types. An array variable has a suffix
of parentheses ().

• Symbol table for work variables

Lists work variables and dummy arguments arranged according to their types. An array
variable has a suffix of parentheses ().

• Symbol table for register variables
Lists register variables arranged according to their types. An array variable has a suffix
of parentheses ().

• Symbol table for labels

Lists labels arranged in alphabetic order.

• Symbol table for user-defined functions
Lists user-defined functions arranged according to their types (i.e. integer, real, and
string types).

Each of common variables, work variables, and register variables can be divided into the fol-
lowing types:

Non-array integer type Non-array real type Non-array string type

Array integer type Array real type Array string type
37

■ Cross reference
Select the X (Cross) reference check box and run the Compiler, and the following information
will be outputted:

• For common variables

Outputs line numbers where common variables are defined and referred to.

• For work variables
Outputs line numbers where work variables and dummy arguments are referred to.

• For register variables

Outputs line numbers where register variables are defined and referred to.

• For labels

Outputs line numbers where labels are defined and referred to.

• For user-defined functions
Outputs line numbers where user-defined functions are defined and referred to.
38

Chapter 2. Development Environment and Procedures
[5] Outputting a mapfile

Select the Mapfile check box of the Linking Options in the Set Options dialog box and build a
user program, and the mapfile as shown below will be outputted. The mapfile will be given the
same name as the project file and annexed with an extension .MAP.

• Map for common variables
Shows the symbols of common variables in the Interpreter which are arranged according
to their types together with their pointing addresses. An array variable has a suffix of
parentheses (). If no common variables are used, this item will not be outputted.

• Map for work variables
Shows the symbols of work variables in the Interpreter which are arranged according to
their types together with their pointing addresses. An array variable has a suffix of paren-
theses (). If no work variables are used, this item will not be outputted.

• Map for register variables
Shows the symbols of register variables in the Interpreter which are arranged according
to their types together with their pointing addresses. An array variable has a suffix of
parentheses (). If no register variables are used, this item will not be outputted.

COMMON SYMBOL

C%

REGISTER SYMBOL

R$

FUNCTION SYMBOL

AAA

OBJECT INFORMATION

PRC

REG

PRD

PRD INFORMATION

[Filename]

test.obj

Function.obj

[Total]

WORK SYMBOL

A

B

W$

2400

Map for common variables

Map for work variables

Map for register variables

Map for user-defined function

Map for variables and object
codes

Details of object codes

2E00

003B

0000

offset size

0035

0064

0035

002F

0047

offset size

0000

0038

0038

000F

0047

2900

2901

2A00
39

• Map for user-defined functions

Shows the symbols of user-defined functions in the Interpreter which are arranged
according to their types (i.e., integer, real, and string types). If no user-defined functions
are used, this item will not be outputted.

• Map for variables and object codes

Shows the addresses of variables and object codes in a user program. The PRC indi-
cates the program allocation information area, the REG indicates the register variables
area, and the PRD indicates the program reserved area.

• Details of object codes

Shows the allocation information of objects in a user program. The [Filename] lists the
names of object files configuring a user program. The [Offset] lists the heading
addresses of individual object files in 4-digit hexadecimal form. The [Size] lists the sizes
of individual object files in 4-digit hexadecimal form.

[6] Calculating the address for a statement causing a run-time error

If a run-time error occurs, the Compiler returns the address (ERL=XXXX) assigned starting
from the head of the user program. When building a user program out of multiple object files,
therefore, you need to calculate an address of a statement in an object file causing a run-time
error according to the procedure given below.

(1) In the Set Options dialog box, select the Address-source List check box of the Compiling
Options and the Mapfile check box of the Linking Options beforehand.

(2) Build a user program out of object files so as to output the address-source list file (source
filename.LST) and the mapfile (project name.MAP).

(3) In the "details of object codes" item, retrieve an object file containing the address
(ERL=XXXX) assigned to a statement causing a run-time error.

(4) In the Address-source List file of the retrieved object file, retrieve the address for the
statement causing a run-time error.

Subtract the heading address of the object file from the address of the statementstate-
ment causing a run-time error, and you can obtain where a run-time error has occurred.
40

Chapter 2. Development Environment and Procedures
2.4.8 Starting the BHT-BASIC Compiler from the
Command Line

You may start the BHT-BASIC Compiler from the command line in the MS-DOS Prompt of
Windows95/98 or WindowsNT4.0/Windows2000.

[1] Syntax

At the MS-DOS command prompt, type in the following format:

BHTC35W [options] [[directorypath]filename…][options]

directorypath You may specify either an absolute path or relative path. Omitting
this option will make the Compiler look for that file in the current work-
ing directory. Specifications of directorypath only is not allowed.

filename You may specify the name of any of a project file, source file and
library file.

options You may specify compiler processing options, compiling options, and
linking option. For details, refer to the next item, [2], "Options."

NOTE The Compiler will recognize a project specified by filename merely as a group of
files. If you do not specify a +BL option (Building library described in [2]), there-
fore, the Compiler automatically produces a user program.

TIP To produce a user program from a single source file in a batch file, type in the follow-
ing:

>START /W +E +B TEST.SRC

Writing START /W as above will not proceed to the next batch processing until the
BHT-BASIC 3.5 Compiler completes the processing. For details about +E or +B
option, refer to “[2] Options” in this subsection.
41

[2] Options

The BHT-BASIC 3.5 Compiler supports three types of options—compiler processing options,
compiling options, and linking option.

■ Compiler processing options

Processing options Description

+C Compiles one or more designated file(s) into object file(s).

+B programname Builds a user program with the specified program name. If
no programname is specified, the filename specified first
will apply.

+BL
libraryname

Builds a library with the specified library name. If no
libraryname is specified, the filename specified first
will apply.

+E, -E Determines whether to terminate the BHT-BASIC 3.5 Com-
piler after completion of processing.
Specifying the +E terminates the Compiler without display-
ing the compiler window after completion of processing.
Specifying the -E displays the compiler window and does
not terminate the Compiler even after completion of pro-
cessing.
The default is -E.

NOTE If more than one option with different specifications is written (e.g., +C, +B, and
+BL), the last option takes effect.

If the same option is set more than one time with different specifications (e.g., +E and
-E), the last option takes effect.
42

Chapter 2. Development Environment and Procedures
■ Compiling options

■ Linking option

Compiling options Description

+D Outputs debug information files (XXX.ADR, XXX.LBL. and
XXX.SYM files).
(Same as you select the Debug information file check box
in the Set Options dialog box. Refer to Subsection 2.4.7, [1
].)

+L Outputs an address-source list to the file XXX.LST.
(Same as you select the Address-source List check box in
the Set Options dialog box. Refer to Subsection 2.4.7, [1].)

+S Outputs a symbol table to the file XXX.LST.
(Same as you select the Symbol table check box in the Set
Options dialog box. Refer to Subsection 2.4.7, [1].)

+X Outputs a cross reference to the file XXX.LST.
(Same as you select the X (Cross) reference check box in
the Set Options dialog box. Refer to Subsection 2.4.7, [1].)

+V Outputs the sizes of common variables, work variables,
and register variables to the file XXX.ERR or main window.
(Same as you select the Variable size check box in the Set
Options dialog box. Refer to Subsection 2.4.7, [1].)

Linking options Description

+M Outputs map information to the file XXX.MAP.
(Same as you select the Mapfile check box in the Set
Options dialog box. Refer to Subsection 2.4.7, [2].)

NOTE Options specified at the command line will take effect only when you run the BHT-
BASIC 3.5 Compiler at the command line. (Those option settings will not be written
into the initialization file BHTC35W.INI.)

Even if you specify a -E option (default) so that the Compiler does not terminate after
completion of processing, neither filename nor options designated for the preceding
processing will be saved. You need to designate them again.

Option settings stored in the initialization file BHTC35W.INI will not apply when
you run the BHT-BASIC 3.5 Compiler at the command line. To output debug infor-
mation files, therefore, you need to specify options at the command line.
43

[3] Error Level Indication by ERRORLEVEL

If you specify a +E option at the command line and run the BHT-BASIC 3.5 Compiler, the
ERRORLEVEL of MS-DOS allows the Compiler to set the compiling end status to the MS-DOS
environmental variable ERRORLEVEL after completion of processing, as any of the error lev-
els listed below.

By referring to this ERRORLEVEL, you can learn the compiling end status.

By making a batch file which automatically starts proper operation according to the error level,
you can facilitate debugging procedures.

For details about the ERRORLEVEL, refer to the MS-DOS Reference Manual.

ERRORLEVEL Description

0
1
2
4
5
6
7
8
9

10
20
21
30
40
70
99

Normal end
No designated file or path found.
Filename format not correct
Project invalid
File open error
Write-protect error
File renaming failure
Project file creating failure
Existing project file deleted
Entered option invalid
Compiling syntax error
Compiling fatal error
Link error
Library error
No empty space in the designated disk
Other errors
44

Chapter 2. Development Environment and Procedures
2.4.9 Output from the BHT-BASIC 3.5 Compiler

The BHT-BASIC 3.5 Compiler outputs the following information as well as object programs to
the destination depending upon the conditions.

Output Destination Conditions

Object file File XXX.OBJ (in the direc-
tory where the source pro-
gram is located)

When the specified source
program has been normally
compiled without occur-
rence of a compiling error.

User program File YYY.PD3 (in the direc-
tory where the project is
located)

When the specified project
has been normally built with-
out occurrence of a compil-
ing error or linking error.

Library file File YYY.LIB (in the
directory where the project
is located)

When the specified project
has been normally built with-
out occurrence of a compil-
ing error or library error.

Error message
(Syntax error)

File XXX.ERR (in the direc-
tory where the source pro-
gram is located)

If a compiling error is
detected during compilation
of the specified source pro-
gram.

File YYY.ERR (in the direc-
tory where the project is
located)

If an error is detected during
building of the specified
project.

Error message
(Fatal error)

Main window If a fatal error is detected
during compilation of the
specified source program.

Debug
infor-
mation

Source line–
Address
information

File XXX.ADR (in the direc-
tory where the source pro-
gram is located)

If the Debug information file
check box is selected in the
Set Options dialog box.

Label–
Address
information

File XXX.LBL (in the direc-
tory where the source pro-
gram is located)

Variable–
Intermediate
language
information

File XXX.SYM (in the direc-
tory where the source pro-
gram is located)
45

XXX represents a source program filename.

YYY represents a project name.

Address–Source list

File XXX.LST (in the direc-
tory where the source pro-
gram is located)

If the Address-source List
check box is selected in the
Set Options dialog box.

Symbol table If the Symbol table check
box is selected in the Set
Options dialog box.

Cross reference If the X (Cross) reference
check box is selected in the
Set Options dialog box.

Sizes of variables File XXX.ERR (in the direc-
tory where the source pro-
gram is located) or
File YYY.ERR (in the direc-
tory where the project is
located)

If the Variable size check
box is selected in the Set
Options dialog box.

Mapfile File YYY.MAP (in the direc-
tory where the project is
located)

If the Mapfile check box is
selected in the Set Options
dialog box.

Output Destination Conditions
46

Chapter 2. Development Environment and Procedures
2.4.10 Structure of User Programs and Libraries

If you specify a user program to be produced in the Project Configuration Files dialog box, the
BHT-BASIC 3.5 Compiler produces a user program provided that no compiling error or link
error occurs. The user program file will be given the same name as the project file and
annexed with an extension .PD3.

If you specify a library to be produced, the Compiler produces a library provided that no compil-
ing error or library error occurs. The library file will be given the same name as the project file
and annexed with an extension .LIB.

If the name of a newly produced file is the same as that of an existing file in the destination
directory, Compiler will overwrite the existing file with the new file.

Structure of user programs

A user program is expressed in the intermediate language, where statements, functions and
variables are in two-byte form of ASCII characters. A record is 128 bytes in length and
annexed with CR and LF codes.

When downloaded to the BHT and stored in its memory, a user program will be compressed
from two-byte form into single-byte hexadecimal form. Accordingly, the length of a record
comes to 64 bytes.

Structure of libraries

A library consists of more than one object filename and object information.
47

2.5 Downloading

2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/
Ir-Transfer Utility E

Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E transfers user programs and data files
(e.g., master files) between the BHT and the connected personal computer. It has the follow-
ing functions:

For operations of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E, refer to the related
guide.

Functions of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E

Downloading extension programs
Downloading programs
Downloading data
Uploading programs
Uploading data
48

Chapter 2. Development Environment and Procedures
2.5.2 Setting up the BHT

■ BHT-3000
If the error message "Report to the personnel in charge (x)" appears, it is necessary to initialize
the BHT before downloading user programs.

The above error message appears in any of the following cases:

• The BHT is first powered on from the time of purchase.

• The BHT is powered on after being left without batteries (main and sub) loaded for a long
time.

For details about the initialization and downloading, refer to the "BHT-3000 User's Manual."

■ BHT-4000
If the error message "No System" appears, it is necessary to download the System Programs
and initialize the BHT before downloading user programs. If the error message "Report to the
personnel in charge!!" appears, it is necessary to initialize the BHT.

The error message "No System" appears in any of the following cases:

• The BHT is first powered on from the time of purchase.

• The BHT is powered on after being left without main battery loaded for a long time.

For details about the initialization and downloading (of System Program and user programs),
refer to the "BHT-4000 User's Manual."

CAUTION Initialization will not only erase all of the programs and data stored in the RAM
but also reset the system calendar clock and communications parameters to their
defaults. Therefore, set those reset parameters in System Mode before accessing
the download menu.

CAUTION Initialization will not only erase all of the programs (including Easy Pack) and
data stored in the user area of the RAM but also reset the system calendar clock
and communications parameters to their defaults. Therefore, set those reset
parameters in System Mode before accessing the download menu.
49

■ BHT-5000/BHT-6000/BHT-6500
If the error message given below appears, it is necessary to initialize the BHT before down-
loading user programs.

"System error ! Contact your administrator. Note the error drive. (DRIVE x)"

The above error message appears in any of the following cases:

• The BHT is first powered on from the time of purchase.

• The BHT is powered on after being left without main battery loaded for a long time.

For details about the initialization and downloading, refer to the "BHT’s User's Manual."

■ BHT-7000/BHT-7500
If the error message given below appears, it is necessary to set the calendar clock before
downloading user programs.

"Set the current date and time. XX/XX/XX YY:YY"

The above error message appears in any of the following cases:

• The BHT is first powered on from the time of purchase.

• The BHT is powered on after being left without main battery loaded for a long time.

For details about the calendar clock setting, refer to the "BHT’s User's Manual."

CAUTION Initialization will not only erase all of the programs and data stored in the RAM
and flash ROM but also reset the system calendar clock and communications
parameters to their defaults. Therefore, set those reset parameters in System
Mode before accessing the download menu.
50

Chapter 2. Development Environment and Procedures
2.6 Executing a User Program

2.6.1 Starting

To run a user program, start System Mode and select the desired program in the Program Exe-
cution menu.

If you have selected a user program as an execution program in the Setting menu of System
Mode, the BHT automatically runs the user program when powered on.

For the operating procedure of System Mode, refer to the BHT’s User’s Manual.

2.6.2 Execution

The Interpreter interprets and executes a user program from the first statement to the next, one
by one.

2.6.3 Termination

The BHT system program terminates a running user program if

• the END, POWER OFF, or POWER 0 statement is executed in a user program,

• the power switch is pressed,

• no valid operations are performed within the specified time length (Automatic powering-
off), or

Valid operations: - Entry by pressing any key

- Bar-code reading by pressing the trigger switch

- Data transmission

- Data reception

Specified time length: Length of time specified by the POWER statement in the
user program. If not specified in the program, three min-
utes will apply.

• the battery voltage level becomes low.

Low battery: If the voltage level of the battery cartridge or that of the
dry cells drops below the specified level, the BHT dis-
plays the low battery warning message on the LCD and
powers itself off.

If the resume function is activated in System Mode, only the execution of the END, POWER
OFF, or POWER 0 statement can terminate a running user program. Other cases above
merely turn off the power, so turning it on again resumes the program.
51

Chapter 3
Program Structure

CONTENTS

3.1 Program Overview... 53

3.1.1 Statement Blocks ... 53

[1] Subroutines ... 53
[2] Error-/Event-handling Routines ... 53
[3] User-defined Functions ... 54
[4] Block-structured Statements ... 54

3.1.2 Notes for Jumping into/out of Statement Blocks 55

3.2 Handling User Programs ... 56

3.2.1 User Programs in the Memory ... 56

3.2.2 Program Chaining .. 56

3.2.3 Included Files ... 57
52

Chapter 3. Program Structure
3.1 Program Overview

3.1.1 Statement Blocks

A statement block is a significant set of statements (which is also called "program routine").
The following types of statement blocks are available in programming for the BHT:

Avoid jumping into or out of the midst of any of the above statement blocks using the GOTO
statement; otherwise, it will result in an error. (Refer to Section 3.1.2.)

[1] Subroutines

A subroutine is a statement block called from the main routine or other subroutines by the
GOSUB statement.

Using the RETURN statement passes control from the called subroutine back to the statement
immediately following the GOSUB statement in the original main routine or subroutine.

[2] Error-/Event-handling Routines

An error- or event-handling routine is a statement block to which program control passes when
an error trap or event (of keystroke) trap occurs during program execution, respectively.

The RESUME statement passes control from the error-handling routine back to the desired
statement.

The RETURN statement in the keyboard interrupt event-handling routine returns control to the
statement following the one that caused the interrupt.

Statement Blocks Description

Subroutine A routine called by the GOSUB statement.

Error-/event-handling routine An error-/event-handling routine to which
control is passed when an error trap or event
(of keystroke) trap occurs, respectively.

User-defined function A function defined by any of the following
statements:
DEF FN (in single-line form)
DEF FN...END DEF (in block form)
SUB...END SUB
FUNCTION...END FUNCTION

Block-structured statement FOR...NEXT
IF...THEN...ELSE...END IF
SELECT...CASE...END SELECT
WHILE...WEND
53

[3] User-defined Functions

Before calling user-defined functions, it is necessary to define those functions with any of the
following statements. Generally, those statements should be placed before the main routine
starts.

DEF FN (in single-line form)
DEF FN...END DEF (in block form)
SUB...END SUB
FUNCTION...END FUNCTION

When using SUB and FUNCTION functions written in other files, it is necessary to declare
them with the DECLARE statement before calling them.

[4] Block-structured Statements

The statements listed below have the statement block structure and are useful for structured
programming.

FOR...NEXT
IF...THEN...ELSE...END IF
SELECT...CASE...END SELECT
WHILE...WEND

■ Nested Structure

Block-structured statements allow you to write nesting programs as shown below.

FOR i=1 TO 10
FOR j=2 TO 10 STEP 2

PRINT i, j, k
NEXT j

NEXT i

Nesting subroutines as shown below is also possible.

GOSUB aaa
.
.
.

aaa
PRINT "aaa"
GOSUB bbb
RETURN

bbb
PRINT "bbb"
RETURN
54

Chapter 3. Program Structure
3.1.2 Notes for Jumping into/out of Statement Blocks

It is not recommended to jump control from a main routine or subroutines into the midst of sig-
nificant statement blocks or to jump out from the midst of those statement blocks, using the
GOTO statement.

✕ : To be avoided. A run-time error may occur.

▲: Not recommended, although no run-time error will result directly. Nesting may
cause a run-time error.

• It is possible to jump control out of the midst of block-structured statements
(except for FOR...NEXT) by using the GOTO statement.

• Avoid jumping the control out of the midst of FOR...NEXT statement block with the

GOTO statement. The program given below, for example, should be avoided.

FOR I%=0 TO 10
IF I%=5 THEN

GOTO AAA
ENDIF

NEXT I%
AAA

Statement Blocks Jump into Jump out

Subroutine ✕ ✕

Error-/event-handling routine ✕ ✕

Block-format user-defined function ✕ ✕

Block-structured statement ✕ ▲

NOTE Generally, the frequent or improper use of GOTO statements in a program will
decrease debugging efficiency and might cause fatal run-time errors. You are, there-
fore, recommended to avoid using GOTO statements, if possible.
55

3.2 Handling User Programs

3.2.1 User Programs in the Memory

The user area of the memory (memories) in the BHT can store more than one user program.
(For details about memories, refer to Appendix F, "Memory Area.")

If you have selected one of those programs as an execution program in the Setting menu of
System Mode, the BHT automatically runs the user program when powered on.

For the operating procedure of System Mode, refer to the BHT’s User’s Manual.

3.2.2 Program Chaining

Program chaining, which is caused by the CHAIN statement as shown below, terminates a
currently running user program and transfers control to another program.

CHAIN "another.PD3"

To transfer the variables and their values used in the currently running user program to the
chained-to program along the program chain, use the COMMON statement as follows:

COMMON a$(2),b,c%(3)
CHAIN "another.PD3"

The Interpreter writes these declared variable values into the "common variable area" in the
memory. To make the chained-to program refer to these values, use the COMMON statement
again.

COMMON a$(2),b,c%(3)

In BHT-BASIC, all of the name, type, definition order, and number of COMMON-declared vari-
ables used in the currently running program should be identical with those in the next program
(the chained-to program).

When compiling and linking more than one file to produce a user program, define all necessary
common variables in the main object (to be executed first). In other objects, declare common
variables required only in that object. If you link an object where common variables not defined
in the main object are newly defined, an error will result.

’ prog1.PD3
COMMON a(10),b$(3),c%

...
CHAIN "prog2.PD3"
’ prog2.PD3
COMMON a(10),b$(3),c%

...
Since the COMMON statement is a declarative statement, no matter where it is placed in a
source program, the source program will result in the same output (same object program), if
compiled.
56

Chapter 3. Program Structure
3.2.3 Included Files

"Included files" are separate source programs which may be called by the INCLUDE meta-
command.

Upon encounter with the INCLUDE metacommand in a source program, the Compiler fetches
the designated included file and then compiles the main source program while integrating that
included file to generate a user program.

You should specify the name of an included file by using the REM $INCLUDE or
’$INCLUDE. In the included files, you can describe any of the statements and functions

except the REM $INCLUDE and ’$INCLUDE.

Storing definitions of variables, subroutines, user-defined functions, and other data to be
shared by source programs into the included files will promote application of valuable program
resources.

If a compilation error occurs in an included file, it will be merely indicated on the line where the
included file is called by the INCLUDE metacommand in the main source program, and neither
detailed information of syntax errors detected in the included files nor the cross reference list
will be outputted. It is, therefore, necessary to debug the individual included files carefully
beforehand.
57

Chapter 4
Basic Program Elements

CONTENTS

4.1 Structure of a Program Line... 59

4.1.1 Format of a Program Line .. 59
[1] Labels.. 59
[2] Statements .. 60
[3] Comments ... 60

4.1.2 Program Line Length.. 61

4.2 Usable Characters ... 62

4.2.1 Usable Characters.. 62
4.2.2 Special Symbols and Control Codes.. 63

4.3 Labels .. 65

4.4 Identifiers ... 66

4.5 Reserved Words .. 67
58

Chapter 4. Basic Program Elements
4.1 Structure of a Program Line

4.1.1 Format of a Program Line

A program line consists of the following elements:

[label] [statement] [:statement] ... [comment]

• label
A label is placed at the beginning of a program line to identify lines.

• statement
A statement is a combination of functions, variables, and operators according to the syn-
tax.

A group of the statements is a program.

• comment
You may describe comments in order to make programs easy to understand.

[1] Labels

To transfer control to any other processing flow like program branching, you may use labels
which designate jump destinations. Labels can be omitted if unnecessary.

Labels differ from line numbers used in the general BASIC languages; that is, labels do not
determine the execution order of statements.

You should write a label beginning in the 1st column of a program line. To write a statement
following a label, it is necessary to place one or more separators (spaces or tabs) between the
label and the statement.

As shown below, using a label in the IF statement block can eliminate the GOTO statement
which should usually precede a jump-destination label.

IF a = 1 THEN Check
ELSE 500
ENDIF

Where the words "Check" and "500" are used as labels.

For detailed information about labels, refer to Section 4.3.
59

[2] Statements

Statements can come in two types: executable and declarative statements.

• Executable statements
They make the Interpreter process programs by instructing the operation to be executed.

• Declarative statements
They manage the memory allocation for variables and handle comments. Declarative
statements available in BHT-BASIC are listed below.

REM or single quotation mark (’)
DATA
COMMON
DEFREG

Multi-statements: You can describe multiple statements in one program line by separating
them with a colon (:).

[3] Comments

A single quotation mark (’) or REM can begin a comment.

• Single quotation mark (')
A single quotation mark or apostrophe (’) can begin in the first column of a program line
to describe a comment.

When following any other statement, a comment starting with a single quotation mark
requires no preceding colon (:) as a delimiter.

’ comment
PRINT "abc" ’comment

• REM

The REM cannot begin in the first column of a program line.

When following any other statement, a comment starting with a REM requires a preced-
ing colon (:).

REM comment
PRINT "abc" :REM comment
60

Chapter 4. Basic Program Elements
4.1.2 Program Line Length

A program line is terminated with a CR code by pressing the carriage return key.

The allowable line length is basically 512 characters excluding a CR code placed at the end of
the line.

In either of the following two description ways, however, you can write a program line of up to
8192 characters:

In the samples below, symbol "↓" denotes a CR code entered by the carriage return key.

• Extend a program line with an underline (_) and a CR code.

IF (a$ = "," OR a$ = ".") AND b<c _↓
AND EOF(d) THEN ...

• Extend a program line with a comma (,) and a CR code.

FIELD #1,13 as p$,5 as k$,↓
10 as t$↓

Note that the latter description way above (using a comma and CR code) cannot be used for
the PRINT, PRINT#, and PRINT USING statements. Only the former way should apply to
them.
61

4.2 Usable Characters

4.2.1 Usable Characters

Listed below are characters which can be used for writing programs. Note that a double quote
(") cannot be used inside a character string. Symbols | and ~ inside a character string will
appear as ↓ and → on the LCD of the BHT, respectively.

If used outside of a character string, symbols and control codes below have special meaning
described in Subsection 4.2.2.

■ Distinction between Uppercase and Lowercase Letters
The Compiler makes no distinction between the uppercase and lowercase letters, except for
those used in a character string data. All of the statements below, for example, produce the
same effect.

PRINT a
print a
PRINT A
print A

When used in a character string data, uppercase and lowercase letters will be distinguished
from each other. Each of the statements below, for example, produces different display output.

PRINT "abc"
PRINT "ABC"

• Alphabet letters Including both the uppercase and lowercase letters
(A to Z and a to z).

• Numerals Including 0 to 9 for decimal notation, and 0 to 9 and
A to F (a to f) for hexadecimal notation.

• Symbols Including the following:

$ % * + – . / < = > " & ' () : ; [] { } # ! ? @ \ | ~ , _

• Control codes CR, space, and tab

• Katakana e.g.,

• Kanji (2-byte codes)
(Full-width characters)

e.g.,

• Kanji (2-byte codes)
(Half-width characters)

e.g.,
62

Chapter 4. Basic Program Elements
4.2.2 Special Symbols and Control Codes

Symbols and control codes used outside of a character string have the following special mean-
ing:

Symbols and
control codes

Typical use

$
(Dollar sign)

String suffix for variables or user-defined functions

%
(Percent sign)

Integer suffix for variables, constants (in decimal notation), or user-
defined functions

*
(Asterisk)

Multiplication operator

+
(Plus sign)

• Addition operator or unary positive sign
• Concatenation operator in string operation
• Format control character in PRINT USING statement

–
(Minus sign)

Subtraction operator or unary negative sign

.
(Period)

• Decimal point
• Format control character in PRINT USING statement

/
(Slant)

• Division operator
• Separator for date information in DATE$ function

<
(Less-than sign)

Relational operator

=
(Equal sign)

• Relational operator
• Assignment operator in arithmetic or string operation
• User-defined function definition expressions in single-line form
DEF FN

• Register variable definition expressions

>
(Greater-than sign)

Relational operator

"
(Double quote)

A pair of double quotes delimits a string constant or a device file
name.

&
(Ampersand)

• Integer prefix for constants (in hexadecimal notation), which
should be followed by an H.

• Format control character in PRINT USING statement

'
(single quotation mark

or apostrophes)

• Initiates a comment.
• A pair of apostrophes (single quotations) delimits an included file

name.

(Left and right paren-
theses)

• Delimit an array subscript or a function parameter.
• Force the order of evaluation in mathematical, relational, string,

and logical expressions.
63

:
(Colon)

• Separates statements.
• Separates time information in TIME$ function.

;
(Semicolon)

Line feed control character in INPUT and other statements.

[]
(Square brackets)

• Define the length of a string variable.
• Define the string length of the returned value of a string user-

defined function.

{ }
(Braces)

Define the initial value for an array element.

#
(Pound sign)

• File number prefix in OPEN, CLFILE, FIELD, and other state-
ments.

• Format control character in PRINT USING statement

!
(Exclamation mark)

Format control character in PRINT USING statement

@ Format control character in PRINT USING statement

'
(Comma)

• Separates parameters or arguments.
• Line feed control character in INPUT and other statements.

_
(Underline)

If followed by a CR code, an underline extends one program line
up to 8192 characters.

CR code
(Enter)

Terminates a program line.

(Half-width space)
Separator which separates program elements in a program line.
(Note that a two-byte full-width space cannot be used as a separa-
tor.)

TAB
(Tab code)

Separator which separates program elements in a program line.

Symbols and
control codes

Typical use
64

Chapter 4. Basic Program Elements
4.3 Labels

A label can contain the following characters:

• Alphabet characters

• Numeral characters

• Period (.)

■ Rules for naming labels
• The label length should be limited to 10 characters including periods.

• A program can contain up to 9999 labels.

• Label names make no distinction between uppercase and lowercase letters.

The following labels, for example, will be treated as the same label.

filewrite
FILEWRITE
FileWrite

• No asterisk (*) or dollar sign ($) should be used for a label. The following label examples
are invalid:

*Label0
Label1$

• A label made up of only numeral letters as shown below is valid.

1000
1230

Note that a single 0 (zero) should not be used as a label name since it has a special
meaning in ON ERROR GOTO, ON KEY...GOSUB, and RESUME statements.

• A reserved word cannot be used by itself for a label name, but can be included within a
label name as shown below.

inputkey

• A label should not start with the character string FN.
65

4.4 Identifiers

Identifiers for the names of variables should comprise the same alphanumerics as the labels.

■ Rules for naming identifiers

• The identifier length should be limited to 10 characters including periods and excluding $
(dollar sign) and % (percent sign) suffixes.

• Every type of variables can contain up to 255 identifiers.

• A reserved word cannot be used by itself for an identifier name, but can be included
within an identifier name.

• An identifier should not start with a numeral character or the character string FN. If start-
ing with an FN, the character string will be treated as a function identifier defined by the
DEF FN statement.

Examples of identifiers:

a
abcdef$
a1
a12345%
66

Chapter 4. Basic Program Elements
4.5 Reserved Words

"Reserved words" are keywords to be used in statements, functions, and operators. For the
reserved words, refer to Appendix B, "Reserved Words."

■ Rules for using reserved words
• A reserved word cannot be used by itself for a label name, a variable name, or other

identifiers, but can be included within them. The following identifiers, for example, are
improper since they use reserved words "input" and "key" as is, without modification:

input = 3
key = 1

• A reserved word can be used for a data file name as shown below.

OPEN "input" AS #1
67

Chapter 5
Data Types

CONTENTS

5.1 Constants... 69

5.1.1 Types of Constants .. 69
[1] String Constants.. 69
[2] Numeric Constants.. 69

5.2 Variables.. 71

5.2.1 Types of Variables according to Format... 71
[1] String Variables... 71
[2] Numeric Variables ... 72

5.2.2 Classification of Variables .. 73

5.3 User-defined Functions.. 74

5.4 Type Conversion.. 75

5.4.1 Type Conversion .. 75
5.4.2 Type Conversion Examples ... 76
68

Chapter 5. Data Types
5.1 Constants

5.1.1 Types of Constants

A constant is a data item whose value does not change during program execution. Constants
are classified into two types: string constants and numeric constants.

[1] String Constants

A "string constant" is a character string enclosed with a pair of double quotation marks ("). Its
length should be a maximum of 255 characters.

The character string should not contain a double quotation mark (") or any control codes.

[2] Numeric Constants

■ Integer Constants
– In decimal notation

An integer constant in decimals is usually followed by a percent sign (%) as shown
below, but the % can be omitted.

Syntax: sign decimalnumericstring%

Where the sign is either a plus (+) or a minus (–). The plus sign can be omitted.

The valid range is from -32768 to 32767.

If included in an integer constant in decimals, a comma (,) for marking every three digits
will cause a syntax error.

– In hexadecimal notation

Integer constants in hexadecimals should be formatted as shown below.

Syntax: &Hhexnumericstring

The valid range is from 0h to FFFFh.

If included in a numeric string in hexadecimals, a period denoting a decimal point will
cause a syntax error.

Constant Example

String constants "ABC", "123"

Numeric constants Integer constants

Real constants

In decimal notation
In hexadecimal notation

123%, -4567
&HFFF, &h1A2B
123.45, -67.8E3
69

■ Real Constants
Real constants should be formatted as shown below.

Syntax: sign mantissa

Syntax: sign mantissa E sign exponent

Where a lowercase letter "e" is also allowed instead of uppercase letter "E."

mantissa is a numeric string composed of a maximum of 10 significant digits. It can
include a decimal point.

If included in a real constant as shown below, a comma (,) for marking every three digits
will cause a syntax error.

123,456 ’syntax error!
70

Chapter 5. Data Types
5.2 Variables

A variable is a symbolic name that refers to a unit of data storage. The contents of a variable
can change during program execution.

5.2.1 Types of Variables according to Format

Variables are classified into two types: string variables and numeric variables, each of which is
subclassified into non-array and array types.

Array variables should be declared in any of the DIM, COMMON, and DEFREG statements.
Note that the DIM statement should precede statements that will access the array variable.

BHT-BASIC can handle array variables up to two-dimensional.

The subscript range for an array variable is from 0 to 254.

[1] String Variables

A string variable should consist of 1 through 255 characters.

• Non-array string variables
A non-array string variable should be formatted with an identifier followed by a dollar sign
($) as shown below.

Syntax: identifier$

Example: a$,bcd123$

The default number of characters for a non-array string variable is 40.

• Array string variables
An array string variable should be formatted with an identifier followed by a dollar sign ($)
and a pair of parentheses () as shown below.

Syntax: identifier$(subscript[,subscript])

Example: a$(2),bcd123$(1,3)

Where a pair of parentheses indicates an array.

The default number of characters for an array string variable is 20.

Classification of Variables Example

String variables Non-array type ab3$

Array type One-dimensional

Two-dimensional

e$ (10)

gh$ (1,3)

Numeric variables Integer variables Non-array type a%

Array type One-dimensional

Two-dimensional

e% (10)

fg% (2,3)

Real variables Non-array type a,bcd

Array type One-dimensional

Two-dimensional

e (10)

fg (2,3)
71

■ Memory Occupation
A string variable occupies the memory space by (the number of characters + one) bytes, where
the added one byte is used for the character count. That is, it may occupy 2 to 256 bytes.

If a non-array string variable consisting of 20 characters is declared, for example, it will occupy
21-byte memory space.

[2] Numeric Variables

• Non-array integer variables
A non-array integer variable should be formatted with an identifier followed by a percent-
age sign (%) as shown below.

Syntax: identifier%

Example: a%,bcd%

• Array integer variables
An array integer variable should be formatted with an identifier followed by a percentage
sign (%) and a pair of parentheses () as shown below.

Syntax: identifier%(subscript[,subscript])

Example: e%(10),fg%(2,3),h%(i%,j%)

Where a pair of parentheses indicates an array.

• Non-array real variables
A non-array real variable should be formatted with an identifier only as shown below.

Syntax: identifier

Example: a,bcd

• Array real variables
An array real variable should be formatted with an identifier followed by a pair of paren-
theses () as shown below.

Syntax: identifier(subscript[,subscript])

Example: e(10),fg(2,3),h(i%,j%)

Where a pair of parentheses indicates an array.

■ Memory Occupation
A numeric variable occupies 2 bytes or 6 bytes of the memory space for an integer variable or
a real variable, respectively.
72

Chapter 5. Data Types
5.2.2 Classification of Variables

■ Work Variables

A work variable is intended for general use. You may use it either by declaring with the DIM
statement as a non-array variable or without declaration as an array variable. The following
examples show work variables:

DIM a(10),b%(5),c$(1)
d=100:e%=45
FOR count% = s1% TO s2%
NEXT count%

At the start of a user program, the Interpreter initializes all of the work variables to zero (0) or a
null character string. At the end of the program, all of these variables will be erased.

Upon execution of the DIM statement declaring an array variable, the Interpreter allocates the
memory for the array variable. The declared array variable can be erased by the ERASE state-
ment.

■ Common Variables

A common variable is declared by the COMMON statement. It is used to pass its value to the
chained-to programs.

■ Register Variables
A register variable is a unique non-volatile variable supported exclusively by BHT-BASIC. It
will retain its value (by battery backup) even after the program has terminated or the BHT has
been powered off. Therefore, it should be used to store settings of programs and other values
in the memory.

The Interpreter stores register variables in the register variables area of the memory which is
different from the work variables area.

Like other variables, register variables are classified into two types: string variables and
numeric variables, each of which is subclassified into non-array and array types.

The format of register variables is identical with that of general variables. However, you need to
declare register variables including non-array register variables with DEFREG statements.

BHT-BASIC can handle array variables up to two-dimensional.

In the BHT-5000/BHT-6000/BHT-6500, when starting a user program stored in the flash ROM
for the first time, the Interpreter copies the register variables into the RAM (so that both the
flash ROM and RAM store the register variables). When modifying the register variables, the
Interpreter changes those stored in the RAM.

When uploading a program file stored in the flash ROM by using the XFILE statement or Sys-
tem Mode, the BHT-5000/BHT-6000/BHT-6500 uploads the program (except for the register
variables in the flash ROM) together with the register variables stored in the RAM.
73

5.3 User-defined Functions

Out of user-defined functions, the SUB and FUNCTION functions can be called from other
files. The DEF FN function can be called only in the file where that function is defined and
should start with an FN.

The DEF FN and FUNCTION functions are classified into three types: integer functions, real
functions, and character functions, each of which should be defined in the following format:

■ Setting Character String Length of Returned Values of Character Functions
A character function may return 1 through 255 characters. Note that the default character
string length results in the returned value of 40 characters.

If the returned value of the character string length is always less than 40 characters, you can
use the stack efficiently by setting the actual required value smaller than the default as the
maximum length. This is because the Interpreter positions returned values on the stack during
execution of user-defined functions so as to occupy the memory area by the maximum length
size. To define a function which results in the returned value of one character, for example,
describe as follows:

DEF FNshort$(i%)[1]

On the other hand, if the returned value is more than 40 characters, it is necessary to set the
actually required length. To define a function which results in the returned values of 128 char-
acters, for example, describe as follows:

DEF FNlong$(i%)[128]

■ Dummy Arguments and Real Arguments

Dummy arguments are used for defining user-defined functions. In the example below, i% is a
dummy argument.

DEF FNfunc%(i%)
 FNfunc%=i%*5
END DEF

Real arguments are actually passed to user-defined functions when those functions are called.
In the example below, 3 is a real argument.

PRINT FNfunc%(3)

User-defined Function Format of DEF FN Format of FUNCTION

Integer functions FN functionname %

Real functions FN functionname

Character functions FN functionname $
74

Chapter 5. Data Types
5.4 Type Conversion

5.4.1 Type Conversion

BHT-BASIC has the type conversion facility which automatically converts a value of one data
type into another data type during value assignment to numeric variables and operations; from
a real number into an integer number by rounding off, and vice versa, depending upon the con-
ditions.

• The Interpreter automatically converts a value of a real into an integer, in any of the fol-
lowing cases:

- Assignment of real expressions to integer variables

- Operands for an arithmetic operator MOD

- Operands for logical operators: AND, OR, NOT, and XOR

- Parameters for functions

- File numbers

In the type conversion from real into integer, the allowable value range of resultant inte-
ger is limited as shown below. If the resultant integer comes out of the limit, a run-time
error.

-32768 ≤ resultantintegervalue ≤ +32767

• In assignments or operations from integer to real, the type-converted real will have higher
accuracy:

Syntax: realvariable = integerexpression

In the above case, the Interpreter applies the type conversion to the evaluated resultant
of the integer expression before assigning the real value to the real variable.

Therefore, a in the following program will result in the value of 184.5.

a=123%*1.5
75

5.4.2 Type Conversion Examples

The following examples show the type conversion from real to integer.

■ Assignment of Real Expressions to Integer Variables
When assigning the value of the real expression (right side) to the integer variable (left
side), the Interpreter carries out the type conversion.

Syntax: integervariable = realexpression

Example: b% = 123.45

Where b% will become 123.

■ Operands for an Arithmetic Operator MOD

Before executing the MOD operation, the Interpreter converts operands into integers.

Syntax: realexpression MOD realexpression

Example: 10.5 MOD 3.4

Where the result will become identical with 11 MOD 3.

■ Operands for Logical Operators AND, OR, NOT, and XOR

Before executing each logical operation, the Interpreter converts operands into inte-
gers.

Syntax: NOT realexpression,
realexpression {AND|OR|XOR} realexpression

Example: 10.6 AND 12.45

Where the result will become identical with 11 AND 12.

■ Parameters for Functions

If parameters i and j of the functions below are real expressions, for example, the
Interpreter converts them into integers before passing them to each function.

CHR$(i),HEX$(i),LEFT$(x$,i),MID$(x$,i,j),

RIGHT$(x$,i),...

■ File Numbers
The Interpreter also rounds off file numbers to integers.

EOF(fileno),LOC(fileno),LOF(fileno),...
76

Chapter 6
Expressions and Operators

CONTENTS

6.1 Overview.. 78

6.2 Operator Precedence .. 79

6.3 Operators... 81

6.3.1 Arithmetic Operators .. 81
6.3.2 Relational Operators .. 82
6.3.3 Logical Operators ... 83

[1] The NOT operator ... 83
[2] The AND operator ... 84
[3] The OR operator .. 84
[4] The XOR operator ... 84

6.3.4 Function Operators... 85
6.3.5 String Operators ... 85
77

6.1 Overview

An expression is defined as a combination of constants, variables, and other expressions
which are connected using operators.

There are two types of expressions--numeric expressions and string expressions.

BHT-BASIC has the following types of operators:

Operators Description

Arithmetic operator Performs arithmetic operations.

Relational operator Compares two values.

Logical operator Combines multiple tests or Boolean expressions
into a single true/false test.

Function operator Performs the built-in or user-defined functions.

String operator Concatenates or compares character strings.
78

Chapter 6. Expressions and Operators
6.2 Operator Precedence

When an expression contains more than one operator, BHT-BASIC performs the operations in
the standard precedence as shown below.

Precedence

1. Parentheses ()
The parentheses allow you to override operator precedence; that is, operations
enclosed with parentheses are first carried out.

For improving the readability of an expression, you can use parentheses to separate
two operators placed in succession.

2. Function operations

3. Arithmetic operations

4. Relational operations

=, <>, ><, <, >, <=, >=, =<, =>

5. Logical operations

6. String operations

Operations Arithmetic Operators Precedence

Negation _ 1

Multiplication and division * and / 2

Modulo arithmetic MOD 3

Addition and subtraction + and _ 4

Operations Logical Operators Precedence

Logical negation NOT 1

Logical multiplication AND 2

Logical addition OR 3

Exclusive logical addition XOR 4
79

When more than one operator occurs at the same level of precedence, the BHT-BASIC
resolves the expression by proceeding from left to right.

a=4+5.0/20*2-1

In the above example, the operation order is as follows;

5.0/20 (=0.25)
0.25*2 (=0.5)
4+0.5 (=4.5)
4.5-1 (=3.5)
80

Chapter 6. Expressions and Operators
6.3 Operators

6.3.1 Arithmetic Operators

Arithmetic operators include a negative sign (-) and operators for multiplication (*), division (/),

addition (+), and subtraction (-). They also include modulo operator MOD.

■ Modulo Operation (MOD)

The MOD operator executes the modulo operation; that is, it divides expression 1
by expression 2 (see the format below) and returns the remainder.

Syntax: expression1 MOD expression2

Where one or more spaces or tab codes should precede and follow the MOD.

If these expressions include real values, the MOD first rounds them off to integers and
then executes the division operation. For example, the MOD treats expression 8 MOD
3.4 as 8 MOD 3 so as to return the remainder "2".

■ Overflow and Division by Zero
Arithmetic overflow resulting from an operation or division by zero will cause a run-time
error. Such an error may be trapped by error trapping.

Operations Arithmetic Operators Precedence Examples

Negation - 1 -a

Multiplication and division * and / 2 a*b, a/b

Modulo arithmetic MOD 3 a MOD b

Addition and subtraction + and – 4 a+b, a-b
81

6.3.2 Relational Operators

A relational operator compares two values. Depending upon whether the comparison is true or
false, the operator returns true (–1) or false (0).

With the operation result, you can control the program flow.

The relational operators include the following:

If an expression contains both arithmetic and relational operators, the arithmetic operator has
higher precedence than the relational operator.

Relational Operators Meanings Examples

= Equal to A = B

<> or >< Not equal to A <> B

< Less than A < B

> Greater than A > B

<= or =< Less than or equal to A <= B

>= or => Greater than or equal to A >= B
82

Chapter 6. Expressions and Operators
6.3.3 Logical Operators

A logical operator combines multiple tests and manipulates Boolean operands, then returns
the results. It is used, for example, to control the program execution flow or test the value of an
INP function bitwise, as shown in the sample below.

IF d<200 AND f<4 THEN ...
WHILE i>10 OR k<0 ...
IF NOT p THEN ...
barcod% = INP(0) AND &h02

Listed below are the four types of logical operators available.

One or more spaces or tab codes should precede and follow the NOT, AND, OR, and XOR
operators.

In the logical expressions (or operands), the logical operator first carries out the type conver-
sion to integers before performing the logical operation. If the resultant integer value is out of
the range from -32768 to +32767, a run-time error will occur.

If an expression contains logical operators together with arithmetic and relational operators,
the logical operators are given lowest precedence.

[1] The NOT operator

The NOT operator reverses data bits by evaluating each bit in an expression and setting the
resultant bits according to the truth table below.

Syntax: NOT expression

Truth Table for NOT

For example, NOT 0 = -1 (true).

The NOT operation for an integer has the returned value of negative 1’s complement. The
NOT X, for instant, is equal to –(X+1).

Operations Logical Operators Precedence

Negation NOT 1

Logical multiplication AND 2

Logical addition OR 3

Exclusive logical addition XOR 4

Bit in Expression Resultant Bit

0
1

1
0

83

[2] The AND operator

The AND operator ANDs the same order bits in two expressions on either side of the operator,
then sets 1 to the resultant bit if both of these bits are 1.

Syntax: expression1 AND expression2

Truth Table for AND

[3] The OR operator

The OR operator ORes the same order bits in two expressions on either side of the operator,
then sets 1 to the resultant bit if at least one of those bits is 1.

Syntax: expression1 OR expression2

Truth Table for OR

[4] The XOR operator

The XOR operator XORes the same order bits in two expressions on either side of the opera-
tor, then sets the resultant bit according to the truth table below.

Syntax: expression1 XOR expression2

Truth Table for XOR

Bit in Expression 1 Bit in Expression 2 Resultant Bit

0
0
1
1

0
1
0
1

0
0
0
1

Bit in Expression 1 Bit in Expression 2 Resultant Bit

0
0
1
1

0
1
0
1

0
1
1
1

Bit in Expression 1 Bit in Expression 2 Resultant Bit

0
0
1
1

0
1
0
1

0
1
1
0

84

Chapter 6. Expressions and Operators
6.3.4 Function Operators

The following two types of functions are available in BHT-BASIC, both of which work as func-
tion operators:

■ Built-in Functions

Already built in BHT-BASIC, e.g., ABS and INT.

■ User-defined Functions

Defined by using DEF FN (in single-line form), DEF FN...END DEF (in block form),
SUB...END SUB, or FUNCTION...END FUNCTION statement.

6.3.5 String Operators

A character string operator may concatenate or compare character strings.

Listed below are the types of character string operators available.

■ Concatenation of Character Strings
The process of combining character strings is called concatenation and is executed
with the plus sign (+). The example below concatenates the character strings, a$ and
b$.

a$="Work1" : b$ = "dat"
PRINT a$+"."+b$

Operations Character String Operators Examples

Concatenation + (Plus sign) a$+"."+b$

Comparison = (Equal) a$=b$

<>, >< (Not equal) a$<>b$, a$><b$

>, <, =<, =>, <=, >= (Greater or less) a$>b$, a$=>b$

Work1.dat
85

■ Comparison of Character Strings
The relational operators compare two character strings according to character codes
assigned to individual characters.

In the example below, the expression a1$<b1$ returns the value of true so as to out-
put -1.

a1$="ABC001"
b1$="ABC002"
PRINT a1$<b1$

-1
86

Chapter 7
I/O Facilities

CONTENTS

7.1 Output to the LCD Screen ... 88
7.1.1 Display Fonts.. 88

[1] Fonts available on each BHT .. 88
[2] Switching the fonts .. 89

7.1.2 Number of Characters and Coordinates on the LCD 89
[1] BHT-3000.. 89
[2] BHT-4000.. 91
[3] BHT-5000.. 94
[4] BHT-6000/BHT-6500... 97
[5] BHT-7000.. 100
[6] BHT-7500.. 104

7.1.3 Dot Patterns of Fonts ... 108
7.1.4 Mixed Display of Different Character Types or Different-size

Fonts 112
[1] Displaying ANK, Kanji, and Condensed Kanji in One Line...... 112
[2] Displaying Standard- and Small-size Fonts on the

Same Screen 112
[3] Displaying Normal- and Double-width Characters on the

Same Screen 113
7.1.5 Displaying User-defined Characters... 113
7.1.6 VRAM ... 114
7.1.7 Displaying the System Status (BHT-4000/BHT-5000/BHT-6000/

BHT-6500) 116
[1] BHT-4000.. 116
[2] BHT-5000/BHT-6000/BHT-6500 ... 118

7.1.8 Other Facilities for the LCD .. 119

7.2 Input from the Keyboard .. 120
7.2.1 Function Keys... 120
7.2.2 Keystroke Trapping .. 121
7.2.3 Alphabet Entry Function ... 122

[1] BHT-3000/BHT-4000/BHT-6000/BHT-6500............................ 122
[2] BHT-5000/BHT-7000/BHT-7500 (32-key pad models) 126
[3] BHT-7000 (26-key pad model) .. 127

7.2.4 Other Facilities for the Keyboard.. 130
[1] Auto-repeat ... 130
[2] Shift key .. 130

7.3 Timer and Beeper .. 131
7.3.1 Timer Functions.. 131
7.3.2 BEEP Statement .. 131

7.4 Controlling and Monitoring the I/Os ... 132
7.4.1 Controlling by the OUT Statement.. 132
7.4.2 Monitoring by the INP Function... 132
7.4.3 Monitoring by the WAIT Statement.. 133
87

7.1 Output to the LCD Screen
7.1.1 Display Fonts

[1] Fonts available on each BHT

Listed below are the fonts available on each BHT series.

(√: Available)

*ANK: Alphanumerics and Katakana

The ANK mode displays ANK characters listed in Appendices C1 and C2.

The two-byte Kanji mode displays the following characters:

• Half-width: Katakana and alphanumerics

• Full-width: JIS Levels 1 and 2 Kanji, alphabets and symbols

Screen mode Font size
BHT
3000

BHT
4000

BHT
5000

BHT
6000

BHT
6500

BHT
7000

BHT
7500

Font type
Dots

(W x H)

Single-byte ANK*
mode

Standard-size √ √ √ √ √ √ √ ANK chars 6 x 8

Small-size √ √ √ √ ANK chars 6 x 6

Single-byte ANK*
mode
(Double-width)

Standard-size √ √ ANK chars 12 x 8

Small-size √ √ ANK chars 12 x 6

Two-byte Kanji
mode

Standard-size √ √ √ √ √ √ √ Full-width
Half-width

16 x 16
8 x 16

Small-size √ √ √ √ Full-width
Half-width

12 x 12
6 x 12

Two-byte Kanji
mode
(Double-width)

Standard-size √ √ Full-width
Half-width

32 x 16
16 x 16

Small-size √ √ Full-width
Half-width

24 x 12
12 x 12

Condensed two-
byte Kanji mode

√ √ Full-width
Half-width

12 x 16
6 x 16

NOTE Half-width Kanji characters differ from ANK characters in size.
88

Chapter 7. I/O Facilities
[2] Switching the fonts

You may switch the screen mode and font size by using the statements below.

• SCREEN statement

• OUT statement

To specify the single-byte ANK mode, two-byte Kanji mode, or condensed two-byte Kanji
mode, use the SCREEN statement as listed below.

To specify the normal- or double-width, use the SCREEN statement as listed below.

To specify the standard- or small-size, use the OUT statement as listed below.

7.1.2 Number of Characters and Coordinates on the
LCD

To locate characters on the coordinates of the LCD screen, use the LOCATE statement. To
obtain the current cursor position, use the CSRLIN and POS functions.

[1] BHT-3000

■ Displaying Kanji Characters
The BHT-3000 has no Kanji font, so it requires "Kanji Utility" to display Kanji characters. The
"Kanji Utility" may handle up to 1024 Kanji characters.

Note that the following characters may be displayed without "Kanji Utility":

• Half-width alphanumerics and Katakana

• Full-width alphanumerics and Katakana

• Full-width Hiragana

Specifies the single-byte ANK mode
Specifies the two-byte Kanji mode
Specifies the condensed two-byte Kanji mode

SCREEN 0

SCREEN 1

SCREEN 2

Specifies the normal-width
Specifies the double-width

SCREEN ,0 or SCREEN ,1
SCREEN ,2 or SCREEN ,3

Specifies the standard-size
Specifies the small-size

OUT &H6080,0

OUT &H6080,1

Screen mode Single-byte ANK mode Two-byte Kanji mode

Columns x Lines 16 x 4 Full-width: 6 x 2
Half-width: 12 x 2
89

■ Locating Characters on the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode as shown below.

Single-byte ANK Mode (16 columns x 4 lines)

Two-byte Kanji Mode 6 columns x 2 lines for full-width characters only,
12 columns x 2 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

LOCATE 16,1

LOCATE 1,1

LOCATE 16,4

LOCATE 1,3

LOCATE 1,1

LOCATE 12,3

c d e f

LOCATE 12,2

LOCATE 1,2

c d e f
90

Chapter 7. I/O Facilities
[2] BHT-4000

■ Displaying Kanji Characters
To display characters in the condensed two-byte Kanji mode, the BHT-4000 condenses the
Kanji patterns of 16 x 16 dots designed for the two-byte Kanji mode. For statements on how to
condense, refer to Appendix C3.

■ Locating Characters on the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode as shown below.

Single-byte ANK Mode (26 columns x 10 lines)

Screen mode
Single-byte
ANK mode

Two-byte Kanji mode
Condensed two-byte

Kanji mode

Columns x Lines 26 x 10 Full-width: 10 x 5
Half-width: 20 x 5

Full-width: 13 x 5
Half-width: 26 x 5

LOCATE 1,1 LOCATE 26,1

LOCATE 26,10
91

Two-byte Kanji Mode 10 columns x 5 lines for full-width characters only,
20 columns x 5 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

LOCATE 1,1

LOCATE 1,9 LOCATE 20,9

LOCATE 1,2 LOCATE 20,2
92

Chapter 7. I/O Facilities
Condensed Two-byte Kanji Mode 13 columns x 5 lines for full-width characters only,
26 columns x 5 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

(For the Kanji patterns in the condensed two-byte Kanji mode, refer to Appendix C3.)

LOCATE 1,1

LOCATE 1,9 LOCATE 26,9

LOCATE 1,2 LOCATE 26,2
93

[3] BHT-5000

■ Displaying Kanji Characters
To display Kanji characters, it is necessary to download the Kanji font file consisting of JIS
Level 1 and Level 2 font files to the BHT-5000 beforehand.

Even without those files, the half-width alphanumerics and Katakana may be displayed.

If in user programs you use Kanji characters whose fonts are not downloaded to the BHT-
5000, they will appear as "�" on the LCD.

To display characters in the condensed two-byte Kanji mode, the BHT-5000 condenses the
Kanji patterns of 16 x 16 dots designed for the two-byte Kanji mode. For statements on how to
condense, refer to Appendix C3.

■ Locating Characters on the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode as shown below.

Single-byte ANK Mode (21 columns x 8 lines)

Screen mode
Single-byte
ANK mode

Two-byte Kanji mode
Condensed two-byte

Kanji mode

Columns x
Lines

21 x 8 Full-width: 8 x 4
Half-width: 16 x 4

Full-width: 10 x 4
Half-width: 21 x 4

LOCATE 1,1 LOCATE 21,1

LOCATE 21,8
94

Chapter 7. I/O Facilities
Two-byte Kanji Mode 8 columns x 4 lines for full-width characters only,
16 columns x 4 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

LOCATE 1,1

LOCATE 1,7 LOCATE 16,7

LOCATE 1,2 LOCATE 16,2
95

Condensed Two-byte Kanji Mode 10 columns x 4 lines for full-width characters only,
21 columns x 4 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
full-width character.

(For the Kanji patterns in the condensed two-byte Kanji mode, refer to Appendix C3.)

LOCATE 1,1

LOCATE 1,7 LOCATE 21,7

LOCATE 1,2 LOCATE 21,2
96

Chapter 7. I/O Facilities
[4] BHT-6000/BHT-6500

■ Displaying Kanji Characters
To display Kanji characters, it is necessary to download the Kanji font file consisting of JIS
Level 1 and Level 2 font files to the BHT-6000/BHT-6500 beforehand.

Even without those files, the half-width alphanumerics and Katakana may be displayed.

If in user programs you use Kanji characters whose fonts are not downloaded to the BHT-
6000/BHT-6500, they will appear as "�" on the LCD.

To display characters in the condensed two-byte Kanji mode, the BHT-6000/BHT-6500 con-
denses the Kanji patterns of 16 x 16 dots designed for the two-byte Kanji mode. For state-
ments on how to condense, refer to Appendix C3.

■ Locating Characters on the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode and the display font size as shown below.

Standard-size font (16 columns x 6 lines)

Screen mode Single-byte ANK mode Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size

Columns x
Lines

16 x 10 16 x 8 Full-width: 6 x 3
Half-width: 12 x 3

Full-width: 8 x 4
Half-width: 16 x 4

Single-byte ANK Mode

LOCATE 1,1 LOCATE 16,1

LOCATE 16,6
97

Small-size font (16 columns x 8 lines)

Standard-size font 6 columns x 3 lines for full-width characters only,
12 columns x 3 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character: Double columns represent an area for a
full-width character.

Two-byte Kanji Mode

LOCATE 1,1 LOCATE 16,1

LOCATE 16,8

LOCATE 1,1 LOCATE 12,1

LOCATE 12,5

LOCATE 1,2 LOCATE 12,2

LOCATE 12,4
98

Chapter 7. I/O Facilities
Small-size font 8 columns x 4 lines for full-width characters only,
16 columns x 4 lines for half-width characters only

Be careful about the specification of line numbers in the figures below. A single column shown
below represents an area for a half-width character: Double columns represent an area for a
full-width character.

NOTE The small-size fonts of alphanumerics and a part* of the JIS Level 1 Kanji are con-
tained in the JIS Level 1 font file. For other characters whose small-size fonts are not
available, the BHT-6000/BHT-6500 condenses the flash-ROMed standard-size font
data for display into the small-size of 12 x 12 dots. Some condensed characters might
not be legible, so you are recommended to load user-defined fonts (max. 32) for them
by using the KPLOAD statement.

*Kanji characters mainly used in the system messages

LOCATE 1,1 LOCATE 16,1

LOCATE 16,7

LOCATE 1,2 LOCATE 16,2

LOCATE 16,6
99

[5] BHT-7000

(1) Normal-width

(2) Double-width

■ Displaying Kanji Characters
To display Kanji characters, it is necessary to download Kanji font files listed below.

• To use standard-size fonts: 16-dot font file

• To use small-size fonts: 12-dot font file

Even without those files, the half-width alphanumerics and Katakana may be displayed.

Each of the 16-dot and 12-dot font files consists of JIS Level 1 and Level 2 font files.

Screen mode Single-byte ANK mode Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size

Columns x
Lines

21 x 8 21 x 10 Full-width: 8 x 4
Half-width: 16 x 4

Full-width: 10 x 5
Half-width: 21 x 5

Screen mode Single-byte ANK mode Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size

Columns x
Lines

10 x 8 10 x 10 Full-width: 4 x 4
Half-width: 8 x 4

Full-width: 5 x 5
Half-width: 10 x 5
100

Chapter 7. I/O Facilities
■ Locating Characters on the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode and the display font size as shown below.

Standard-size font 21 columns x 8 lines for normal-width,
10 columns x 8 lines for double-width

Small-size font 21 columns x 10 lines for normal-width,
10 columns x 10 lines for double-width

Single-byte ANK Mode

LOCATE 1,1

LOCATE 21,8

LOCATE 21,1

Normal-width
Double-width

LOCATE 1,1

LOCATE 21,10

LOCATE 21,1

Normal-width
Double-width
101

Standard-size font 8 columns x 4 lines for full-width characters only,
4 columns x 4 lines for full-width characters in double-width mode only,
16 columns x 4 lines for half-width characters only,
8 columns x 4 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

Two-byte Kanji Mode

LOCATE 16,1LOCATE 1,1

LOCATE 16,7

LOCATE 16,6

LOCATE 1,2 LOCATE 16,2

Normal-width

Normal-width

Normal-width

Normal-width

Double-width

Double-width

Double-width

Double-width
102

Chapter 7. I/O Facilities
Small-size font 10 columns x 5 lines for full-width characters only,
5 columns x 5 lines for full-width characters in double-width mode only,
21 columns x 5 lines for half-width characters only,
10 columns x 5 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

LOCATE 1,1

LOCATE 21,9

LOCATE 21,1

LOCATE 1,2

LOCATE 21,8

LOCATE 21,2

Normal-width

Normal-width

Normal-width

Double-witdh

Double-width

Double-width

Normal-width

Double-width

c d e f

c d e f
103

[6] BHT-7500

(1) Normal-width

(2) Double-width

■ Displaying Kanji Characters
To display Kanji characters, it is necessary to download Kanji font files listed below.

• To use standard-size fonts: 16-dot font file

• To use small-size fonts: 12-dot font file

Even without those files, the half-width alphanumerics and Katakana may be displayed.

Each of the 16-dot and 12-dot font files consists of JIS Level 1 and Level 2 font files.

Screen mode Single-byte ANK mode Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size

Columns x
Lines

26 x 20 26 x 26 Full-width: 10 x 10
Half-width: 20 x 10

Full-width: 13 x 13
Half-width: 26 x 13

Screen mode Single-byte ANK mode Two-byte Kanji mode

Font size Standard-size Small-size Standard-size Small-size

Columns x
Lines

13 x 20 13 x 26 Full-width: 5 x 10
Half-width: 10 x 10

Full-width: 6 x 13
Half-width: 13 x 13
104

Chapter 7. I/O Facilities
■ Locating Characters on the LCD Screen

Using the LOCATE statement locates characters on the coordinates of the LCD screen. The
coordinates differ depending upon the screen mode and the display font size as shown below.

Standard-size font 26 columns x 20 lines for normal-width,
13 columns x 20 lines for double-width

Small-size font 26 columns x 26 lines for normal-width,

13 columns x 26 lines for double-width

Single-byte ANK Mode

LOCATE 1,1

Normal-width

Double-width

LOCATE 26,1

LOCATE 26,20

LOCATE 1,1 LOCATE 26,1

LOCATE 26,26

Normal-width

Double-width
105

Standard-size font 10 columns x 10 lines for full-width characters only,
5 columns x 10 lines for full-width characters in double-width mode only,
20 columns x 10 lines for half-width characters only,
10 columns x 10 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

Two-byte Kanji Mode

LOCATE 1,1

LOCATE 20,19

LOCATE 20,1

Normal-width

Normal-width

Double-width

Double-width

c d e f

LOCATE 1,2

LOCATE 20,18

LOCATE 20,2

Normal-width

Normal-width

Double-width

Double-width

c d e f
106

Chapter 7. I/O Facilities
Small-size font 13 columns x 13 lines for full-width characters only,
6 columns x 13 lines for full-width characters in double-width mode only,
26 columns x 13 lines for half-width characters only,
13 columns x 13 lines for half-width characters in double-width mode only

Be careful about the specification of line numbers in figures below. A single column shown
below represents an area for a half-width character; Double columns represent an area for a
half-width character in double-width mode or for a full-width character; Four columns represent
an area for a full-width character in double-width mode.

LOCATE 1,1 LOCATE 26,1

LOCATE 26,25

Normal-width

Normal-width

Double-width

Double-width

c d e f

LOCATE 1,2 LOCATE 26,2

LOCATE 26,24

Normal-width

Normal-width

Double-width

Double-width

c d e f
107

7.1.3 Dot Patterns of Fonts

■ Character fonts
In the figures below, "■ " shows a display area for characters. Any character is displayed within
a set of the display areas.

"�" shows a delimiter area that separates characters from each other and contains no display
data. The corresponding dots are always off.

The double-width mode is supported by the BHT-7000/BHT-7500.

Small-size fonts are supported by the BHT-6000/BHT-6500/BHT-7000/BHT-7500.

The condensed two-byte Kanji mode is supported by the BHT-4000/BHT-5000.

Standard-size font

Small-size font

Single-byte ANK Mode

6 x 8 dots 12 x 8 dots (in double-width mode)

6 x 6 dots 12 x 6 dots (in double-width mode)
108

Chapter 7. I/O Facilities
Standard-size font

Small-size font

*1 The BHT-7000/BHT-7500 fonts do not use the lowermost dot line of the letter frame.

Two-byte Kanji Mode*1

Half-width Kanji (in double-width mode)
16 x 16 dots

Half-width Kanji
8 x 16 dots

Full-width Kanji (in double-width mode)
32 x 16 dots

Full-width Kanji
16 x 16 dots

Half-width Kanji (in double-width mode)
12 x 12 dots

Half-width Kanji
6 x 12 dots

Full-width Kanji (in double-width mode)
24 x 12 dots

Full-width Kanji
12 x 12 dots
109

■ Cursor shape

The LOCATE statement specifies the cursor shape--Underline cursor, full block cursor, or
invisible.

In the BHT-7000/BHT-7500, you may define and load the desired cursor shape with the
APLOAD or KPLOAD statement and then specify the user-defined cursor with the LOCATE
statement. In the double-width screen mode, the cursor will be displayed in double width.

Standard-size font (6 x 8 dots)

Small-size font (6 x 6 dots)

*2 In the BHT-7500, the underline cursor of the standard-size font will be displayed not on the
lowermost dot line of the letter frame but on the 2nd dot line from the bottom. This is
because the BHT-7500 uses the lowermost dot line for showing the system status.

Condensed two-byte Kanji Mode

Single-byte ANK Mode

Half-width Kanji
6 x 16 dots

Full-width Kanji
12 x 16 dots

Full block cursor InvisibleUnderline cursor*2

Full block cursor InvisibleUnderline cursor
110

Chapter 7. I/O Facilities
Standard-size font (8 x 16 dots)

Small-size font (6 x 12 dots)

*2 In the BHT-7500, the underline cursor of the standard-size font will be displayed not on the
lowermost dot line of the letter frame but on the 2nd dot line from the bottom. This is
because the BHT-7500 uses the lowermost dot line for showing the system status.

Two-byte Kanji Mode

Full block cursor InvisibleUnderline cursor*2

Full block cursor InvisibleUnderline cursor
111

7.1.4 Mixed Display of Different Character Types or
Different-size Fonts

[1] Displaying ANK, Kanji, and Condensed Kanji in One
Line

It is possible to mix-display the ANK characters, Kanji characters (both full-width and half-
width), and condensed Kanji characters (both full-width and half-width) in the same line on the
LCD screen, as shown in the example below.

CLS
SCREEN 0
LOCATE 1,1 : PRINT "ABCDEFGHabcdefgh"
SCREEN 1

LOCATE 1,1 : PRINT " "

SCREEN 2

LOCATE 1,1 : PRINT " "

If the display data is outputted to the same location more than one time as shown in the above

program, the BHT overwrites the old data with new data.

[2] Displaying Standard- and Small-size Fonts on the Same
Screen

The BHT-6000/BHT-6500 can mix-display the standard- and small-size fonts of ANK charac-
ters and Kanji characters (both full width and half-width) on the same screen.

CLS
OUT &h6080, 0 ’Selects standard-size font
SCREEN 0
PRINT "ABCDEFGH";
OUT &h6080, 1 ’Selects small-size font
PRINT "abcdefgh"
OUT &h6080, 0 ’Selects standard-size font
SCREEN 1

LOCATE 1,2 :PRINT " "

OUT &h6080, 1 ’Selects small-size font

PRINT " ";
112

Chapter 7. I/O Facilities
[3] Displaying Normal- and Double-width Characters on the
Same Screen

The BHT-7000/BHT-7500 can mix-display the normal- and double-width characters on the
same screen.

CLS

OUT &h6080,0 ’ Standard-size font

SCREEN 0,0 : PRINT "ANK" ’ Normal-width in single-byte ANK mode

SCREEN 0,2 : PRINT "ANK" ’ Double-width in single-byte ANK mode

SCREEN 1,0 : PRINT " " ’ Normal-width in two-byte Kanji mode

SCREEN 1,2 : PRINT " " ’ Double-width in two-byte Kanji mode

LOCATE 1,1

OUT &h6080,1 ’ Small-size font

SCREEN 0,0 : LOCATE 14 : PRINT "ANK" ’ Normal-width in single-byte ANK mode

SCREEN 0,2 : LOCATE 14 : PRINT "ANK" ’ Double-width in single-byte ANK mode

SCREEN 1,0 : LOCATE 14 : PRINT " " ’ Normal-width in two-byte Kanji mode

SCREEN 1,2 : LOCATE 14 : PRINT " " ’ Double-width in two-byte Kanji mode

7.1.5 Displaying User-defined Characters

■ Loading a user-defined font

The APLOAD or KPLOAD statement loads a user-defined font.

The APLOAD statement is capable of loading up to 32 single-byte ANK fonts to be displayed in
the single-byte ANK mode.

The KPLOAD statement is capable of loading up to 32 or 128 two-byte Kanji fonts (depending
on the BHT series as listed below) in full width to be displayed in the two-byte Kanji mode or
condensed two-byte Kanji mode.

• 32: BHT-3000/BHT-4000/BHT-5000/BHT-6000/BHT-6500

• 128: BHT-7000/BHT-7500

■ Condensing/enlarging the defined font for display
If the condensed two-byte Kanji mode, small-size font, or double-width is specified, then the
BHT condenses or enlarges user-defined fonts loaded by the APLOAD or KPLOAD to display.
(For details about condensing, refer to Appendix C3.)
113

7.1.6 VRAM

The INP function may read the VRAM data. The OUT statement writes data into the VRAM so
that graphics may be displayed on the LCD dotwise.

■ Specifying an address bytewise

An address on the LCD may be specified bytewise by giving a port number in the OUT state-
ment and INP function. The entry range of the port number is as follows:

Port numbering system counts, starting from the top left corner of the LCD to the right bottom
corner. The figure below shows the port numbers available on the BHT-7000.

Series Entry range of the port number

BHT-3000
BHT-4000
BHT-5000
BHT-6000
BHT-6500
BHT-7000
BHT-7500

10h to 18Fh
10h to 64Fh
10h to 40Fh
10h to 24Fh
10h to 24Fh
10h to 40Fh
10h to C7Fh

10h 8Fh

90h 10Fh

110h 18Fh

190h 20Fh

390h 40Fh

310h 38Fh

290h 30Fh

210h 28Fh
114

Chapter 7. I/O Facilities
■ Setting an 8-bit binary pattern
The data of an 8-bit binary pattern should be designated by bit 7 (LSB) to bit 0 (MSB). If the bit
is 1, the corresponding dot on the LCD will come ON.

OUT &h10,&h80 ’Set bit 7 only to 1

In the BHT-7500, you may set graphic data to the VRAM area assigned to the bottom dot line
of the LCD by using the OUT statement. The set data cannot be displayed on the LCD but can
be read out with the INP function. Scrolling the screen will also display the data set on the
bottom dot line.

10h 8Fh

90h 10Fh

110h 18Fh

190h 20Fh

390h 40Fh

310h 38Fh

290h 30Fh

210h 28Fh
115

7.1.7 Displaying the System Status (BHT-4000/BHT-
5000/BHT-6000/BHT-6500)

The BHT-4000 may display the voltage level icon and shifted key icon on the bottom line of the
LCD.

The BHT-5000/BHT-6000/BHT-6500 may display the shifted key icon and alphabet input icon
at the right end of the bottom line of the LCD.

For details about the icon shapes, refer to the BHT’s User’s Manual.

[1] BHT-4000

■ Turning the system status indication on or off
You may turn the system status indication on or off on the SET DISPLAY menu in System
Mode. The default is ON. (For the setting procedure, refer to the "BHT-4000 User’s Manual.")
You may control the system status indication also by using the OUT statement in user pro-
grams. (Refer to Appendix D, "II/O Ports.")

■ Number of lines controllable when the system status is displayed
Setting the system status indication to ON occupies the bottom line of the LCD, so the number
of lines controllable by user programs decreases by one line as listed below. (The number of
columns undergoes no change.)

Screen Mode Character Type Number of Lines Controllable
by User Programs

Single-byte ANK mode ANK characters 9 lines

Two-byte Kanji mode Full-width Kanji
Half-width Kanji

4 lines
4 lines

Condensed two-byte
Kanji mode

Full-width Kanji
Half-width Kanji

4 lines
4 lines
116

Chapter 7. I/O Facilities
■ Notes relating to the system status

Notes when the system status is displayed

The following statements and functions will cause somewhat different operations when the
system status is displayed.

• CLS statement
The CLS statement clears the VRAM area assigned to the bottom line of the LCD but does not
erase the system status displayed.

• LOCATE statement
Even if you specify the bottom line of the LCD as the desired cursor position by using the
LOCATE statement, the cursor cannot move to the bottom line and it will move to the next to
the bottom line instead.

• OUT statement
If you send graphic data to the VRAM area assigned to the bottom line of the LCD by using the
OUT statement, the sent data will be written into that VRAM area but cannot be displayed on
the bottom line.

• INP function
If you specify the VRAM area assigned to the bottom line of the LCD as an input port, the INP
function reads one-byte data from that area.

Notes when displaying the system status with OUT statement

If the cursor is placed on any line except for the bottom line of the LCD: Specifying the system
status indication with the OUT statement overwrites the system status on the current data
shown on the bottom line. If Kanji characters are shown on the bottom line, the lower half of
the Kanji is overwritten with the system status but with the upper half remaining on the LCD.

If the cursor is placed on the bottom line of the LCD: Specifying the system status indication
with the OUT statement scrolls up the screen by one line together with the cursor and the sys-
tem status will appear on the new bottom line. (The number of columns does not change.)

Notes when erasing the system status with the OUT statement

Erasing the system status with the OUT statement displays the content of the VRAM area
(assigned to the bottom line of the LCD) on that part of the LCD.
117

[2] BHT-5000/BHT-6000/BHT-6500

■ Turning the system status indication on or off

You may turn the system status indication on or off on the SET DISPLAY menu in System
Mode. The default is ON. (For the setting procedure, refer to the "BHT’s User’s Manual") You
may control the system status indication also by using the OUT statement in user programs.
(Refer to Appendix D, "I/O Ports.")

■ Notes relating to the system status

Notes when the system status is displayed

The following statements and functions will cause somewhat different operations when the
system status is displayed.

• CLS statement

The CLS statement clears the VRAM area assigned to the right end of the bottom line of the
LCD but does not erase the system status displayed.

• OUT statement

If you send graphic data to the VRAM area assigned to the right end of the bottom line of the
LCD by using the OUT statement, the sent data will be written into that VRAM area but cannot
be displayed on the bottom line.

• INP function

If you specify the VRAM area assigned to the right end of the bottom line of the LCD as an
input port, the INP function reads one-byte data from that area.

Notes when displaying the system status with OUT statement

Specifying the system status indication with the OUT statement overwrites the system status
on the current data shown at the right end of the bottom line of the LCD. If Kanji characters are
shown at the right end of the bottom line, the lower half of the Kanji is overwritten with the sys-
tem status but with the upper half remaining on the LCD.

Notes when erasing the system status with the OUT statement

Erasing the system status with the OUT statement displays the content of the VRAM area
(assigned to the right end of the bottom line of the LCD) on that part of the LCD.
118

Chapter 7. I/O Facilities
7.1.8 Other Facilities for the LCD

■ Setting national characters

Using the COUNTRY$ function displays currency symbols and special characters for coun-
tries in the screen mode below.

• Single-byte ANK mode: All BHT series

• Two-byte Kanji mode (half-width): BHT-7000/BHT-7500

Refer to Appendix C2, "National Character Sets."

■ Highlighting characters

The SCREEN statement highlights characters.

Note: Supported by the BHT-7000/BHT-7500 only.

■ Specifying the cursor shape

The LOCATE statement specifies the cursor shape.

Note: Supported by the BHT-7000/BHT-7500 only.

The shape of a user-defined cursor may be defined by using the APLOAD or KPLOAD
statement in the single-byte ANK mode or two-byte Kanji mode, respectively.

In the single-byte ANK mode, the cursor size will become equal to the size of single-byte
ANK characters; in the double-byte Kanji mode or condensed double-byte Kanji mode, it
will become equal to the size of the half-width characters in each mode.

Display SCREEN statement

Regular display Normal-width
Double-width

SCREEN ,0
SCREEN ,2 (See Note below.)

Highlighted display Normal-width
Double-width

SCREEN ,1
SCREEN ,3 (See Note below.)

Cursor shape LOCATE statement

Invisible LOCATE ,,0

Underline cursor LOCATE ,,1

Full block cursor LOCATE ,,2

User-defined cursor LOCATE ,,255 (See Note below.)
119

7.2 Input from the Keyboard

7.2.1 Function Keys

Any of the following operations makes the pressed key act as a function key:

- Pressing one of the function keys. *1

- Pressing one of the function keys while holding down the Shift key. *2

- Pressing one of the numeric keys while holding down the Shift key. *2

*1 Since each of the function keys is assigned its default value of a character code
or control code, pressing it enters the default value. New assignment is possible
with a KEY statement as described below.

*2 If pressed with the Shift key held down, not only the function keys but also
numeric keys serve as function keys.

For the keyboard layouts, key numbers, and key assignments, refer to Appendix E, "Key Num-
ber Assignment on the Keyboard."

■ Assigning a character string to a function key
You can assign a desired character string (up to two characters) or a single control code to a
function key by using the KEY statement, as shown below.

- Example for characters

KEY 1,"AB"

- Example for a control code

KEY 2,CHR$(8) ‘-Backspace

Where a backspace code is assigned to the function key numbered 2.

NULL Character or String Assignment
Assigning a NULL character or string to a function key makes the entry of that function key
invalid if pressed. In the example below, pressing the keys numbered 3 and 4 produces no
keyboard entry.

KEY 3,""
KEY 4,CHR$(0)
120

Chapter 7. I/O Facilities
■ Defining a function key as the LCD backlight function on/off key
You can define a particular function key as the backlight function on/off key and set the length
of backlight ON-time by using the KEY statement, as shown below.

- Example for defining the key numbered 5 and setting 60 seconds.

KEY 5,"BL60"

■ Defining a magic key

BHT-5000/BHT-6000/BHT-6500
You can define a magic key as the SF key, trigger switch, or battery voltage display key, as well
as assigning a character string, control code, ENT key, or backlight function on/off key to it. (In
the BHT-6000, the trigger switch function is assigned to both M1 and M2 keys by default; in the
BHT-6500, it is assigned to all of M1 to M4 keys by default.)

- Example for defining the M1 key as the SF key.

KEY 30,"SFT"

- Example for defining the M2 key as the trigger switch.

KEY 31,"TRG"

- Example for defining the M1 key as the battery voltage display key.

KEY 30,"BAT"

BHT-7000/BHT-7500
You can define a magic key as the SF key or trigger switch, as well as assigning a character
string, control code, ENT key, or backlight function on/off key to it. (The trigger switch function
is assigned to both M3 and M4 keys by default.)

7.2.2 Keystroke Trapping

You can trap the pressing of a particular key, by programming with the KEY ON, KEY OFF, and
ON KEY...GOSUB statements.

For details about the keystroke trapping, refer to Chapter 9, "Section 9.2, "Event Polling."

NOTE It is impossible to assign both a character string and the backlight on/off function to a
same function key. For details, refer to KEY in Chapter 14.

NOTE If you specify a function key which has been defined as the LCD backlight function
on/off key, trigger switch, shift key, or battery voltage display key for keystroke trap-
ping, no keystroke trap takes place.
121

7.2.3 Alphabet Entry Function

The alphabet entry function allows you to enter alphabetic characters, a space, and symbols
from the BHT keyboard (keypad) during execution of a user program.

[1] BHT-3000/BHT-4000/BHT-6000/BHT-6500

To activate or deactivate the alphabet entry function, use OUT statement in a user program.

As shown below, three characters are assigned to each of 0-9 numerical keys and period key.
For example, A, B, and C are assigned to the 7 key. To designate one of the three assigned
characters, use the trigger switch.*

* In the BHT-6000/BHT-6500, use the M1 or M2 key when the trigger switch function is
assigned to the key.

■ Alphabet Entry Procedure

(1) Activating the alphabet entry function with OUT statement

Issue the OUT statement as shown below in a user program.

OUT 5, 1

To enable: OUT 5, &h1
To disable: OUT 5, &h0

The default setting of the alphabet entry function is "deactivated."

NOTE By issuing the OUT statement which sets 1 or 0 to bit 0 of port 5, you can acti-
vate or deactivate the alphabet entry function, respectively.

MNO

7 8 9

4 5 6

1 2 3

0 . ENT

ABC

JKL

STU

+–∗

DEF

VWX

/$%

GHI

PQR

YZSp

BHT-3000

ABC DEF GHI

JKL MNO PQR

STU VWX YZsp

+-* /$%

BHT-6000/BHT-6500

7 8 9

4 5 6

1 2 3

0 .
CR

C BS

ABC

JKL

STU

+ *

DEF

MNO

VWX

/$%

GHI

PQR

YZSp

ENT

BHT-4000
122

Chapter 7. I/O Facilities
(2) Entering alphabetic characters from the keypad

1) Find a target key which is assigned an alphabetic character to be inputted, and
then check the position of the character (Left, Center, or Right) relative to the three
characters assigned to the target key.

2) Designate the character position by using the trigger switch and then press the tar-
get key.

How to use the trigger switch

Pressing the trigger switch cycles through the shift guidance block ,

, and on the LCD as shown below.

The shift guidance block appears only while the trigger switch is held down.
Therefore, you should press the target key while holding down the trigger switch.

To enter an N character, for example, use the trigger switch to display the block

 on the LCD. While displaying the , press the 5 key.

During the above entry operation, you can use the Clear, Backspace, and numeri-
cal keys as usual.

■ Notes
• In the BHT-3000/BHT-4000, the alphabet entry function is available only in the single-

byte code (ANK) mode.

• For displaying the shift guidance block when the status indication is set to ON,

the BHT-4000/BHT-6000/BHT-6500 overwrites the status indication with the shift guid-
ance block.

• The activated or deactivated state of the alphabet entry function will be resumed. The
shift guidance block will not be resumed.

• User programs cannot distinguish between a character entered with the alphabet entry
function and a character generated by pressing a function key which has been assigned
the character by the KEY statement, if those characters are the same. (Refer to Subsec-
tion 7.2.1, "Function Keys.")

Left

Center Right

Center Center

Right

The shift guidance block will appear
on the top or bottom line, depending
upon the current cursor position.
That is, if the cursor lies on any of
the lower lines, the shift guidance
block will appear on the top line; if it
lies on any of the upper lines, the
block will appear on the bottom line.
123

In the example below, the character "A" may be entered with the alphabet entry function
or may be generated by pressing the F1 key which has been assigned that character by
the KEY statement. The user program, however, cannot distinguish between them so
as to transfer control to the program step labelled FUNC1 in both cases.

K$=INPUT$ (1)
IF K$="A" THEN GOTO FUNC1 ENDIF
...

To prevent such a problem, assign any other character to the F1 key with the KEY
statement and then modify the judgement condition. For example, replace the charac-
ter assigned to the F1 key with the character "#", as shown below.

KEY 1, "#"
...

K$=INPUT$ (1)
IF K$="#" THEN GOTO FUNC1 ENDIF
...

For details, refer to Chapter 14, KEY and ON KEY statements.

Note that the alphabet entry function does not influence the keystroke trapping which
identifies keys according to their key numbers.

■ Alphabet Entry Example
Coding in a user program:

OUT 5,1 ’Activating the alphabet
’entry function

INPUT "data=";a$ ’Waiting for keystrokes

Entering alphabet characters "ND" under the above user program:

1) Press the trigger switch.
124

Chapter 7. I/O Facilities
2) Hold down the trigger switch.

3) Without releasing the trigger switch, press the 5 key.

4) Release the trigger switch.

5) Hold down the trigger switch.

6) Without releasing the trigger switch, press the 8 key.
125

7) Release the trigger switch.

8) Press the Enter key to complete the entry operation.

[2] BHT-5000/BHT-7000/BHT-7500 (32-key pad models)

The BHT-5000/BHT-7000/BHT-7500 with a 32-key pad supports the alphabet entry function
which can be activated by pressing the ALP key. To deactivate it, press the ALP key again.

To enter lowercase letters in the alphabet input mode, shift the keypad with the SF key. Letter
assignment to the keys is shown in Appendix E.

■ BHT-5000
When the alphabet input function is activated, the icon

 appears at the right end of the bottom line of the
LCD as shown at right if you have turned on the system
status indication in System Mode.

■ BHT-7000/7500
When the alphabet entry system is selected, a bar
appears above the ALP as shown at right.
126

Chapter 7. I/O Facilities
[3] BHT-7000 (26-key pad model)

In addition to the numeric entry from the keypad, the BHT-7000 with a 26-key pad supports
alphabet entry.

■ Switching between the Numeric Entry System and Alphanumeric Entry Sys-
tem

To switch between the numeric entry system and alphanumeric entry system, use the OUT
statement in a user program as shown below.

OUT &h60B0,0 ‘Switches to the numeric entry system*
OUT &h60B0,1 ‘Switches to the alphanumeric entry system

*Selected when the BHT-7000 is cold-started.

To monitor the current key entry system, use the INP function as shown below.

INP(&h60B0)

■ Switching between Numeric and Alphabet Entry Modes in the Alphanumeric
Entry System

In the alphanumeric entry system, you may switch between numeric and alphabet entry modes
as described below. The default, which is applied immediately after the BHT-7000 is switched
to the alphanumeric entry system, is the numeric entry mode.

• Pressing the SF key

Pressing the SF key toggles between the numeric and alphabet entry modes.

• Using the OUT statement

Issue the OUT statement as shown below.

OUT &h60B1,0 ‘Switches to the numeric entry mode

OUT &h60B1,1 ‘Switches to the alphabet entry mode

To monitor the current entry mode, use the INP function as shown below.

INP(&h60B1)
127

■ Alphabet Entry Procedure

(1) Switch to the alphanumeric entry system as follows:

Issue "OUT &h60B0,1".

(2) Switch to the alphabet entry mode as follows:

Press the SF key or issue "OUT &h60B1,1".

The ALP status bar appears.

(3) Enter alphabet letters from the keypad as follows:

1) Press a numerical key to which the desired alphabet letter is assigned by the required
number of times until the desired alphabet letter appears, referring to the relationship
between keys and their assigned data given below.

To enter "T," for example, press the 1 key two times. At this stage, the "T" is high-
lighted but not established yet.

2) Press any of the following keys to establish the highlighted character ("T" in this exam-
ple).

- If you press any one of the function keys (F1 to F8), BS, C, and magic keys (M1 to
M4), then the highlighted character ("T") will be established. The key data of both
the established key and the key you pressed now will be returned.

- If you press the ENT key, the highlighted character ("T") will be established and the
key data will be returned.

- If you press the SF key, the alphabet entry mode will be switched to the numeric
entry mode. The highlighted character will be ignored.

- If you press any other numerical key (e.g. "3" to which "Y" is assigned), the key data
of the highlighted character ("T") will be established and the key data will be
returned. At this state, the "Y" is not established yet.

Keys Key data assigned

7 A, B, C, a, b, c

8 D, E, F, d, e, f

9 G, H, I, g, h, i

4 J, K, L, j, k, l

5 M, N, O, m, n, o

6 P, Q, R, p, q, r

1 S, T, U, s, t, u

2 V, W, X, v, w, x

3 Y, Z, +, y, z

0 -, %, $, \

. .comma (,), /, space
128

Chapter 7. I/O Facilities
When no key is ready to be established, pressing any of the function keys, BS, C,
ENT, and magic keys will return the key data of the pressed key.

(Example: If you press the 1, 1, 2, and 3 keys)

The key data of "T" and "V" will be returned. The "Y" is not established yet.

(Example: If you press the C, 1, 1, 1, and ENT keys)

The 18H and "U" will be returned.
129

7.2.4 Other Facilities for the Keyboard

[1] Auto-repeat

The keys on the BHT series are not auto-repeat.

[2] Shift key

■ BHT-3000
The Shift key can be switched to non-lock type or lock type by selecting NRM or ONE on Set
Resume screen in System Mode, respectively.

• Non-lock type The keypad will be shifted only when the Shift key is held down.

• Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

■ BHT-4000
The Shift key can be switched to non-lock type or lock type by selecting Non Lock or One Time
on SET OTHERS menu in System Mode, respectively.

• Non-lock type The keypad will be shifted only when the Shift key is held down.

• Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

When the keys are shifted, the shift-key icon appears on the bottom line of the LCD if the
system status indication is set to on. (You can turn on the system status indication on the SET
DISPLAY menu in System Mode or by using the OUT statement.)

■ BHT-5000/BHT-6000/BHT-6500
The Shift key can be switched to non-lock type or lock type by selecting Nonlock or Onetime on
shift key setting menu of the SET SYSTEM screen in System Mode, respectively.

• Non-lock type The keypad will be shifted only when the Shift key is held down.

• Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

When the keys are shifted, the shift-key icon appears at the right end of the bottom line of
the LCD if the system status indication is set to on. (You can turn on the system status indica-
tion on the SET DISPLAY menu in System Mode or by using the OUT statement.)

■ BHT-7000/BHT-7500
The Shift key can be switched to non-lock type or lock type by selecting Nonlock or Onetime on
the SET KEY menu in System Mode, respectively.

• Non-lock type The keypad will be shifted only when the Shift key is held down.

• Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.

When the keys are shifted, a bar appears above the SF in the status display.

SF

SF
130

Chapter 7. I/O Facilities
7.3 Timer and Beeper

7.3.1 Timer Functions

The timer functions (TIMEA, TIMEB, and TIMEC) are available in BHT-BASIC for accurate
time measurement.

Use these timer functions for monitoring the keyboard waiting time, communications timeout
errors, etc.

TIMEA = 100 ’10 sec
WAIT 0,&H10
BEEP
PRINT "10sec."

TIMEC = 20 ’2 sec
WAIT 0,&H41
BEEP
PRINT "2sec. or Keyboard"

7.3.2 BEEP Statement

The BEEP statement sounds a beeper and specifies the frequency of the beeper.

The example below sounds the musical scale of do, re, mi, fa, sol, la, si, and do.

READ readDat%
WHILE (readDat% >= 0)

TIMEA = 3
BEEP 2,,,readDat%
WAIT 0,&h10
READ readDat%

WEND
DATA 523,587,659,698,783,880,987,1046,-1

Specifying the frequency with value 0, 1, or 2 produces the special beeper effects; that is, the
low-, medium-, or high-pitched tone, respectively.

FOR i% = 0 TO 2
TIMEC = 20
BEEP,,,i%
WAIT 0,&h40

NEXT

NOTE Only if setting 0, 1, or 2 or making no specification to the frequency, you can adjust
the beeper volume on the LCD when powering on the BHT. (For the adjustment of
the beeper volume, refer to the BHT’s User’s Manual.)
131

7.4 Controlling and Monitoring the I/Os

7.4.1 Controlling by the OUT Statement

The OUT statement can control the input and output devices (I/Os) listed in Appendix D, I/O
Ports." The table below lists some examples.

7.4.2 Monitoring by the INP Function

The INP function monitors the input and output devices (I/Os) listed in Appendix D, "I/O Ports."
The table below lists some examples.

* In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the INP function can monitor
the trigger switch status only when the trigger switch function is assigned to any of
the magic keys.

OUT Statement I/O Devices

OUT 1,&h02
OUT 1,&h01
OUT 1,&h00

Turns on the reading confirmation LED in green.
Turns on the reading confirmation LED in red.
Turns off the reading confirmation LED.

OUT 3,&hXX (XX: 00 to 07) Sets the LCD contrast.

OUT 4,&h00
OUT 4,&h01

Sets the Japanese message version.
Sets the English message version.

OUT 6,&hXX (XX: 00 to FF) Sets the sleep timer.

INP Function I/O Devices Value Meaning

INP(0) AND &h01 Keyboard buffer status 1
0

Data present
No data

INP(0) AND &h02 Bar-code buffer status 1
0

Data present
No data

INP(0) AND &h04 Trigger switch status* 1
0

Being pressed
Being released

INP(0) AND &h08 Receive buffer status 1
0

Data present
No data

INP(0) AND &h10 TIMEA function 1 Set to 0

INP(0) AND &h20 TIMEB function 1 Set to 0

INP(0) AND &h40 TIMEC function 1 Set to 0
132

Chapter 7. I/O Facilities
7.4.3 Monitoring by the WAIT Statement

The WAIT statement monitors the input and output devices (I/Os) listed in Appendix D, "I/O
Ports." Unlike the INP function, the WAIT statement makes the I/O devices idle while no entry
occurs, thus saving power consumption and increasing the battery service life.

The table below lists some examples.

* In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the WAIT function can monitor
the trigger switch status only when the trigger switch function is assigned to any of
the magic keys.

In a single WAIT statement, you can specify more than one I/O device if the same port number

applies. To monitor the keyboard buffer and the bar-code buffer with the single WAIT state-
ment, for example, describe the program as shown below.

OPEN "BAR:" AS #10 CODE "A:"
WAIT 0,&h03

The above example sets the value of &h03 (00000011) to port 0, indicating that it keeps waiting
until either bit 0 or bit 1 becomes ON by pressing any key or by reading a bar code.

WAIT Statement I/O Devices

WAIT 0,&h01 Keyboard buffer status

WAIT 0,&h02 Bar-code buffer status

WAIT 0,&h04 Trigger switch status*

WAIT 0,&h08 Receive buffer status

WAIT 0,&h10 TIMEA function

WAIT 0,&h20 TIMEB function

WAIT 0,&h40 TIMEC function
133

Chapter 8
Files

CONTENS

8.1 File Overview ... 133

8.1.1 Data Files and Device I/O Files.. 133
8.1.2 Access Methods ... 133

8.2 Data Files... 134

8.2.1 Overview .. 134
8.2.2 Naming Files .. 134
8.2.3 Structure of Data Files.. 135
8.2.4 Data File Management by Directory Information.............................. 135
8.2.5 Programming for Data Files ... 137
8.2.6 About Drives... 139

8.3 Bar Code Device.. 140

8.3.1 Overview .. 140
8.3.2 Programming for Bar Code Device .. 141

8.4 Communications Device .. 144

8.4.1 Hardware Required for Data Communications................................. 144
[1] BHT-3000/BHT-4000/BHT-5000 ... 144
[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500 144

8.4.2 Programming for Data Communications .. 145
[1] BHT-3000/BHT-4000/BHT-5000 ... 145
[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500 145

8.4.3 Overview of Communications Protocols... 147
[1] BHT-protocol ... 147
[2] BHT-Ir protocol (BHT-6000/BHT-6500/BHT-7000/

BHT-7500) ... 148
[3] Multilink protocol (BHT-5000 only) .. 149

8.4.4 File Transfer Tools ... 150
[1] Transfer Utility ... 150
[2] Ir-Transfer Utility C .. 150
[3] Ir-Transfer Utility E .. 150
[4] Multilink Transfer Utility (BHT-5000 only) 151
134

Chapter 8. Files
8.1 File Overview

8.1.1 Data Files and Device I/O Files

BHT-BASIC treats not only data files but also bar code device I/Os and communications device
I/Os as files, by assigning the specified names to them.

8.1.2 Access Methods

To access data files or device I/O files, first use the OPEN statement to open those files. Input
or output data to/from the opened files by issuing statements or functions to them according to
their file numbers. Then, close those files by using the CLOSE statement.

File Type File Name Remarks

Data File filename.extension

drivename:filename.extension (Applicable to the
BHT-5000/BHT-6000/
BHT-6500/BHT-7000/
BHT-7500)

Device I/O File BAR: Bar code device

Device I/O File COM: Communications device

TIP Data files and user program files are stored in the user area of the memory.
135

8.2 Data Files

8.2.1 Overview

Like user programs, data files will be stored in the user area of the memory. The location of the
user area differs depending upon the BHT series as shown below.

* Drive B is provided for ensuring the compatibility with the BHT-5000/BHT-6000/BHT-6500.

The memory capacity available for data files differs depending upon BHT series as follows:

In the BHT-3000/BHT-4000, the memory space available for data files is (Memory space on the
single drive - Memory space occupied by user programs). In the BHT-7000/BHT-7500, it is
(Memory space on drive A - Memory space occupied by user programs). In the BHT-5000/
BHT-6000/BHT-6500, it is (Memory spaces on drives A and B - Memory space occupied by
user programs).

For the memory mapping, refer to Appendix F, "Memory Area." You may check the current
occupation of the memory with the FRE function.

8.2.2 Naming Files

The name of a data file generally contains filename.extension. The filename can
have one to eight characters; the extension can have one to three characters.

In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the filename.extension
should be preceded by the drivename. The drivename is A: or B:. If the drivename is
omitted, the default A: applies.

The extension can be omitted. In such a case, a period should be also omitted. The fol-
lowing extensions cannot be used for data files:

Unavailable extensions for data files .PD3, .FN3, .EX3, and .FLD

Programs make no distinction between uppercase and lowercase letters for drive names, file
names, and extensions. They regard those letters as uppercase.

In the BHT-3000, the following file names cannot be used for data files since they are reserved
for Easy Pack:

BHT series Location of user area

BHT-3000/BHT-4000
BHT-5000/BHT-6000/BHT-6500
BHT-7000/BHT-7500

A single drive (no drive specification)
Drive A and drive B
Drive A and drive B*

Reserved File Names

PACK1.DAT
PACK2.DAT
PACK3.DAT
PACK4.DAT
136

Chapter 8. Files
8.2.3 Structure of Data Files

■ Record
A data file is made up of a maximum of 32767 records. A record is a set of data in a data
file and its format is defined by the FIELD statement. The maximum length of a record is
255 bytes including the number of the character count bytes* (= the number of the fields).

* When transferring data files, the BHT-protocol/BHT-Ir protocol automatically prefixes a character
count byte in binary format to each data field.

■ Field
A record is made up of 1 to 16 fields. Data within the fields will be treated as character
(ASCII) data.

Each field precedes a character count byte in binary format, as described above. Including
that one byte, the maximum length of a field is 255 bytes.

The following FIELD statement defines a record which occupies a 28-byte memory area
(13 + 5 + 10 bytes) for data and a 3-byte memory area for three character count bytes.
Totally, this record occupies not a 28-byte area but a 31-byte area in the memory.

FIELD #2,13 AS bardat$,5 AS keydat$,10 AS dt$
’1+13+1+5+1+10=31 bytes

* When a data file is transmitted according to the BHT-protocol, the following conditions
should be also satisfied:

• The maximum length of a field is 254 bytes (99 bytes in the BHT-3000/BHT-4000)
excluding a character count byte.

8.2.4 Data File Management by Directory Informa-
tion

The Interpreter manages data files using the directory information stored in the system area of
the memory.

The directory information, for example, contains the following:

filename.extension
Information of Each Field (Field length)
Number of Written Records
Maximum Number of Registrable Records

• Number of Written Records

Means the number of records already written in a data file, which the LOF function can
return.

If no record number is specified in the PUT statement, the Interpreter automatically
assigns a number of (the current written record number + 1) to the record.

PUT #1
137

• Maximum Number of Registrable Records
You may declare the maximum number of records registrable in a data file by using the
RECORD option in the OPEN statement, as shown below.

OPEN "work.DAT" AS #10 RECORD 50
FIELD #10,13 AS code$,5 AS price$

The above program allows you to write up to 50 records in the data file named
work.DAT.

If the statement below is executed following the above program, a run-time error will
occur.

PUT #10,51

The maximum number of registrable records can be optionally specified only when you
make a new data file. If designated to the already existing data file, the specification will
be ignored without occurrence of a run-time error.

If the BHT-7000/BHT-7500 receives a file with the XFILE statement, it will automatically
set the maximum number of registrable records to 32,767 for that file.

Other BHT series will make such setting only when it receives a file not existing in the
BHT with the XFILE statement.

Specifying the maximum number of registrable records will not cause the Interpreter to
reserve the memory area.
138

Chapter 8. Files
8.2.5 Programming for Data Files

■ Input/Output for Numeric Data
- To write numeric data into a data file:

It is necessary to use the STR$ function for converting the value of a numeric expression
into a string.

To write -12.56 into a data file, for example, the field length of at least 6 bytes is required.
When using the FIELD statement, designate the sufficient field length; otherwise, the data
will be lost from the lowest digit when written to the field.

- To read data to be treated as a numeric from a data file:

Use the VAL function for converting a string into a numeric value.

■ Data Retrieval

The SEARCH function not only helps you make programs for data retrieval efficiently but
also makes the retrieval speed higher.

The SEARCH function searches a designated data file for specified data, and returns the
record number where the search data is first encountered. If none of the specified data is
encountered, this function returns the value 0.

■ Deletion of Data Files

The CLFILE or KILL statement deletes the designated data file.

CLFILE Erases only the data stored in a data file without erasing its directory informa-
tion, and resets the number of written records to 0 (zero) in the directory. This
statement is valid only to opened data files.

KILL Deletes the data stored in a data file together with its directory information.
This statement is valid only to closed data files.

• Program sample with the CLFILE statement

OPEN "work2.DAT" AS #1
FIELD #1,1 AS a$
CLFILE #1
CLOSE #1

• Program sample with the KILL statement

CLOSE
KILL "work2.DAT"
139

■ Restrictions on Input/Output of Data Files

No INPUT#, LINE INPUT#, or PRINT# statement or INPUT$ function can access data
files. To access data files, use a PUT or GET statement.

■ Drive Defragmentation (BHT-7000/BHT-7500 only)
During downloading in the BHT-7000/BHT-7500, a delay of a few seconds (response delay
from the BHT) may occur according to the user area condition.

To eliminate the delay, defragment the drive for the size required for downloading before-
hand. Doing so will also reduce the device open time in communications. Defragmentation
before downloading is recommended.

If there is no specified size of the empty area in the drive, it is necessary to defragment the
whole empty area.

In complicated write operation, any of the following symptoms may be caused in units of a
few seconds. If such occurs frequently, defragment the drive.

- The beeper sound is prolonged.

- Keys do not work.

- No bar code entry is possible.

- Switching the LCD screen is delayed.

- No data can be received.

- Timeout by the TIMEA/TIMEB/TIMEC is delayed.

The OUT statement may defragment the drive. In the OUT statement, you may specify the
size of the empty area to be defragmented in units of 4 kilobytes, starting with 4 kilobytes
up to the maximum size of the user area.

During drive defragmentation, user programs will be halted. Upon completion of defrag-
mentation, they will resume operation.

In the OUT statement, you may also select whether a bar graph showing the progress of
defragmentation will be displayed on the LCD. The bar graph, if selected, will disappear
after completion of defragmentation and the previous screen will come back.

For details about defragmentation with OUT statement, refer to Appendix D, "I/O Ports," D5.
140

Chapter 8. Files
8.2.6 About Drives

The BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 has logical drives.

■ BHT-5000/BHT-6000/BHT-6500
Drive A and drive B are defined on the RAM and flash ROM, respectively. Accordingly, the file
access is partially different between drive A and drive B as listed below.

* The BHT deletes data actually when next downloading takes place. To delete data, the BHT-
5000/BHT-6000 (System version 2.00 or later)/BHT-6500 uses an empty area of drive A by
64 kilobytes. The BHT-6000 (System version earlier than 2.00) uses it by 128 kilobytes. If
there is no such space in drive A, a run-time error (44h) will occur.

■ BHT-7000/BHT-7500
Drive B is provided for ensuring compatibility with the BHT-5000/BHT-6000/BHT-6500.

If you specify drive name "B:" preceding a filename.extension and open an existing file, the
BHT will open the file as a read-only file. Executing the PUT statement to the read-only file, a
run-time error (43h) will result.

If you specify drive name "A:" or omit a drive name, the BHT will open the file as a read/write
file.

The XFILE and KILL statements will ignore drive names "A:" and "B:."

The table below lists the file access details relating to drives.

File access operation To drive A To drive B

Download
Create
Open
Read
Write
Close
Clear
Delete

XFILE statement
New with OPEN statement
Open with OPEN statement
GET statement
PUT statement
CLOSE statement
CLFILE statement
KILL statement

Same as left.
Run-time error (43h)
Same as left.
Same as left.
Run-time error (43h)
Same as left.
Run-time error (43h)
Same as left.*

File access operation To drive A To drive B

Download
Create
Open
Read
Write
Close
Clear
Delete

XFILE statement
New with OPEN statement
Open with OPEN statement
GET statement
PUT statement
CLOSE statement
CLFILE statement
KILL statement

Same as left.
Run-time error (43h)
Same as left.
Same as left.
Run-time error (43h)
Same as left.
Run-time error (43h)
Same as left.
141

8.3 Bar Code Device

8.3.1 Overview

■ Opening the Bar Code Device by OPEN "BAR:" Statement

The OPEN "BAR:" statement opens the bar code device. In this statement, you may spec-
ify the following bar code types available in the BHT. The BHT can handle one of them or
their combination.

* Reading wide bars

The EAN-13 and UPC-A bar codes may be wider than the readable area of the bar-code
reading window.

BHT-3000: Such wider bars can be read by the double-touch reading feature. Read first
the right (or left) half of the bar code together with the center bar and then read the
remaining half. The system combines the split data into one bar code. For activation/
deactivation of the double-touch reading feature, refer to the "BHT-3000 User’s Manual."

BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500: Such wider bars can
be read by long-distance scanning. Pull the bar-code reading window away from the bar
code so that the entire bar code comes into the illumination range. (No double-touch
reading feature is supported.)

** The STF can be read by the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500.

*** In the BHT-5000/BHT-6500/BHT-7000/BHT-7500, specifying the Code 128 makes it pos-
sible to read not only the Code 128 but also the EAN-128.

Available Bar Code Types Default Settings

Universal product codes EAN-13*
EAN-8
UPC-A*
UPC-E

No national flag specified.

Interleaved 2 of 5 (ITF) No read data length specified.
No check digit.

Standard 2 of 5 (STF)** No read data length specified.
No check digit. Short format of the
start/stop characters supported.

Codabar (NW-7) No read data length specified.
No check digit.
No start/stop character.

Code 39 No read data length specified.
No check digit.

Code 93 No read data length specified.

Code 128*** No read data length specified.
142

Chapter 8. Files
■ Specifying Options in the OPEN "BAR:" Statement

You may also specify several options as listed below for each of the bar code types in the
OPEN "BAR:" statement.

■ Bar Code Buffer
The bar code buffer stores the inputted bar code data. It will be occupied by one operator
entry job and can contain up to 40 characters in the BHT-3000 and 99 characters in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.

You can check whether the bar code buffer stores bar code data, by using any of the EOF,
INP, and LOC functions, and the WAIT statement.

Any of the INPUT# and LINE INPUT# statements, and the INPUT$ function reads bar
code data stored in the buffer into a string variable.

8.3.2 Programming for Bar Code Device

■ Code Mark

The MARK$ function allows you to check the code type and the length of the inputted bar
code data.

This function returns a total of three bytes: one byte for the code mark (denoting the code
type) and two bytes for the data length.

■ Multiple Code Reading
You may activate the multiple code reading feature which reads more than one bar code
type while automatically identifying them, by designating the desired bar code types follow-
ing the CODE in the OPEN "BAR:" statement.

Options

- Check digit (only for ITF, Codabar, Code 39, and STF)

- Read data length

- Start/stop character (only for Codabar and STF)

- Start character flag (only for universal product codes)

- Supplemental code (only for universal product codes. Not supported by the BHT-
3000)
143

■ Read Mode of the Trigger Switch
In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to
the following magic keys by default:

BHT-6000: M1 and M2 keys

BHT-6500: M1, M2, M3, and M4 keys

BHT-7000/BHT-7500: M3 and M4 keys

In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, you may assign the trigger
switch function to other keys by using the KEY statement.

You may select the read mode of the trigger switch by using the OPEN "BAR:" statement.

To check whether the trigger switch is pressed or not, use the INP function or the WAIT
statement, as shown below.

trig% = INP(0) AND &h04

If the value of the trig% is 04h, the trigger switch is kept pressed; if 00h, it is released.

■ Generation of Check Digit

Specifying a check digit in the OPEN "BAR:" statement makes the Interpreter automati-
cally check bar codes. If necessary, you may use the CHKDGT$ function for generating a
check digit of bar code data.

Read Mode
OPEN "BAR:"
Statement

Auto-off Mode (Default)

Momentary Switching Mode

Alternate Switching Mode

Continuous Reading Mode

OPEN "BAR:F"...

OPEN "BAR:M"...

OPEN "BAR:A"...

OPEN "BAR:C"...
144

Chapter 8. Files
■ Controlling the Reading Confirmation LED and Beeper (Vibrator) at the
Time of Scanning for Confirmation of Successful Reading
(BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)

By using the OPEN "BAR:" statement, you can control:

• whether the reading confirmation LED should light in green or not (Default: Light in
green)

• whether the beeper should beep or not (Default: No beep)
The BHT-6500/BHT-7000/BHT-7500 may control the vibrator also.

when a bar code is read successfully.

Controlling the reading confirmation LED

If you have activated the reading confirmation LED (in green) in the OPEN "BAR:" state-

ment, the OUT statement cannot control the LED via output port 1 when the bar code
device file is opened. (For details about settings of bits 0 and 1 on output port 1, refer to
Appendix D.)

If you have deactivated the reading confirmation LED in the OPEN "BAR:" statement, the

OUT statement can control the LED via output port 1 even when the bar code device file is
opened. (For details about settings of bits 0 and 1 on output port 1, refer to Appendix D.)

This way, you can control the reading confirmation LED, enabling that:

• a user program can check the value of a scanned bar code and turn on the green LED
when the bar code has been read successfully.
(For example, you can make the user program interpret bar code data valued from 0 to
100 as correct data.)

• a user program can turn on the red LED the moment the bar code has been read.

Controlling the beeper (vibrator)

If you activate the beeper in the OPEN "BAR:" statement, the BHT will beep when it reads
a bar code successfully.

In the BHT-6500/BHT-7000/BHT-7500, you may choose beeping only, vibrating only, or
beeping & vibrating on the LCD screen or by setting the output port in the OUT statement.
145

8.4 Communications Device

8.4.1 Hardware Required for Data Communications

[1] BHT-3000/BHT-4000/BHT-5000

The following hardware is required for communications between the BHT and the host com-
puter:

• Optical communications unit (CU-3000/CU-4000/CU-5000) and its interface cable

or

• Direct-connect interface cable

For the communications specifications, refer to the "BHT’s User's Manual."

[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

The following hardware is required for communications between the BHT and the host com-
puter:

• Optical communications unit (CU-6000/CU-7000) and its interface cable

or

• Direct-connect interface cable

For the communications specifications, refer to the "BHT’s User's Manual."

Using Ir-Transfer Utility E allows the BHT to directly communicate with the IR port-integrated
host computer or an external IR transceiver. For details about IR port-integrated computers
and external IR transceivers available, refer to the "Ir-Transfer Utility E Guide."
146

Chapter 8. Files
8.4.2 Programming for Data Communications

Setting the Communications Parameters

Use the OPEN "COM:" statement to set the communications parameters.

[1] BHT-3000/BHT-4000/BHT-5000

*1 The HS (High Speed) is available only in file transmission between the BHT-4000 and host
computer by using Transfer Utility. It requires the RS-232C interface specially connected.
Refer to the "BHT-4000 User’s Manual."

*2 The 38400 bps is available in the BHT-3000/BHT-4000/BHT-5000. Note that in the BHT-
3000/BHT-4000, the direct-connect interface port should be selected.

*3 The RS control is supported in the BHT-4000/BHT-5000.
*4 The ER control is supported when the direct-connect interface is selected in the BHT-4000.

[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

■ For optical interface

Parameters other than the transmission speed are fixed (Character length = 8 bits, Parity =
None, Stop bit length = 1 bit), since the physical layer of the optical interface complies with the
IrDA-SIR 1.0.

Communications Parameters Effective Setting Default

Transmission speed (bps) HS*1, 38400*2, 19200, 9600, 4800, 2400, 1200, 600, or 300 9600

Parity None, even, or odd None

Character length 7 or 8 bits 8 bits

Stop bit length 1 or 2 bits 1 bit

RS/CS control Yes or no No

Timeout detection Yes or no No

RS control*3 ON (1) or OFF (0) ON (1)

ER control*4 ON (1) or OFF (0) ON (1)

Communications Parameters Effective Setting Default

Transmission speed (bps) 115200, 57600, 38400, 19200, 9600, or 2400 9600
147

■ For direct-connect interface

*1 The 115200 bps and 57600 bps are available in the BHT-7000/BHT-7500.
*2 The parity, character length, and stop bit length are fixed to none, 8 bits, and 1 bit, respec-

tively, if the BHT-Ir protocol is selected.

Communications Parameters Effective Setting Default

Transmission speed (bps) 115200*1, 57600*1, 38400, 19200, 9600, 4800, 2400, 1200,

600, or 300

9600

Parity*2 None, even, or odd None

Character length*2 7 or 8 bits 8 bits

Stop bit length*2 1 or 2 bits 1 bit
148

Chapter 8. Files
8.4.3 Overview of Communications Protocols

The BHT series supports the three communications protocols—BHT-protocol, BHT-Ir protocol,
and multilink protocol for file transmission, as listed below. Using the XFILE statement, the
BHT may upload or download a file according to any of these protocols.

• BHT-protocol : All BHT series

• BHT-Ir protocol : BHT-6000/BHT-6500/BHT-7000/BHT-7500

• Multilink protocol : BHT-5000

[1] BHT-protocol

All BHT series supports the BHT-protocol.

This protocol is used also in System Mode or Easy Pack.

For the communications specifications of the BHT-protocol, refer to the BHT User's Manual.

■ Primary station and secondary station
The primary station and the secondary station should be defined as below.

• When uploading data files

Primary station: BHT

Secondary station: Host computer

• When downloading data files

Primary station: Host computer

Secondary station: BHT

■ Protocol functions
In the BHT-protocol, using the following protocol functions may modify a transmission
header or terminator in a send data:

For a header: SOH$ or STX$

For a terminator: ETX$

■ Field length that the BHT-protocol can handle
When the BHT-3000/BHT-4000 transmits files according to the BHT-protocol, each field
length should be a maximum of 99 bytes. The BHT-5000/BHT-6000/BHT-6500/BHT-
7000/BHT-7500 may transmit files having the field length of up to 254 bytes.

In file transmission, the host computer should also support the same field length as the
BHT. The MS-DOS–based Transfer Utility supports the field length of up to 99 bytes;
the Windows-based Transfer Utility supports up to 254 bytes.
149

[2] BHT-Ir protocol (BHT-6000/BHT-6500/BHT-7000/BHT-
7500)

In addition to the BHT-protocol, the BHT-6000/BHT-6500/BHT-7000/BHT-7500 supports the
BHT-Ir protocol.

If you select the BHT-Ir protocol by using the OUT statement (Port No. &h6060) or in System

Mode, you can upload or download a data file with the XFILE statement.

The BHT-Ir protocol is used also in System Mode or Easy Pack Pro.

For the communications specifications of the BHT-Ir protocol, refer to the "BHT-6000 User’s
Manual," "BHT-6500 User’s Manual," "BHT-7000 User’s Manual," or "BHT-7500 User’s Man-
ual."

■ Primary station and secondary station
The primary station and the secondary station should be defined as below.

• When uploading data files

Primary station: BHT-6000/BHT-6500/BHT-7000/BHT-7500

Secondary station: Host computer

• When downloading data files

Primary station: Host computer

Secondary station: BHT-6000/BHT-6500/BHT-7000/BHT-7500

■ Protocol functions
In the BHT-Ir protocol, you cannot change the values of the headers and terminator with
the protocol functions in BHT-BASIC.
150

Chapter 8. Files
[3] Multilink protocol (BHT-5000 only)

In addition to the BHT-protocol, the BHT-5000 may support the multilink protocol which is used
for file transmission between the host computer and more than one BHT-5000 (placed on the
multilinked CU-5003s), provided that Multilink Protocol System (MLTU3.EX3) is downloaded to
the BHT-5000 beforehand.

To transfer files by using the multilink protocol, you need Multilink Transfer Utility (MLTU3.EXE)
to be run in the host computer and the CU-5003(s). For details, contact your nearest dealer.

If you download the Multilink Protocol System to the BHT-5000 and select the multilink protocol
by using the OUT statement (Port No. &h6060) or in System Mode, then you can upload or
download files according to the multilink protocol with the XFILE statement.

The multilink protocol is used also in System Mode.

■ Master station and slave station
The master station and the slave station should be defined as below.

Master station: Host computer

Slave station: BHT-5000

■ Primary station and secondary station
The primary station and the secondary station should be defined as below.

• When uploading data files

Primary station: BHT-5000

Secondary station: Host computer

• When downloading data files

Primary station: Host computer

Secondary station: BHT-5000

■ Protocol functions
In the multilink protocol, you cannot change the values of the headers and terminator
with the protocol functions in BHT-BASIC.
151

8.4.4 File Transfer Tools

[1] Transfer Utility

Transfer Utility is optionally available in two versions: MS-DOS–based and Windows-based. It
supports the BHT-protocol and allows you to upload or download user program files and data
files between the host and the BHT, when invoked by the XFILE statement.

This utility can also transfer user program files and data files to/from System Mode.

For computers and Windows version which are available for Transfer Utility and the operating
procedure of Transfer Utility, refer to the "Transfer Utility Guide."

[2] Ir-Transfer Utility C

Ir-Transfer Utility C is optionally available in two versions: MS-DOS–based and Windows-
based. It supports the BHT-Ir protocol and allows you to upload or download user program
files and data files between the host and the BHT-6000/BHT-6500/BHT-7000/BHT-7500, when
invoked by the XFILE statement. Ir-Transfer Utility C handles IrDA SIR-compliant communi-
cations via the communications unit CU.

This utility can also transfer user program files and data files to/from System Mode.

For computers and Windows versions which are available for Ir-Transfer Utility C and the oper-
ating procedure of Ir-Transfer Utility C, refer to the "Ir-Transfer Utility C Guide."

[3] Ir-Transfer Utility E

Ir-Transfer Utility E is optional Windows-based software. It supports the BHT-Ir protocol and
allows you to upload or download user program files and data files between the host and the
BHT-6000/BHT-6500/BHT-7000/BHT-7500, when invoked by the XFILE statement. Ir-Trans-
fer Utility E handles IrDA SIR-compliant communications via the IR port integrated in a com-
puter or an external IR transceiver.

This utility can also transfer user program files and data files to/from System Mode.

For computers and Windows versions which are available for Ir-Transfer Utility E and the oper-
ating procedure of Ir-Transfer Utility E, refer to the "Ir-Transfer Utility E Guide."

NOTE If you have modified transmission headers or terminator to any other character codes
by using the protocol functions, Transfer Utility is no longer available.
152

Chapter 8. Files
[4] Multilink Transfer Utility (BHT-5000 only)

Multilink Transfer Utility is optional MS-DOS–based software. It supports the multilink protocol
and allows you to upload or download user program files and data files between the host and
the BHT-5000 (placed on the multilinked CU-5003s), when invoked by the XFILE statement.

This utility can also transfer user program files and data files to/from System Mode.

For computers available for Multilink Transfer Utility and the operating procedure of Multilink
Transfer Utility, refer to the "Multilink Transfer Utility Guide."
153

Chapter 9
Event Polling and Error/Event Trapping

CONTENTS

9.1 Overview.. 155

9.2 Event Polling.. 156
[1] Programming sample .. 156
[2] I/O devices capable of being monitored by the event polling .. 157

9.3 Error Trapping.. 158
[1] Overview ... 158
[2] Programming for trapping errors ... 159

9.4 Event (of Keystroke) Trapping ... 160

[1] Overview ... 160
[2] Programming for trapping keystrokes 160
154

Chapter 9. Event Polling and Error/Event Trapping
9.1 Overview

BHT-BASIC supports event polling and two types of trapping: error trapping and event trap-
ping.

■ Event Polling
Makes programs monitor the input devices for occurrence of events.

■ Error Trapping
Traps a run-time error and handles it by interrupt to transfer control to the error-handling rou-
tine.

If a run-time error occurs when this trapping ability is disabled, the Interpreter will terminate the
current user program while showing the error message.

■ Event (of Keystroke) Trapping
Traps a particular keystroke (caused by pressing any of the specified function keys) and han-
dle it by interrupt to transfer control to the event-handling routine.

– Event polling

– Trapping Error trapping

Event (of keystroke) trapping
155

9.2 Event Polling

[1] Programming sample

The program below shows the event polling example which monitors the bar code reader and
the keyboard for occurrence of events.

This example uses the EOF and INKEY$ functions to check the data input for the bar code
reader and the keyboard, respectively.

OPEN "BAR:" AS #1 CODE "A"
loop

WAIT 0,3
IF NOT EOF(1) THEN

GOSUB barcod
ENDIF
k$=INKEY$
IF k$<>"" THEN

GOSUB keyin
ENDIF
GOTO loop

barcod
BEEP
LINE INPUT #1,dat$
PRINT dat$
RETURN

keyin
 . . .

RETURN
156

Chapter 9. Event Polling and Error/Event Trapping
[2] I/O devices capable of being monitored by the event poll-
ing

Listed below are the I/O devices which the event polling can monitor.

■ Monitoring with the INP Function

Combining the INP function with the above functions enables more elaborate programming for
event polling.

For the INP function, refer to Appendix D, "I/O Ports."

I/O Devices Monitor Means Events

Keyboard INKEY$ function Input of one character
from the keyboard

Bar code reader EOF or LOC function Presence/absence of bar
code data input or the
number of read characters
(bytes)

Receive buffer EOF, LOC, or LOF function Presence/absence of
receive data or the num-
ber of received charac-
ters (bytes)

Timer TIMEA, TIMEB, or TIMEC function Timer count-up
157

9.3 Error Trapping

[1] Overview

If a run-time error occurs during program running, error trapping makes the program cause an
interrupt upon completion of the machine statement so as to transfer control from the current
program to the error-handling routine which has been specified by a label.

If a run-time error occurs when this trapping ability is disabled, the Interpreter will terminate the
current user program while displaying the error message as shown below.

Error message sample:

The above message indicates that a run-time error has occurred at address 38A4h and its
error code is 34h. Both the address and error code are expressed in hexadecimal notation.

The address is a relative address and corresponds to the address in the program list outputted
by the Compiler. According to this address indication, you can pinpoint the program line where
the run-time error has occurred.

The error code 34h (52 in decimal notation) means that the user program attempted to access
a file not opened. (Refer to Appendix A1, “Run-time Errors.")

The ERL and ERR functions described in an error-handling routine will return the same values,
38A4h and 34h, respectively.

NOTE If an error occurs during execution of user-defined functions or sub routines so that
the error is trapped and handled by the error-handling routine, then do not directly
pass control back to the main routine having the different stack level by using the
RESUME statement. The return address from the user-defined functions or subrou-
tines will be left on the stack, causing a run-time error due to stack overflow.

To prevent such a problem, once transfer control to the routine which caused the
interrupt in order to match the stack level and then jump to any other desired routine.
(Refer to Chapter 3, Section 3.1, "Program Overview.")

ERL=38A4 ERR=34
158

Chapter 9. Event Polling and Error/Event Trapping
[2] Programming for trapping errors

To trap errors, use the ON ERROR GOTO statement in which you should designate the error-
handling routine (to which control is to be transferred if a run-time error occurs) by the label.

ON ERROR GOTO err01
 . . .

(Main routine)

 . . .

END
err01

(Error-handling routine)

PRINT"*** error ***"
PRINTERR,HEX$(ERL)
RESUME NEXT

If a run-time error occurs in the main routine, the above program executes the error-handling
routine specified by label err01 in the ON ERROR GOTO statement.

In the error-handling routine, the ERL and ERR functions allow you to pinpoint the address
where the error has occurred and the error code, respectively.

The RESUME statement may pass control from the error-handling routine back to any specified
statement as listed below.

NOTE According to the error location and error code, you should troubleshoot the program-
ming error and correct it for proper error handling.

RESUME Statement Description

RESUME or RESUME 0 Resumes program execution with the statement
that caused the error.

RESUME NEXT Resumes program execution with the statement
immediately following the one that caused the
error.

RESUME label Resumes program execution with the statement
designated by label.
159

9.4 Event (of Keystroke) Trapping

[1] Overview

If any of the function keys previously specified for keystroke trapping is pressed, event trapping
makes the program cause an interrupt so as to transfer control from the current program to the
specified event-handling routine.

This trapping facility checks whether any of the function keys is pressed or not between every
execution of the statements.

[2] Programming for trapping keystrokes

To trap keystrokes, use both the ON KEY...GOSUB and KEY ON statements. The ON
KEY...GOSUB statement designates the key number of the function key to be trapped and the
event-handling routine (to which control is to be transferred if a specified function key is
pressed) in its label. The KEY ON statement activates the designated function key.

This trapping cannot take effect until both the ON KEY...GOSUB and KEY ON statements have
been executed.

The keystroke of an unspecified function key or any of the numerical keys cannot be trapped.

The following program sample will trap keystroke of function keys F1, F2, and F3 (these keys
are numbered 1, 2, and 3, respectively).

ON KEY (1) GOSUB sub1
ON KEY (2) GOSUB sub2
ON KEY (3) GOSUB sub3
KEY (1) ON
KEY (2) ON
KEY (3) ON

 . . .

(Main routine)

 . . .

END
sub1

(Event-handling routine 1)

RETURN
sub2

(Event-handling routine 2)

RETURN
sub3

(Event-handling routine 3)

RETURN
160

Chapter 9. Event Polling and Error/Event Trapping
The RETURN statement in the event-handling routine will return control to the statement imme-
diately following that statement where the keyboard interrupt occurred.

Even if a function key is assigned a null string by the KEY statement, pressing the function key
will cause a keyboard interrupt when the KEY ON statement activates that function key.

If function keys specified for keystroke trapping are pressed during execution of the following
statements or functions relating keyboard input, this trapping facility operates as described
below.

Statements or Functions Keystroke Trapping

INPUT statement Ignores the entry of the pressed key and
causes no interrupt.

LINE INPUT statement Same as above.

INPUT$ function Same as above.

INKEY$ function Ignores the entry of the pressed key, but
causes an interrupt.
161

Chapter 10
Sleep Function

CONTENTS

10.1 Sleep Function... 163
162

Chapter 10. Sleep Function
10.1 Sleep Function

The BHT supports the sleep function that automatically interrupts program execution if no
event takes place within the specified length of time in the BHT, thereby minimizing its power
consumption. Upon detection of any event, the BHT in the sleep state immediately starts the
interrupted user program.

By using the OUT statement, you may set the desired length of time to the sleep timer within
the range from 0 to 25.5 seconds in increment of 100 ms. The default is 1 second.

When setting the sleep timer, the OUT statement also copies (assigns) the set value to its inter-
nal variable. The sleep timer immediately starts counting down the value assigned to the inter-
nal variable, -1 per 100 ms. If the value becomes 0, the BHT goes into a sleep.

Note that the sleep time will not count in any of the following cases. When the BHT exits from
any of them, the value preset to the sleep timer will be assigned to the internal variable again
and the sleep timer will start counting.

• While a communications device file is opened by an OPEN "COM:" statement.

• During execution of a SEARCH, DATE$, or TIME$ function

• When a TIMEA, TIMEB, or TIMEC function returns a nonzero value.

• When the bar code device file is opened by the OPEN "BAR:" statement under any of the
following conditions:

- With the continuous reading mode specified

- With the momentary switching mode or auto-off mode specified, and with the trigger switch
held down

- With the alternate switching mode, and with the illumination LED (laser beam in the BHT-
6500/BHT-7500) being on

• When any key is held down.

• When the LCD backlight is on.

• When the beeper is beeping.

• When the vibrator is working. (BHT-6500/BHT-7000/BHT-7500 only)

• When the BHT is updating data on the screen.

• When the BHT is writing data into a data file.

• When a register variable is undergoing change.
163

Chapter 11
Resume Function

CONTENTS

11.1 Resume Function... 165
164

Chapter 11. Resume Function
11.1 Resume Function

The resume function automatically preserves the current status of a running application pro-
gram (user program or Easy Pack) when the BHT is powered off, and then resumes it when
the BHT is powered on. That is, even if you unintentionally turn off the BHT or the automatic
powering-off function turns off the BHT, turning on the BHT once again resumes the previous
status of the program to allow you to continue the program execution.

The resume function is effective also during data transmission in execution of an application
program, but a few bytes of data being transmitted may not be assured.

The resume function does not work after execution of System Mode or any of the following
commands:

• END

• POWER OFF

• POWER 0

NOTE Even if you become disoriented with the operation during execution of an application
program so as to power off the BHT when the resume function is enabled, the BHT
cannot escape you from the current status of the program. This is because the resume
function will not initialize the variables or restart the BHT. (You can disable the
resume function in System Mode.)

NOTE In preparation for maintenance or inspection jobs involving execution of System
Mode (which will disable the resume function), store important information con-
tained in user programs by using files or register variables, preventing your current
operation jobs from getting crippled.
165

Chapter 12
Power-related Functions

CONTENTS

12.1 Low Battery Warning ... 167

12.2 Prohibited Simultaneous Operation of the Beeper*, Illumination LED
(Laser Source**), and LCD Backlight 168

12.3 Wakeup Function... 169

12.4 Remote Wakeup Function (BHT-7000/BHT-7500) 170
[1] Outline ... 170
[2] Remote wakeup operation .. 170
[3] Remote wakeup program.. 173
166

Chapter 12. Power-related Functions
12.1 Low Battery Warning

■ BHT-3000
If the battery voltage is below the specified level when the BHT-3000 is powered on, the
"Battery voltage has lowered" message appears on the LCD.

If the battery voltage drops while the BHT-3000 is in operation, the beeper beeps three
times every 10 seconds.

If you keep using the BHT-3000 without battery replacement after the above warning, the
BHT-3000 displays the "Replace the batteries" message on the LCD and turns itself off
automatically.

Refer to the "BHT-3000 User’s Manual."

■ BHT-4000
If the output voltage of the Ni-Cd battery cartridge or dry battery cartridge drops below the
specified level, the BHT-4000 displays the "Charge the battery!!" message, beeps five
times, and then turns itself off automatically.

Refer to the "BHT-4000 User’s Manual."

■ BHT-5000
If the output voltage of the Ni-MH battery cartridge or dry battery cartridge drops below the
specified level, the BHT-5000 displays the "Charge the battery!" message or "Replace the
batteries" message, respectively, beeps five times, and then turns itself off automatically.

Refer to the "BHT-5000 User’s Manual."

■ BHT-6000/BHT-6500
If the output voltage of the battery cartridge drops below a specified lower level limit when
the BHT-6000/BHT-6500 is in operation, the BHT displays the Level-1 message "Battery
voltage has lowered." on the LCD and beeps three times. After that, it will resume previous
regular operation.

If the battery output voltage drops further, the BHT-6000/BHT-6500 displays the Level-2
message "Charge the battery!" or "Replace the batteries!" (when driven by Ni-MH battery
cartridge or dry batteries, respectively), beeps five times, and then turns itself off automati-
cally.

Refer to the "BHT-6000 User’s Manual" or "BHT-6500 User’s Manual."

■ BHT-7000/BHT-7500
If the output voltage of the battery cartridge drops below a specified lower level limit when
the BHT-7000/BHT-7500 is in operation, the BHT displays the Level-1 message "Battery
voltage has lowered." on the LCD and beeps three times. After that, it will resume previous
regular operation.

If the battery output voltage drops further, the BHT-7000/BHT-7500 displays the Level-2
message "Charge the battery!" or "Replace the batteries!" (when driven by the lithium-ion
battery cartridge or dry battery cartridge, respectively), beeps five times, and then turns
itself off automatically.

Refer to the "BHT-7000 User’s Manual" or "BHT-7500 User’s Manual."
167

12.2 Prohibited Simultaneous Opera-
tion of the Beeper*, Illumination
LED (Laser Source**), and LCD
Backlight

(* Beeper and vibrator in the BHT-6500/BHT-7000/BHT-7500)
(** Laser source in the BHT-6500/BHT-7500)

■ BHT-3000
The BHT-3000 is so designed that the beeper, illumination LED, and LCD backlight will not
work simultaneously to save power consumption at peak load. There are priority orders
among them; that is, the beeper has the highest priority, the illumination LED has the next
priority, and the LCD backlight has the lowest priority. To beep the beeper when the LCD
backlight is on, for example, the BHT-3000 turns off the LCD backlight once and then
beeps.

■ BHT-5000
The BHT-5000 is so designed that the beeper and illumination LED will not work simulta-
neously to save power consumption at peak load. There is a priority order between them;
that is, the beeper has the priority over the illumination LED. To beep the beeper at the
time of bar code scanning, for example, the BHT-5000 turns off the illumination LED when
beeping.

■ BHT-6000
The BHT-6000 is so designed that the illumination LED and the LCD backlight will not work
simultaneously to save power consumption at peak load. There is a priority order between
them; that is, the illumination LED has the priority over the LCD backlight.

■ BHT-6500/BHT-7000/BHT-7500
The BHT-6500/BHT-7000/BHT-7500 is so designed that the beeper (and vibrator), illumina-
tion LED (laser source in the BHT-6500/BHT-7500), and LCD backlight will not work simul-
taneously to save power consumption at peak load. There are priority orders among them;
that is, the beeper (and vibrator) has the highest priority, the illumination LED (laser source)
has the next priority, and the LCD backlight has the lowest priority.
168

Chapter 12. Power-related Functions
12.3 Wakeup Function

■ BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500
The wakeup function allows you to turn on the BHT from "OFF" at the wakeup time (of the
system clock) specified in user programs.

To set the wakeup time by using the TIME$ function:

(1) Set 1 to bit 2 on port 8. Switches the TIME$ function to the setting of the
wakeup time.

(2) Set the wakeup time by using the TIME$ function.

(3) Set 1 to bit 0 on port 8. Activates the wakeup function.

To confirm the wakeup time preset:

(1) Set 1 to bit 2 on port 8. Switches the TIME$ function to the setting of the
wakeup time.

(2) Retrieve the wakeup time by using the TIME$ function.

NOTE If you set or retrieve the system time or wakeup time by using the TIME$ func-
tion, the value of bit 2 on port 8 will be automatically reset to zero.

When bit 2 on port 8 is zero, you can set or retrieve the current system time by
using the TIME$ function.

By reading the value of bit 1 on port 8 in user programs, you may confirm the ini-
tiation option of the BHT. If this bit is 1, the BHT is initiated by the wakeup func-
tion and if 0, it is initiated by the PW key.
169

12.4 Remote Wakeup Function
(BHT-7000/BHT-7500)

[1] Outline

The remote wakeup function allows you to remotely power on the BHT and run the specified
user program (hereafter referred to "remote wakeup program") by sending the specified mes-
sage from the host computer to the BHT via the CU.

Developing user programs utilizing the remote wakeup at both the host computer and BHT
enables you to automatically maintain the master system or update user programs.

To use the remote wakeup between the BHT and host computer, the following is required:

• Optical communications unit CU-7001 (The CU-7002 does not support the remote
wakeup.)

• CU interface cable

[2] Remote wakeup operation

■ At the BHT

(1) Power off the BHT and put it on the CU.

The BHT will enter into the charge state* (i.e., into sleep). (For details about charging, refer
to the "BHT-7000 User's Manual" or "BHT-7500 User's Manual.")

*Charge state: Charging or charged-up state

(2) Upon receipt of any data via the IR port, the BHT wakes up and becomes ready to receive
data.

If no data comes in within the specified time (described in [3], ■ Setting the remote
wakeup), the BHT will go back to step (1).

(3) If the BHT receives any data, it will check the data. If the BHT detects a “WAKE” character
string*1 in the data, it will proceed; if not, the BHT will go back to step (1).

(4) The BHT will send the following response to the host computer depending upon whether or
not a remote wakeup program exists in the BHT and whether the remote wakeup function
is activated or deactivated.

*1 Since the BHT in the charge state is in sleep, it will not receive the 1st “WAKE” character
string normally. To wake up the BHT, you need to send a “WAKE” character string at
lease two times, for example, send “WAKEWAKE” or “WAKEWAKEWAKE.”

*2 ID is a 6-byte numeric string referring to the lower 6 digits of the BHT serial number.

Remote wakeup
program

Remote wakeup
function

Response message
from the BHT

Proceeds to:

Exists Activated
Deactivated

ACK + "0" + ID*2

ACK + "2" + ID
(5)
(1)

Not exist Activated
Deactivated

ACK + "1" + ID
ACK + "1" + ID

(1)
(1)
170

Chapter 12. Power-related Functions
(5) The BHT will exit from the sleep state and execute the remote wakeup program developed
by the user.

■ At the host computer

(1) The host computer sends a “WAKE” character string to the BHT at least two times.

(2) Upon receipt of "ACK + "0" + ID" from the BHT, the host computer should conduct transac-
tions with the remote wakeup program in the BHT.

Upon receipt of "ACK + "1" + ID" or "ACK + "2" + ID" from the BHT, the host computer
should proceed to the corresponding error processing.

■ Transmission control sequence
If in the BHT a remote wakeup program exists and the remote wakeup is activated:

Host computer

Sends 1st time

Sends 2nd time

Receives response

Conducts transactions
with the remote
wakeup program

BHT

"WAKE"

"WAKE"

ACK + "0" + ID

In charge state
(in sleep)

Ready-to-receive

Detects "WAKE" and
sends its response

Starts the remote
wakeup program

Conducts transactions
with the host program

Handled by the BHT
system program
171

If in the BHT no remote wakeup program exists:

If in the BHT the remote wakeup is deactivated:

Host computer

Sends 1st time

Sends 2nd time

Receives response

Proceeds to the
error processing

BHT

"WAKE"

"WAKE"

ACK + "1" + ID

In charge state
(in sleep)

Ready-to-receive

Detects "WAKE" and
sends its response

Handled by the BHT
system program

Host computer

Sends 1st time

Sends 2nd time

Receives response

Proceeds to the
error processing

BHT

"WAKE"

"WAKE"

ACK + "2" + ID

Ready-to-receive

Detects "WAKE" and
sends its response

Handled by the BHT
system program

In charge state
(in sleep)
172

Chapter 12. Power-related Functions
[3] Remote wakeup program

■ File name
The BHT may handle the file named "BHTRMT.PD3" as a remote wakeup program.

Upon receipt of data containing a “WAKE” character string in the ready-to-receive state, the
BHT checks whether the BHTRMT.PD3 file exists. If the file exists, the BHT will start the
remote wakeup operation described in [2].

■ Settings for remote wakeup

To use the remote wakeup function, make the following I/O port settings with the OUT or WAIT
statement or INP function beforehand (refer to Appendix D, "I/O Ports," D5):

(1) Activate the remote wakeup function

You may activate/deactivate the remote wakeup function as listed below. The default is 0
(Deactivate).

(2) Set the transmission speed to be applied for remote wakeup

Set the transmission speed to be applied when activating the remote wakeup as listed
below. The default is 1 (9600 bps).

(3) Set the timeout for ready-to-receive state

Set the timeout length during which the BHT will wait for a “WAKE” character string after
receiving any data via the CU and becoming ready to receive. The default is 3 (seconds).

Port No. Bit No. R/W Specifications

60F0h 0 R/W 0: Deactivate the remote wakeup
1: Activate the remote wakeup

Port No. Bit No. R/W Specifications

60F1h 7-0 R/W 1: 9600 bps 2: 19200 bps
3: 38400 bps 4: 57600 bps
5: 115200 bps

Port No. Bit No. R/W Specifications

60F3h 7-0 R/W 1 to 255 seconds. Specification of 0
will not change the current setting.
173

(4) Set the BHT station ID to be used in the BHT response message

Set a 6-byte numeric string referring to the lower 6 digits of the BHT serial number as a sta-
tion ID which will be used in the response message to the host. To write and read the set-
ting, use the extension function SYSTEM.FN3 (Functions #3 and #4). For details, refer to
Chapter 16, "Extended Functions."

Once made in a user program, the above settings will be retained even after termination the
user program.

The remote wakeup activation/deactivation and the transmission speed for remote wakeup
may be set in System Mode. For details, refer to the "BHT-7000 User’s Manual" or "BHT-7500
User’s Manual."

■ Start of a remote wakeup program
When a remote wakeup program starts, the resume function of the most recently running user
program becomes disabled regardless of the resume setting made in System Mode. Also in
other user programs chained from the remote wakeup program with the CHAIN statement, the
resume function will remain disabled.

Accordingly, after termination of the remote wakeup program, any other user program will per-
form a cold start.

To enable the resume function of a user program running after the termination of the remote
wakeup program and its chained-to programs, use the extension function SYSTEM.FN3
(Function #1). For details, refer to Chapter 16, "Extension Functions."

■ End of a remote wakeup program
The remote wakeup program and its chained-to programs may be either normally terminated
or interrupted as follows:

• Normally terminated

when the program is ended with END, POWER OFF or POWER 0 statement.

• Interrupted

when the program is ended by pressing the PW key, with automatic powering-off func-
tion, low battery power-off or any other factor when the resume function is disabled.

If the resume function is made enabled, the remote wakeup program or its chained-to program
will be neither normally terminated nor interrupted since it will resume the operation in the next
powering-on.
174

Chapter 12. Power-related Functions
■ Checking the execution record of remote wakeup
When starting, a user program (including a remote wakeup program) may check via the I/O
ports whether the BHT remotely woke up at the last powering on and its operation was nor-
mally ended. (Refer to Appendix D, "I/O Ports," D5.)

Making use of the execution record, you may display an alarm message.

* This means that the BHT was cold-started, driven by System Mode or initialized.

Port No. Bit 0 Bit 1 Specifications

60F2h 0 0 At the last powering on, the BHT did not remotely
wake up.*0 1

1 0 At the last powering on, the BHT remotely woke
up and its operation was interrupted.

1 1 At the last powering on, the BHT remotely woke
up and its operation was normally ended.
175

Chapter 13
LCD Backlight Function

CONTENTS

13.1 LCD Backlight Function ... 177
176

Chapter 13. LCD Backlight Function
13.1 LCD Backlight Function

The BHT has an LCD backlight function. Pressing the trigger switch* while holding down the
Shift key activates or deactivates the backlight function. The default length of backlight ON-
time (ON-duration) is 3 seconds.

By using a KEY statement, you can select the backlight function on/off key instead of the com-
bination of the trigger switch* and Shift key, as well as modifying the ON-duration of the back-
light.

For details about the KEY statement, refer to KEY in Chapter 14.

Backlight OFF

The backlight function is OFF
when you power on the
BHT.

If no key is pressed for
at least 3 seconds:

Backlight ON

Backlight OFF
(The backlight function is ON.)

Press the trigger switch*
while holding down the Shift key.

Press any key except for the
backlight function on/off key.

Or, press the backlight function
on/off key specified by KEY
statement.

Press the trigger switch*
while holding down the Shift key.

(*In the BHT-6000/BHT-6500/BHT-7000/BHT-7500,
the magic key works as a trigger switch.)

Press the trigger switch*
while holding down the Shift key.

Or, press the backlight function
on/off key specified by KEY
statement.

Or, press the backlight function
on/off key specified by KEY
statement.
177

In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, you can control the backlight
function by using the OUT statement as described below.

Setting 1 to port 6020h with the OUT statement activates the LCD backlight function and turns
on the backlight. If no key is pressed for the time length preset to port 6021h (default time: 5
seconds), the backlight goes off but the backlight function remains activated.

Setting 0 to port 6020h deactivates the LCD backlight function and turns off the backlight if lit.

When the backlight function is activated with the OUT statement, the backlight function on/off
key and ON-duration specified by the KEY statement will be ignored.

Backlight OFF

The backlight function is
deactivated when the BHT
is powered on.

Backlight ON

Backlight OFF

The backlight function
remains activated.

With the OUT statement,
set 1 to port 6020h.

If no key is pressed
for the time length
preset to port 6021h,
the backlight goes off.

Press any key.

With the OUT statement,
set 1 to port 6020h.

With the OUT statement,
set 1 to port 6020h.
178

179

Chapter 14
Statement Reference

CONTENTS

APLOAD ..180
BEEP ...185
CALL ...188
CHAIN ...192
CLFILE ..194
CLOSE ..196
CLS ...197
COMMON ...198
CONST ..200
CURSOR ...201
DATA ...202
DECLARE ...203
DEF FN (Single-line form)205
DEF FN...END DEF (Block form)209
DEFREG ...213
DIM ..217
END ...219
ERASE ..220
FIELD ..221
FOR...NEXT ..223
FUNCTION…END FUNCTION225
GET ...230
GLOBAL ..232
GOSUB ...234
GOTO ..236
IF...THEN...ELSE...END IF237
INPUT ...239
INPUT # ..242
KEY ...244
KEY ON and KEY OFF249
KILL ...251
KPLOAD ..253

LET ... 258
LINE INPUT .. 260
LINE INPUT # 263
LOCATE ... 265
ON ERROR GOTO 268
ON...GOSUB and ON...GOTO 269
ON KEY...GOSUB 271
OPEN ... 273
OPEN "BAR:" 275
OPEN "COM:" 287
OUT .. 293
POWER .. 295
PRINT ... 297
PRINT # .. 300
PRINT USING 302
PRIVATE .. 306
PUT .. 309
READ .. 311
REM .. 313
RESTORE .. 314
RESUME .. 315
RETURN ... 317
SCREEN... 318
SELECT...CASE...END SELECT 320
SUB...END SUB 322
WAIT ... 326
WHILE...WEND 328
XFILE .. 330
$INCLUDE .. 335
Additional Explanation for Statements 337

Chapter 14. Statement Reference
*ANK: Alphanumeric and Katakana

Syntax:
Syntax 1 (Loading a user-defined font):

APLOAD characode,fontarrayname

Syntax 2 (Loading a user-defined cursor. Valid in the BHT-7000/BHT-7500):

APLOAD characode,cursorarrayname

Parameter:

characode

• For user-defined font A numeric expression which returns a value
from 128 (80h) to 159 (9Fh).

• For user-defined cursor A numeric expression which returns a value 0.

fontarrayname and cursorarrayname

An array integer variable name.

Description:
■ Loading a user-defined font

APLOAD loads a user-defined font data defined by fontarrayname to the user

font area specified by characode.

• To display user-defined fonts loaded by the APLOAD, you use the PRINT state-
ment in the single-byte ANK mode. If you attempt to display an undefined charac-
ter code, a space character will appear.

• The loaded user-defined fonts are effective during execution of the user program
which loaded those fonts and during execution of the successive user programs
chained by the CHAIN statement.

ANK Pattern LOAD I/O statement

APLOAD
Loads a user-defined font in the single-byte ANK* mode

NOTE
Do not specify parentheses () or subscripts which represent a gen-
eral array as shown below; otherwise, it will result in a syntax error.

APLOAD &H80,cp%() ’error
APLOAD &H80,cp%(5) ’error
180

• If you issue more than one APLOAD statement specifying a same character code,
the last statement takes effect.

• Only when the Interpreter executes the APLOAD statement, it refers to the array
data defined by fontarrayname. So, once a user program has finished load-
ing the user font, changing the data in the array or deleting the array itself (by the
ERASE statement) will not affect the already loaded user font.

• An array integer variable--a work array, register array, or common array--for fon-
tarrayname should be declared by the DIM, DEFREG, or COMMON statement,
respectively.

DIM cp0%(5)
DEFREG cp1%(5)
COMMON cp2%(5)

The array variable should be one-dimensional and have at least six elements.
Each element data should be an integer and stored in the area from the 1st to 6th
elements of the array.

• In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the small-size font is
selected, user-defined fonts loaded by the APLOAD will be condensed into small
size (6 dots wide by 6 dots high) for display. For the generating procedure of the
small-sized user-defined fonts, refer to Appendix C3., "Display Mode and Letter
Size."

• Also in the double-width screen mode of the BHT-7000/BHT-7500, user-defined
fonts loaded by the APLOAD will be effective, but the dot pattern of each loaded
font will be doubled in width by the system.

■ Loading a user-defined cursor (BHT-7000/BHT-7500)

APLOAD loads a user-defined cursor data defined by cursorarrayname to the

user font area specified by characode.

• To display a user-defined cursor loaded by the APLOAD, you specify 255 to the
cursorswitch in the LOCATE statement in the single-byte ANK mode.
(LOCATE ,,255)

• The loaded user-defined cursors are effective during execution of the user pro-
gram which loaded those cursors and during execution of the successive user
programs chained by the CHAIN statement.

• Only when the Interpreter executes the APLOAD statement, it refers to the array

data defined by cursorarrayname. So, once a user program has finished
loading the user cursor, changing the data in the array or deleting the array itself
(by the ERASE statement) will not affect the already loaded user cursor.
181

Chapter 14. Statement Reference
• The cursor size will differ depending upon the display font currently selected, as
shown below.

• An array integer variable--a work array, register array, or common array--for cur-
sorarrayname should be declared by the DIM, DEFREG, or COMMON state-
ment, respectively.

DIM cp0%(5)
DEFREG cp1%(5)
COMMON cp2%(5)

The array variable should be one-dimensional and have at least six elements.
Each element data should be an integer and stored in the area from the 1st to 6th
elements of the array.

• If you specify cursorarrayname exceeding the allowable cursor size (height:
no. of bits, width: no. of elements), the excess will be discarded.

Display font Size (W x H) No. of elements

Standard-size 6 x 8 dots 6

Small-size 6 x 6 dots 6

0 1 2 3 54
LSB

MSB

0 1 2 3 54
LSB

MSB
182

• In the double-width screen mode, user-defined cursors loaded by the APLOAD
will be doubled in width when displayed, as shown below.

When the standard-size font is selected:

When the small-size font is selected:

Syntax errors:

Cursor loaded In double-width screen mode

Cursor loaded In double-width screen mode

Error code and message Meaning

error 71: Syntax error • No fontarrayname or cursor-
arrayname is defined.

• fontarrayname or cursorar-
rayname has an array string vari-
able.

• fontarrayname or cursorar-
rayname includes parentheses ().

• fontarrayname or cursorar-
rayname includes subscripts.

0 1 2 3 54
LSB

MSB

0 1 2 3 54
LSB

MSB

6 7 8 9 1110

0 1 2 3 54
LSB

MSB

0 1 2 3 54
LSB

MSB

6 7 8 9 1110
183

Chapter 14. Statement Reference
Run-time errors:

Example:

DIM cp%(5)
cp%(0)=&H00
cp%(1)=&H08
cp%(2)=&H1C
cp%(3)=&H3E
cp%(4)=&H7F
cp%(5)=&H00
APLOAD &H80,cp%
PRINT CHR$(&H80)

Reference:

Error code Meaning

05h Parameter out of the range

(• characode is out of the specified range.)

(• The array structure is not correct.)

08h Array not defined

Array Elements

cp%(0) cp%(1) cp%(2) cp%(3) cp%(4) cp%(5) Bit in each array element
� � � � ■ � 0(LSB)

� � � ■ ■ � 1
� � ■ ■ ■ � 2
� ■ ■ ■ ■ � 3

� � ■ ■ ■ � 4
� � � ■ ■ � 5
� � � � ■ � 6

� � � � � � 7(MSB)

Statements: COMMON, DEFREG, DIM, KPLOAD, PRINT, and SCREEN
184

Syntax:

BEEP[onduration[,offduration[,repetitioncount
[,frequency]]]]

Parameter:

onduration, offduration, and repetitioncount

Numeric expressions, each of which returns a value from 0 to 255.

frequency
A numeric expression which returns a value from 0 to 32767.

Description:

BEEP sounds the beeper or drives the vibrator during the length of time specified by
onduration at the intervals of the length of time specified by offduration by
the number of repetitions specified by repetitioncount.

The beeper sounds at the pitch of the sound in Hz specified by frequency.

• The unit of onduration and offduration is 100 msec.

• Defaults:

• Note that specification of 0, 1, or 2 to frequency produces the special beeper
effects as listed below.

I/O statement

BEEP
Drives the beeper or vibrator. (The vibrator is provided in the BHT-6500/BHT-7000/BHT-7500
to which vibrator-related descriptions given below should apply.)

onduration and offduration: 1 (100 msec.)

repetitioncount: 1

frequency: 4337 Hz* (BHT-3000/BHT-6000)
3213 Hz* (BHT-4000)
4200 Hz* (BHT-5000)
2711 Hz* (BHT-6500)
2793 Hz* (BHT-7000/BHT-7500)
(*Same as when 2 is set to frequency)

Specification to
frequency

BHT-3000/
BHT-6000

BHT-4000 BHT-5000 BHT-6500 BHT-7000/
BHT-7500

Tone Statement
example

0 1033 Hz 1015 Hz 1015 Hz 986 Hz 698 Hz Low-
pitched

BEEP ,,,0

1 2168 Hz 1752 Hz 2142 Hz 1807 Hz 1396 Hz Medium-
pitched

BEEP ,,,1

2 4337 Hz 3213 Hz 4200 Hz 2711 Hz 2793 Hz High-
pitched

BEEP ,,,2
185

Chapter 14. Statement Reference
In the BHT-6500/BHT-7000/BHT-7500, specification of 0, 1, or 2 to frequency
drives the beeper or vibrator depending upon the settings made on the "LCD con-
trast & beeper volume adjustment and the beeper & vibrator switching" screen.

If 0, 1, or 2 is set to frequency (or if the frequency option is omitted), then
you can adjust the beeper volume on the LCD when powering on the BHT. (For
the adjustment procedure, refer to the BHT User’s Manual.)

In the BHT-7000/BHT-7500, you may change the beeper volume with the OUT
statement. (For details, refer to Appendix D, "I/O Ports," D5.)

If you set a value other than 0, 1, and 2 to frequency, the beeper volume is
automatically set to the maximum and not adjustable.

• In the BHT-3000/BHT-6000/BHT-6500, specification of any of 3 through 61 to
frequency deactivates the beeper; in the BHT-4000/BHT-5000, any of 3
through 260 deactivates the beeper; in the BHT-7000/BHT-7500, any of 3 through
39 deactivates the beeper or vibrator.

• In the BHT-4000, specification of 5001 or greater to frequency automatically
sets the frequency to 5000 Hz.

• Specification of zero to onduration deactivates the beeper.

• Specification of a value except for zero to onduration and specification of zero
to offduration keep beeping.

• Specification of a value except for zero to onduration and offduration
and specification of zero to repetitioncount deactivate the beeper.

• For your reference, the relationship between the frequencies and the musical
scale is listed below.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

do 130 Hz 261 Hz 523 Hz 1046 Hz 2093 Hz 4186 Hz

do# 138 277 554 1108 2217

re 146 293 587 1174 2349

re# 155 311 622 1244 2489

mi 164 329 659 1318 2637

fa 174 349 698 1396 2793

fa# 184 369 739 1479 2959

sol 195 391 783 1567 3135

sol# 207 415 830 1661 3322

la 220 440 880 1760 3520

la# 233 466 932 1864 3729

si 246 493 987 1975 3951
186

• The BEEP statement does not suspend execution of the subsequent statement
until the beeper completes sounding or vibrating. Instead, the execution of the
subsequent statement proceeds immediately.

If a second BEEP statement is encountered while the BHT is still beeping or
vibrating by a first BEEP, the first BEEP is cancelled and the new BEEP statement
executes.

• In the BHT-3000, if the beeper starts sounding for warning you of the low battery
during beeping programmed by the BEEP, then the warning beep overrides the
programmed beeping.

• In the BHT-6000/BHT-6500/BHT-7000/BHT-7500 also, if low battery warning
operation starts during beeping or vibrating programmed by the BEEP, then the
warning operation overrides the programmed beeping or vibrating. Upon comple-
tion of the warning operation, the beeper or vibrator resumes working as pro-
grammed.

Syntax errors:

Run-time errors:

Example:

BEEP bon%,boff%,count%,helz%
BEEP bon%,boff%,count%
BEEP bon%,boff%,,helz%
BEEP bon%,,count%,helz%
BEEP ,boff%,count%,helz%
BEEP bon%,boff%
BEEP bon%,,count%
BEEP ,boff%,count%
BEEP bon%,,,helz%
BEEP ,boff%,,helz%
BEEP ,,count%,helz%
BEEP bon%
BEEP ,boff%
BEEP ,,count%
BEEP ,,,helz%
BEEP

Error code and message Meaning

error 71: Syntax error The number of parameters or commas
(,) exceeds the limit.

Error code Meaning

05h Parameter out of the range
187

Chapter 14. Statement Reference
Syntax:

Syntax 1 (Calling an FN3):

CALL "[drivename:]filename" functionnumber [data
[,data]...]

Syntax 2 (Calling a SUB):

CALL functionname [(realparameter[,realparameter…])]

Parameter:

[drivename:]filename

A string expression.

functionnumber

An integer constant.

data

A string variable or a numeric variable.

functionname

Real function name.

realparameter

A numeric expression or a string expression.

Description:

■ Calling an extension library (FN3 function)

CALL calls a function specified by functionnumber from a file specified by
"[drivename:]filename" and assigns the parameter specified by data to
the called function.

For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the drivename
may be A: or B:. If the drivename is omitted, the default A: applies.

Flow control statement

CALL
Calls an FN3 or SUB function.
188

• filename is the name of an FN3 function. The extension of the file names is
fixed to .FN3. (For the FN3 functions, refer to Chapter 16, "Extended Functions"
or the "BHT-BASIC Extension Library Manual.")

• functionnumber is the function number of an FN3 specified by "[drive-
name:]filename".

• data is a variable for the function number of the FN3 (that is, it is used as an
argument to the FN3 function).

• When specifying an array to data, add a pair of parentheses containing nothing
as shown below.

Example: CALL "_xxx.FN3" 1 DATA ()

• When calling a function (specified by functionnumber) that returns a string
variable:

BHT-5000/BHT-6000/BHT-6500

Reserve a storage area for a returned string variable by using a variable declara-
tion statement (DIM, COMMON, or DEFREG). (If the string length is omitted in the
variable declaration statement, the default in the statement will take effect.) And
assign arbitrary data of the string length required for a return value to the variable.

If the string length of a returned value is greater than the assigned string length, a
run-time error will result.

(Example 1) If a return value is a fixed-length string, e.g. 8-character length:

DIM OUTPUT$[8] ’Reserves a storage area of 8 characters.
OUTPUT$=" " ’Assigns 8 spaces.

(Example 2) If a return value is a variable-length string of a maximum of N char-
acters:

DIM OUTPUT$[N] ’Reserves a storage area of a max. of N chars.
OUTPUT$=" ... " ’Assigns N spaces.
OUTPUT$="" ’or assign
FOR I%=1 TO N ’a max. of N chars of spaces
 OUTPUT$=OUTPUT$+"" ’to the variable by loop.
NEXT I%

BHT-7000/BHT-7500

Reserve a storage area for a returned string variable by using a variable declara-
tion statement (DIM, COMMON, or DEFREG). (If the string length is omitted in the
variable declaration statement, the default in the statement will take effect.)
Unlike the BHT-5000/BHT-6000/BHT-6500, the BHT-7000/BHT-7500 does not
require to assign arbitrary data of the string length required for a return value to
the variable.

If the string length of a returned value is greater than the string length reserved by
a variable declaration statement, a run-time error will result.

(Example 1) If a return value is a fixed-length string, e.g. 8-character length:

DIM OUTPUT$[8] ’Reserves a storage area of 8 characters.

(Example 2) If a return value is a variable-length string of a maximum of N char-
acters:

DIM OUTPUT$[N] ’Reserves a storage area of a max. of N chars.
189

Chapter 14. Statement Reference
■ Calling a user-defined function (SUB function)

This statement calls a user-defined function specified by functionname. You

may omit CALL when calling a SUB function.

• functionname should be a user-defined function defined by SUB...END SUB
statement.

• The number of realparameters should be equal to that of dummy parame-
ters, and the types of the corresponding variables used in those parameters
should be identical.

• If you specify a global variable in realparameter when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")

Syntax errors:

NOTE
To use FN3 functions except extended functions given in Chapter 16, you
need to download the extension programs from an extension library sold
separately. (The BHT-BASIC Extension Library is supported by the BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.)

NOTE
Before any call to a SUB function, you need to place definition of the SUB
function or declaration of the SUB function by using the DECLARE state-
ment in your source program.

Error code and message Meaning

error 3: ’"’ missing No double quote precedes or follows
[drivename:]filename.

error 68: Mismatch • The number of realparameters is
not equal to that of the dummy parame-
ters.

• A dummy parameter was an integer
variable in defining a function, but
realparameter is a real type in call-
ing the function. (If a dummy parameter
was a real variable in defining a function
and realparameter is an integer
type in calling, then no error occurs.)

error 71: Syntax error • [drivename:]filename is not
enclosed in double quotes.

• The function specified by function-
name has not been defined.
190

Run-time errors:

Reference:

Statements: DECLARE and SUB...END SUB

Error code Meaning

02h Syntax error
("[drivename:]filename" is in incorrect syntax or the
extension is not .FN3.)

05h Parameter value out of range
(In calling an FN3 function, the number of parameters exceeds
16.)

07h Insufficient memory space
(You nested calling statements of a user-defined function to
more than 10 levels.)

1Fh functionnumber out of the range

35h File not found

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Insufficient string variable storage area
191

Chapter 14. Statement Reference
Syntax:

CHAIN "[drivename:]programfilename"

Parameter:

"[drivename:]programfilename"

A string expression.

Description:

CHAIN transfers control to a program specified by "[drivename:]program-
filename". That is, it terminates the current running program (1st program) and
closes all of the files being opened. Then, it initializes environments for the chained-
to user program (2nd program) specified by "[drivename:]programfile-
name" and executes it.

For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the drivename
may be A: or B:. If the drivename is omitted, the default A: applies.

• "[drivename:]programfilename" is an executable object program
compiled by the Compiler and has the extension .PD3, as shown below. The
extension .PD3 cannot be omitted.

CHAIN "prog1.PD3"

• You should download an executable object program (2nd program) to the BHT
before the CHAIN statement is executed.

• You can pass variables from the current program to the chained-to program (2nd
program) with the COMMON statement.

• User-defined fonts loaded by the APLOAD or KPLOAD statement and the setting

values assigned by the KEY statement or COUNTRY$ function remain effective in
chained-to programs.

• The ON ERROR GOTO statement cannot trap errors (while showing the error code
07h which means "Insufficient memory space") happened during initialization of
environments for chained-to programs.

Flow control statement

CHAIN
Transfers control to another program.
192

Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 3: ’"’ missing No double quote precedes or follows
[drivename:]programfile-
name.

error 71: Syntax error [drivename:]programfile-
name is not enclosed in double quotes.

Error code Meaning

02h Syntax error
("[drivename:]programfilename" is in incorrect sytax
or the extension is not .PD3.)

07h Insufficient memory space
(The 1st program uses too many variables.)

35h File not found
(The file specified by "[drivename:]programfilename"
does not exist.)

41h File damaged

Statements: APLOAD, COMMON, and KPLOAD
193

Chapter 14. Statement Reference
Syntax:

CLFILE [#]filenumber

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

Description:

CLFILE erases data in the data file specified by filenumber and resets the
number of written records in the directory to zero.

• The memory area freed by CLFILE can be used for other data files or user pro-
gram files.

• User programs can no longer refer to the erased data.

• CLFILE cannot erase data in files stored in drive B.

Syntax errors:

Run-time errors:

CLear FILE File I/O statement

CLFILE
Erases the data stored in a data file.

Error code and message Meaning

error 71: Syntax error filenumber is missing.

Error code Meaning

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than data files.)

3Ah File number out of the range

43h Not allowed to access the data in drive B.
194

Example:

OPEN "master.Dat" AS #1
FIELD #1,20 AS bar$,10 AS ky$
CLFILE #1
CLOSE #1
195

Chapter 14. Statement Reference

196

Syntax:

CLOSE [[#]filenumber[,[#]filenumber...]]

Parameter:

filenumber
A numeric expression which returns a value from 1 to 16.

Description:

CLOSE closes file(s) specified by filenumber(s).

• The file number(s) closed by the CLOSE statement becomes available for a sub-
sequent OPEN statement.

• If no file number is specified, the CLOSE statement closes all of the opened data
files and device I/O files.

• Specifying the unopened file number causes neither operation nor a run-time
error.

Syntax errors:

Run-time errors:

Reference:

‘File I/O statement

CLOSE
Closes file(s).

Error code and message Meaning

error 71: Syntax error filenumber is missing.

Error code Meaning

3Ah File number out of range

Statements: END and OPEN

197

Syntax:

CLS

Description:

CLS clears the liquid crystal display (LCD) screen and returns the cursor to the
upper left corner of the screen.

• The CLS statement does not affect the screen mode (the single-byte ANK mode,
two-byte Kanji mode, and condensed two-byte Kanji mode) or the character
attribute (normal or highlighted), but it turns off the cursor.

• In the BHT-4000/BHT-5000/BHT-6000/BHT-6500, execution of the CLS state-
ment when the system status is displayed on the LCD clears the VRAM area
assigned to the system status area of the LCD but does not erase the system sta-
tus displayed.

CLear Screen I/O statement

CLS
Clears the LCD screen.

Chapter 14. Statement Reference
Syntax:

COMMON commonvariable[,commonvariable...]

Parameter:

commonvariable

A non-array integer variable, a non-array real variable, a non-array string
variable, an array integer variable, an array real variable, or an array string
variable.

Description:

COMMON defines common variables for sharing them when one program chains to
another.

• Common variables defined by COMMON keep effective as long as programs
chained by the CHAIN statement are running.

• A COMMON statement can appear anywhere in a source program.

• All of the variable name, type, quantity, and definition order of the common vari-
ables used in the current program should be identical with those in the chained-to
programs. If not, variables having indefinite values will be passed.

• Up to two-dimensional array variables can be defined. You can specify a sub-
script ranging from 0 to 254 for an array variable.

• The total variable data size which can be passed between chained programs is 6
kilobytes including work variables.

• The size of an array data is equal to the element size multiplied by the number of
elements.

• You can specify the maximum string length within the range from 1 to 255 to a
string variable.

• The default length of a non-array string variable is 40.

• The default length of an array string variable is 20.

Declarative statement

COMMON
Declares common variables for sharing between user programs.
198

Syntax errors:

Run-time errors:

Example:

COMMON a%,b,c$,d%(2,3),e(4),f$(5)

Reference:

Error code and message Meaning

error 5: Variable name
redefinition

A same variable name is double
declared in a program.

error 73: Improper
string length

The length of a string variable is out of
the range from 1 to 255.

Error code Meaning

07h Insufficient memory space
(The COMMON statement defines too much data.)

Statements: CHAIN
199

Chapter 14. Statement Reference

200

Syntax:

CONST constname = expr

Parameter:

constname
A label, identifier, or string expression of a maximum of 10 characters con-
sisting of alphanumerics and period (.).

expr
A string constant

Description:

CONST replaces a label, identifier or a character string specified by constname
with a string constant defined by expr before compiling.

• expr may contain labels defined by other CONST declarations. However, calling
those labels each other (recursively) will result in an error.

• A CONST statement can appear anywhere in your source program. However, it
will take effect from a program line following the CONST declaration.

Declarative statement

CONST
Defines symbolic constants to be replaced with labels.

201

Syntax:

CURSOR {ON|OFF}

Description:

When a user program is initiated, the cursor is set to OFF. CURSOR ON turns on the
cursor for keyboard entry operation by the INKEY$ function. CURSOR OFF turns
off the cursor.

• In the BHT-3000/BHT-4000/BHT-5000, the cursor size depends upon the screen
mode (the single-byte ANK mode, two-byte Kanji mode, or condensed two-byte
Kanji mode). In the single-byte ANK mode, the cursor appears as 6 dots wide by
8 dots high; in the two-byte Kanji mode, it appears as 8 dots wide by 16 dots high;
in the condensed two-byte Kanji mode, it appears as 6 dots wide by 16 dots high.
(Note that the condensed two-byte Kanji mode is supported by the BHT-4000/
BHT-5000.)

• In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the cursor size depends upon
the screen mode (the single-byte ANK mode or two-byte Kanji mode), the display
font size (standard-size or small-size), and the character attribute (normal-width
or double-width). If the standard-size font is selected, the cursor appears as 6
dots wide by 8 dots high in the single-byte ANK mode, and as 8 dots wide by 16
dots high in the two-byte Kanji mode. If the small-size font is selected, the cursor
appears as 6 dots wide by 6 dots high in the single-byte ANK mode, and as 6 dots
wide by 12 dots high in the two-byte Kanji mode.

• The cursor shape specified by the most recently executed LOCATE statement
takes effect.

• After execution of LOCATE ,,0 which makes the cursor invisible, even the CUR-
SOR ON statement cannot display the cursor. To display the cursor, it is neces-
sary to make the cursor visible by using the LOCATE statement.

Syntax errors:

Reference:

I/O statement

CURSOR
Turns the cursor on or off.

Error code and message Meaning

error 71: Syntax error Specification other than ON and OFF is
described.

Statements: APLOAD, INPUT, KPLOAD, LINE INPUT, and LOCATE

Functions: INKEY$ and INPUT$

Chapter 14. Statement Reference

202

Syntax:

DATA literal[,literal...]

Parameter:

literal

A numeric or string constant.

Description:

DATA stores numeric and string literals so that READ statements can assign them
to variables.

• A DATA statement can appear anywhere in a source program.

• A string data should be enclosed with a pair of double quotation marks (").

• You may have any number of DATA statements in a program. The READ state-
ment assigns data stored by DATA statements in the exact same order that those
DATA statements appear in a source program.

• Using the RESTORE statement can read a same DATA statement more than
once.

• You can specify more than one literal in a program line (within 512 charac-
ters) by separating them with commas (,).

• You can describe DATA statements also in included files.

Syntax errors:

Reference:

Declarative statement

DATA
Stores numeric and string literals for READ statements.

Error code and message Meaning

error 3:’"’ missing No double quote precedes or follows a
string data.

Statements: READ, REM and RESTORE

Syntax:
Syntax 1 (Defining a numeric FUNCTION):

DECLARE FUNCTION funcname
[(dummyparameter[,dummyparameter...])]

Syntax 2 (Defining a character FUNCTION):

DECLARE FUNCTION funcname [(dummyparameter
[,dummyparameter...])][[stringlength]]

Syntax 3 (Defining a SUB):

DECLARE SUB subname[(dummyparameter
[,dummyparameter...])]

Parameter:

funcname

• For numerics

funcname% Integer function name
funcname Real function name

• For strings

funcname$ Character function name

subname

Real function name.

dummyparameter

A non-array integer variable, a non-array real variable, or a non-array string
variable.

stringlength

An integer constant having a value from 1 to 255.

User-defined function declarative statement

DECLARE
Declares user-created function FUNCTION or SUB externally defined.
203

Chapter 14. Statement Reference
Description:

DECLARE defines a user-created function defined in other source program files.

• Declaration of a user-defined function should appear preceding a calling state-
ment of the user-defined function in your source program.

• funcname, subname, and dummyparameter should be declared in the
same way as the function names and real parameters defined in the original func-
tions (defined in other source program files).

• You cannot make double definition to a same function name.

• The DECLARE statement should not be defined in the block-structured state-
ments (FOR...NEXT, IF...THEN...ELSE...END IF, SELECT...CASE...END
SELECT, WHILE...WEND, DEF FN...END DEF, FUNCTION...END FUNCTION,
and SUB...END SUB), in the error-handling routine, event-handling routine, or in
the subroutines.

Syntax errors:

Reference:

Statements: FUNCTION...END FUNCTION and SUB...END SUB

Error code and message Meaning

error 64: Function
redefinition

You made double definition to a same
function name.

error 71: Syntax error • stringlength is out of the
range.

• stringlength is not an integer
constant.
204

Syntax:
Syntax 1 (Defining a numeric function):

DEF FNfunctionname[(dummyparameter[,dummyparameter
...])]=expression

Syntax 2 (Defining a string function):

DEF FNfunctionname[(dummyparameter
[,dummyparameter...])] [[stringlength]]=expression

Syntax 3 (Calling the function):

FNfunctionname[(realparameter[,realparameter ...])]

Parameter:

functionname

• For numerics

functionname% Integer function name
functionname Real function name

• For strings

functionname$ Character function name
where the FN can be in lowercase.

dummyparameter

A non-array integer variable, a non-array real variable, or a non-array string
variable.

stringlength

An integer constant having a value from 1 to 255.

expression and realparameter

A numeric or string expression.

DEFine FuNction User-created function definition statement

DEF FN (Single-line form)

Names and defines a user-created function.
205

Chapter 14. Statement Reference
Description:
■ Creating a user-defined function

DEF FN creates a user-defined function.

• Definition of a user-defined function should appear preceding a calling statement
of the user-defined function in a source program.

• You cannot make double definition to a same function name.

• The DEF FN statement should not be defined in the block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN
...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB and
WHILE...WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

• DEF FN functions cannot be recursive.

• The type of functionname should match that of the function definition
expression.

• In defining a character function, you can specify the maximum stringlength
for a return value. If its specification is omitted, the default value of 40 characters
takes effect.

• dummyparameter, which corresponds to the variable having the same name in
the function definition expression, is a local variable valid only in that
expression . Therefore, if a variable having the same name as dummypa-
rameter is used outside DEF FN statement or used as a dummyparameter
of any other function in the same program, it will be independently treated.

• expression describes some operations for the user-defined function. It
should be within one program line including definition described left to the equal
sign.

• expression can call other user-defined functions. You can nest DEF FN state-
ments to a maximum of 10 levels.

• If variables other than dummyparameter(s) are specified in expression,
they will be treated as global variables whose current values are available.

• stringlength should be enclosed with a pair of square brackets [].

■ Calling a user-defined function

FNfunctionname calls a user-defined function.

• The number of realparameters should be equal to that of dummyparame-
ters, and the types of the corresponding variables used in those parameters
should be identical.

• If you specify a global variable in realparameter when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")
206

Syntax errors:
■ When defining a user-defined function

■ When calling a user-defined function

Error code and message Meaning

error 61: Cannot use DEF
FN in control
structure

The DEF FN statement is defined in
block-structured statements such as
FOR and IF statements.

error 64: Function
redefinition

You made double definition to a same
function name.

error 65: Function defi-
nitions exceed
200

error 66: Arguments
exceed 50

error 71: Syntax error • functionname is an integer func-
tion name, but expression is a
real type. (If functionname is a
real function name and expres-
sion is an integer type, then no
error occurs.)

• stringlength is out of the
range.

• stringlength is not an integer
constant.

Error code and message Meaning

error 68: Mismatch
argument type
or number

• The number of the real parameters is
not equal to that of the dummy
parameters.

• dummyparameter was an integer
variable in defining a function, but
realparameter is a real type in
calling the function. (If dummypa-
rameter was a real variable in
defining a function and realpa-
rameter is an integer type, then no
error occurs.)

error 69: Function
undefined

Calling of a user-defined function pre-
cedes the definition of the user-created
function.
207

Chapter 14. Statement Reference
Run-time errors:

Example:
■ Example 1

DEF FNadd(a%,b%)=a%+b%
PRINT FNadd(3,5)

■ Example 2

DEF FNappend$(a$,b$)[80]=a$+b$
PRINT FNappend$("123","AB")

Error code Meaning

07h Insufficient memory space
(You nested DEF FN statements to more than 10 levels.)

0Fh String length out of the range
(The returned value of the stringlength exceeds the allow-
able range.)

8

123AB
208

Syntax:
Syntax 1 (Defining a numeric function):

DEF FNfunctionname[(dummyparameter[,dummyparameter
...])]

Syntax 2 (Defining a character function):

DEF FNcharafunctionname[(dummyparameter [,dummyparame-
ter...])] [[stringlength]]

Syntax 3 (Exiting from the function block prematurely):

EXIT DEF

Syntax 4 (Ending the function block):

END DEF

Syntax 5 (Assigning a returned value):

FNfunctionname = generalexpression

Syntax 6 (Calling a function):

FNfunctionname[(realparameter[,realparameter ...])]

Parameter:

Same as for DEF FN (Single-line form).

DEFine FuNction...END DEFine User-created function definition statement

DEF FN...END DEF (Block form)

Names and defines a user-created function.
209

Chapter 14. Statement Reference
Description:
■ Creating a user-defined function

DEF FN...END DEF creates a user-defined function. The function definition block
between DEF FN and END DEF is a set of some statements and functions.

• Definition of a user-defined function should appear preceding a calling statement
of the user-defined function in a source program.

• You cannot make double definition to a same function name.

• This statement block should not be defined in the block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN...
ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB and WHILE
...WEND), in the error-handling routine, event-handling routine, or in the subrou-
tines.

• DEF FN...END DEF functions can be recursive.

• In defining a character function, you can specify the maximum stringlength.
If its specification is omitted, the default value of 40 characters takes effect.

• dummyparameter, which corresponds to the variable having the same name in
the function definition block, is a local variable valid only in that block. Therefore,
if a variable having the same name as dummyparameter is used outside DEF
FN...END DEF statement block or used as a dummyparameter of any other
function in the same program, it will be independently treated.

• In user-defined functions, you can call other user-defined functions. You can nest
DEF FN...END DEF statements to a maximum of 10 levels.

• When using the DEF FN...END DEF together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN...
ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB and WHILE
...WEND), you can nest them to a maximum of 30 levels.

• If variables other than dummyparameter(s) are specified in the function defini-
tion block, they will be treated as global variables whose current values are avail-
able.

• EXIT DEF exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

• The block-format DEF FN statement should be followed by END DEF which ends
the function block and returns control to the position immediately after the state-
ment that called the user-defined function.

• Using Syntax 5 allows you to assign a return value for a function. The type of
functionname should match that of a return value. If no return value is
assigned to functionname , the value 0 or a null string will be returned for a
numeric function or a character function, respectively.
210

■ Calling a user-defined function

FNfunctionname calls a user-defined function.

• The number of realparameters should be equal to that of dummyparame-
ters, and the types of the corresponding variables used in those parameters
should be identical.

• If you specify a global variable in realparameter when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")

Syntax errors:
■ When defining a user function

Error code and message Meaning

error 59: Incorrect use
of DEF FN...
EXIT DEF...END
DEF

• The EXIT DEF statement is speci-
fied outside the function definition
block.

• The END DEF statement is specified
outside the function definition block.

error 60: Incomplete
control struc-
ture (DEF FN
...END DEF)

END DEF is missing.

error 61: Cannot use DEF
FN in control
structure

The DEF FN...END DEF statement
is defined in other block-structured
statements such as FOR and IF state-
ment blocks.

error 64: Function
redefinition

You made double definition to a same
function name.

error 71: Syntax error • functionname is an integer func-
tion name, but generalexpres-
sion is a real type. (If
functionname is a real function
name and generalexpression
is an integer type, then no error
occurs.)

• stringlength is out of the
range.

• stringlength is not an integer
constant.

• The function name is assigned a
value outside the function definition
block.
211

Chapter 14. Statement Reference
■ When calling a user-defined function

Run-time errors:

Example:

DEF FNappend$(a$,b%)[128]
 C$=""
 FOR i%=1 TO b%
 C$=C$+a$
 NEXT
 FNappend$=C$
END DEF
PRINT FNappend$("AB",3)

Error code and message Meaning

error 68: Mismatch
argument type
or number

• The number of the real parameters is
not equal to that of the dummy
parameters.

• dummyparameter was an integer
variable in defining a function, but
realparameter is a real type in
calling the function. (If dummypa-
rameter was a real variable in
defining a function and realpa-
rameter is an integer type, then no
error occurs.)

error 69: Function
undefined

Calling of a user-defined function pre-
cedes the definition of the function.

Error code Meaning

07h Insufficient memory space
(You nested DEF FN statements to more than 10 levels.)

0Dh END DEF out of the DEF FN block

0Fh String length out of the range
(The returned value of stringlength exceeds the allowable
range.)

ABABAB
212

Syntax:

DEFREG registerdefinition[,registerdefinition ...]

Parameter:

registerdefinition
non-arraynumericvariable [=numericconstant]

DEFREG n1%=10
DEFREG n2=12.5

arraynumericvariable(subscript)
[=numericinitialvaluedefinition]

DEFREG n3(5,6)

non-arraystringvariable[[stringlength]]
[=stringconstant]

DEFREG s1$="abc123"
DEFREG s2$[6]="abc123"

arraystringvariable(subscript)[[stringlength]]
[=stringinitialvaluedefinition]

DEFREG s2$(1,3)[16]

subscript

For one-dimensional:integerconstant

DEFREG n4%(3)

For two-dimensional:integerconstant,integerconstant

DEFREG n5%(4,5)

Where integerconstant is a value from 0 to 254.

DEFine REGister Declarative statement

DEFREG
Defines register variables.
213

Chapter 14. Statement Reference
numericinitialvaluedefinition

For one-dimensional:
numericconstant[,numericconstant...]}

DEFREG n6%(3)={9,8,7,6}

For two-dimensional:
{{numericconstant[,numericconstant...]}, {numer-
icconstant[,numericconstant...]} ...}

DEFREG n7(1,2)={{10,11,12},{13,14,15}}

stringinitialvaluedefinition

For one-dimensional:
{stringconstant[,stringconstant...]}

DEFREG s3$(3)={"a","bc","123","45"}

For two-dimensional:
{{stringconstant[,stringconstant...]}, {string-
constant[,stringconstant...]} ...}

DEFREG s4$(1,1)={{"a","b"},{"c","1"}}

stringlength

An integer constant from 1 to 255.

Description:

DEFREG defines non-array or array register variables.

• A DEFREG statement can appear anywhere in a source program.

• Up to 2-dimensional array variables can be defined.

• For both non-arraystringvariable and arraystringvariable,
the string length can be specified.

• Defaults:

stringlength for non-array variables: 40 characters

stringlength for array variables: 20 characters

• The memory area for register variables is allocated in user program files in the
memory. Register variables, therefore, are always updated. An uploaded user
program, for example, contains the updated register variables if defined.

• The total number of bytes allowable for register variables is 64 kilobytes.

• You can specify an initial value to an array variable by enclosing it with a pair of
braces { }. No comma (,) is allowed for terminating the list of initial values.

If the number of the specified initial values is less than that of the array elements
or if no initial value is specified, then the Compiler automatically sets a zero (0) or
a null string as an initial value for a numeric variable or a string variable of the
array elements not assigned initial values, respectively.
214

Syntax errors:

Error code and message Meaning

error 6: Variable name
redefinition

A same register variable name is dou-
ble declared in a program.

error 71: Syntax error • stringlength is not an integer
constant.

• The number of the specified initial
values is greater than that of the
array elements.

• The list of initial values is terminated
with a comma.

• The type of the specified variable
does not match that of its initial
value. (Note that a real variable can
have an integer constant as an initial
value.)

• subscript is not an integer con-
stant.

error 73: Improper
string length

stringlength is out of the range.

error 74: Improper array
element number

subscript is out of the range.

error 75: Out of space
for register
variable area

Definition by DEFREG exceeds the
register variable area.

error 77: Initial string
too long

• The dimension of the specified array
variable does not match that of its ini-
tial value.

• The number of initial value elements
for the specified register string vari-
able is greater than its string length.

error 83: ’)’ missing No closing parenthesis follows sub-
script.

error 84: ’]’ missing No closing square bracket follows
stringlength.

error 90: ’{’ missing No opening brace precedes the initial
value.
215

Chapter 14. Statement Reference
Example:

Example 1: Valid DEFREG statements

DEFREG a,e$
DEFREG b=100,c(10),d$(2,4)[10]
DEFREG bps$="19200"
DEFREG a%(2)={1,2}
DEFREG a%(2)={1,,3}
DEFREG a%(2)={,,3}
DEFREG b%(1,1)={{},{1,2}}
DEFREG b%(1,1)={,{1,2}}
DEFREG b%(1,1)={{1,2}}

Example 2: Position of elements in an array

DEFREG a%(1,1)={{1},{,3}}

The elements of the above array have the following initial values:

a%(0,0):1
a%(0,1):0
a%(1,0):0
a%(1,1):3

DEFREG b$(1,1)[3]={,{"123"}}

The elements of the above array have the following initial values:

b$(0,0):""
b$(0,1):""
b$(1,0):"123"
b$(1,1):""

Example 3: DEFREG statements causing syntax errors

DEFREG c%(2)={1,2,3,4}
DEFREG d%(2)={1,2,}
DEFREG e%(1,1)={{,},{1,2}}
DEFREG f%(1,1)={{1,2},}

Reference:

Statements: DIM
216

s

Syntax:

DIM arraydeclaration[,arraydeclaration...]

Parameter:

arraydeclaration
numericvariable (subscript)

DIM n1%(12)
DIM n2(5,6)

stringvariable (subscript)[[stringlength]]

DIM s1$(2)
DIM s2$(2,6)
DIM s3$(4)[16]
DIM s4$(5,3)[30]

subscript

For one-dimensional: integerexpression

For two-dimensional: integerexpression,
integerexpression

Where integerexpression is a numeric expression which returns
a value from 0 to 254.

stringlength

An integer constant which has a value from 1 to 255 which indicates the
number of characters.

Description:

DIM declares array variables and dimensions the arrays that a program will utilize.

• A DIM statement can appear anywhere before the first use of the array in a
source program. However, when possible, you should place all your DIM state-
ments together near the beginning of the program and should not place them in
the program execution loops in order to prevent errors.

• Up to 2-dimensional array variables can be declared.

DIMension Memory control statement

DIM
Declares and dimensions arrays; also declares the string length for a string variable.
217

Chapter 14. Statement Reference
• In declaring an array string variable, you can specify the string length. If its speci-
fication is omitted, the default value of 20 characters takes effect.

• If no subscript is specified for a string variable, the Compiler automatically regards
the string variable as a non-array string variable so that the default for a non-array
string variable, 40 characters, takes effect.

Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 7: Variable name
redefinition

The array declared with DIM had been
already declared with DEFREG.

error 71: Syntax error • stringlength is out of the
range.

• stringlength is not an integer
constant.

error 72: Variable name
redefinition

• A same variable name is double
declared inside a same DIM state-
ment.

• A same variable name is used for a
non-array variable and array vari-
able.

error 78: Array symbols
exceed 30 for
one DIM state-
ment

More than 30 variables are declared
inside one DIM statement.

Error code Meaning

05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)

Statements: DEFREG and ERASE
218

219

Syntax:

END

Description:

END terminates program execution and sounds the beeper for a second.

• An END can appear anywhere in a source program.

• When an END statement occurs, all of the files being opened become closed, and
then the following operation takes place depending upon whether or not any appli-
cation program (user program or Easy Pack) has been selected as an execution
program (to be run when the BHT is powered on) in System Mode.

• If any application program has been selected, the BHT turns off the power
after three seconds from the message indication of the "Program end."

• If an execution program has not been selected, control passes to System
Mode.

(For System Mode, refer to the BHT User's Manual.)

Flow control statement

END
Terminates program execution.

Chapter 14. Statement Reference

220

Syntax:

ERASE arrayvariablename[,arrayvariablename...]

Parameter:

arrayvariablename

An array numeric or array string variable.

Description:

ERASE erases an array variable(s) specified by arrayvariablename and frees
the memory used by the array.

• arrayvariablename is the name of an array variable already declared by
the DIM statement. If it has not been declared by DIM, the ERASE statement will
be ignored.

• After erasing the name of an array variable with ERASE, you can use that name
to declare a new array variable with the DIM statement.

• arrayvariablename should not include subscripts or parentheses () as
shown below.

DIM a(3),b1%(5,10),c$(3)[20]
ERASE a,b1%,c$

• ERASE cannot erase a register variable declared by the DEFREG statement, a
common variable declared by the COMMON statement, or a non-array string vari-
able.

Syntax errors:

Reference:

Memory control statement

ERASE
Erases array variables.

Error code and message Meaning

error 71: Syntax error You attempted to erase a register vari-
able declared by DEFREG, a common
variable by COMMON, or a non-array
string variable.

Statements: DEFREG and DIM

Syntax:

FIELD [#]filenumber,fieldwidth AS fieldvariable
[,fieldwidth AS fieldvariable...]

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

fieldwidth

A numeric expression which returns a value from 1 to 254.

fieldvariable

A non-array string variable.

Description:

FIELD declares the length and field variable of each field of a record in a data file.

• filenumber is the file number of a data file opened by the OPEN statement.

• fieldwidth is the number of bytes for a corresponding field variable.

• You can assign a same field variable to more than one field.

• There is no difference in usage between a field variable and a general variable
except that no register variable, common variable, or array variable can be used
for a field variable.

• A record can contain up to 16 fields. The total number of bytes of all field-
widths plus the number of fields should not exceed 255.

• If a FIELD statement executes for an opened file having the number of fields or
field width unmatching that of the FIELD specifications except for field variables,
a run-time error will occur.

• If more than one FIELD statement is issued to a same file, the last one takes
effect.

File I/O statement

FIELD
Allocates string variables as field variables.
221

Chapter 14. Statement Reference
Syntax errors:

Run-time errors:

Example:

fileNumber% = 4
OPEN "Datafile.dat" AS #fileNumber%
FIELD #fileNumber%,20 AS code39$,
16 AS itf$,5 AS kyin$

Reference:

Error code and message Meaning

error 71: Syntax error filenumber is missing.

Error code Meaning

05h Parameter out of the range
(fieldwidth out of the range)

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than data files.)

3Ah File number out of the range

3Ch FIELD overflow
(A FIELD statement specifies the record length exceeding 255
bytes.)

3Dh A FIELD statement specifies the field width which does not
match one that specified in file creation.

Statements: CLFILE, CLOSE, GET, OPEN and PUT
222

Syntax:

FOR controlvariable = initialvalue TO finalvalue [STEP
increment]

...

NEXT [controlvariable]

Parameter:

controlvariable

A non-array numeric variable.

initialvalue, finalvalue, and increment

Numeric expressions.

Description:

FOR…NEXT defines a loop containing statements (which is called "body of a loop")

to be executed by the number of repetitions controlled by initialvalue,
finalvalue, and increment.

■ Processing procedures

(1) The Interpreter assigns initialvalue to controlvariable.

(2) The Interpreter checks terminating condition; that is, it compares the value of
controlvariable against the finalvalue.

- When the value of increment is positive:

If the value of controlvariable is equal to or less than the final-
value, go to step (3). If it becomes greater the finalvalue, the program
proceeds with the first line after the NEXT statement (the loop is over).

- When the value of increment is negative:

If the value of controlvariable is equal to or greater than the final-
value, go to step (3). If it becomes less than the finalvalue, the pro-
gram proceeds with the first line after the NEXT statement (the loop is over).

(3) The body of the loop executes and the NEXT statement increases the value of
controlvariable by the value of increment. Then, control returns to
the FOR statement at the top of the loop. Go back to step (2).

Flow control statement

FOR...NEXT
Defines a loop containing statements to be executed a specified number of times.
223

Chapter 14. Statement Reference
• The default value of increment is 1.

• You can nest FOR...NEXT statements to a maximum of 10 levels.

• When using the FOR...NEXT statement together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN
...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB and
WHILE...WEND), you can nest them to a maximum of 30 levels.

• A same controlvariable should not be reused in a nested loop. Otherwise,
a run-time error will occur when the NEXT statement for an outer FOR...NEXT
loop executes.

• Nested loops should not be crossed. Shown below is a correctly nested sample.

FOR i%=1 TO 10
 FOR j%=2 TO 100
 FOR k%=3 TO 1000
 NEXT k%
 NEXT j%
NEXT i%
FOR l%=1 TO 3
...

NEXT l%

Syntax errors:

Run-time errors:

Error code and message Meaning

error 26: Too deep nesting.

error 52: Incorrect use
of FOR…NEXT

NEXT without FOR.

error 53: Incomplete
control struc-
ture

Incomplete pairs of FOR and NEXT.

error 54: Incorrect FOR
index variable

controlvariable for FOR is dif-
ferent from that for NEXT.

error 88: 'TO' missing TO finalvalue is missing.

Error code Meaning

01h NEXT without FOR

07h Insufficient memory space
(Too deep nesting.)
224

Syntax:
Syntax 1 (Defining a numeric function):

FUNCTION funcname [(dummyparameter
[,dummyparameter...])]

Syntax 2 (Defining a character function):

FUNCTION funcname [(dummyparameter
[,dummyparameter...])][[stringlength]]

Syntax 3 (Existing from the function block prematurely):

EXIT FUNCTION

Syntax 4 (Ending the function block):

END FUNCTION

Syntax 5 (Assigning a returned value):

funcname = generalexpression

Syntax 6 (Calling a function):

funcname[(realparameter[,realparameter...])]

Parameter:

funcname

• For numerics

funcname% Integer function name
funcname Real function name

• For strings

funcname$ Character function name

dummyparameter

A non-array integer variable, a non-array real variable, or a non-array string vari-
able.

stringlength

An integer constant having a value from 1 to 255.

realparameter

A numeric or string expression.

User-defined function statement

FUNCTION…END FUNCTION
Names and defines user-created function FUNCTION.
225

Chapter 14. Statement Reference
Description:
■ Creating a user-defined function

FUNCTION...END FUNCTION creates a user-defined function. The function defini-
tion block between FUNCTION and END FUNCTION is a set of some statements
and functions.

• You cannot make double definition to a same function name.

• This statement block should not be defined in the block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN
...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB and
WHILE...WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

• FUNCTION...END FUNCTION functions can be recursive.

• In defining a character function, you can specify the maximum stringlength.
If its specification is omitted, the default value of 40 characters takes effect.

• dummyparameter, which corresponds to the variable having the same name in
the function definition block, is a local variable valid only in that block. Therefore,
if a variable having the same name as dummyparameter is used outside
FUNCTION...END FUNCTION statement block or used as a dummyparame-
ter of any other function in the same program, it will be independently treated.

• In user-defined functions, you can call other user-defined functions. You can nest
FUNCTION...END FUNCTION statements to a maximum of 10 levels.

• When using the FUNCTION...END FUNCTION together with block-structured
statements (DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION,
IF…THEN...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB
and WHILE...WEND), you can nest them to a maximum of 30 levels.

• If variables other than dummyparameter(s) are specified in the function defini-
tion block, they will be treated as local variables whose current values are avail-
able only in that function definition block, unless PRIVATE or GLOBAL is
specified.

• EXIT FUNCTION exits the function block prematurely and returns control to the
position immediately after the statement that called the user-defined function.

• Using Syntax 5 allows you to assign a return value for a function. The type of
funcname should match that of a return value. If no return value is assigned to
funcname , the value 0 or a null string will be returned for a numeric function or
a character function, respectively.

■ Calling a user-defined function

funcname calls the function.

• The number of realparameters should be equal to that of dummyparame-
ters, and the types of the corresponding variables used in those parameters
should be identical.
226

• If you specify a global variable in realparameter when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")

Syntax errors:
■ When defining a user function

NOTE
Before any call to a FUNCTION...END FUNCTION, you need to place def-
inition of the FUNCTION function or declaration of the FUNCTION by the
DECLARE statement in your source program.

A function name is defined globally. If more than one same function name
exists in a same project, therefore, a multiple symbol definition error will
occur when files will be linked. The same error will occur also if the
FUNCTION...END FUNCTION defines a user-created function in a file to
be included and more than one file in a same project reads that included
file.

Error code and message Meaning

error 64: Function
redefinition

You made double definition to a same
function name.

error 71: Syntax error • funcname is an integer function
name, but generalexpression
is a real type. (If funcname is a
real function name and general-
expression is an integer type,
then no error occurs.)

• stringlength is out of the
range.

• stringlength is not an integer
constant.

• The function name is assigned a
value outside the function definition
block.

error 95: Incorrect use
of FUNCTION,
EXIT FUNC-
TION, or END
FUNCTION

• The EXIT FUNCTION statement is
specified outside the function defini-
tion block.

• The END FUNCTION statement is
specified outside the function defini-
tion block.
227

Chapter 14. Statement Reference
■ When calling a user-defined function

Run-time errors:

Error code and message Meaning

error 96: Incomplete
control struc-
ture (FUNC-
TION...END
FUNCTION)

END FUNCTION is missing.

error 97: Cannot use
FUNCTION in
control struc-
ture

The FUNCTION…END FUNCTION
statement is defined in other block-
structured statements such as FOR
and IF statement blocks.

Error code and message Meaning

error 68: Mismatch argu-
ment type or
number

• The number of the real parameters is
not equal to that of the dummy
parameters.

• dummyparameter was an integer
variable in defining a function, but
realparameter is a real type in
calling the function. (If dummypa-
rameter was a real variable in
defining a function and realpa-
rameter is an integer type, then no
error occurs.)

error 69: Function unde-
fined

Calling of a user-defined function pre-
cedes the definition of the user-defined
function.

Error code Meaning

07h Insufficient memory space
(You nested FUNCTION statements to more than 10 levels.)

0Fh String length out of the range
(The returned value of stringlength exceeds the allowable
range.)
228

Example:
File 1 File 2

DECLARE FUNCTION add(x,y) FUNCTION add(X,Y)
A=1:B=2 add=X+Y
PRINT "TEST" END FUNCTION
C=add(A,B)
PRINT C

...

Reference:

Statements: DECLARE

TEST
3

229

Chapter 14. Statement Reference
Syntax:

GET [#]filenumber[,recordnumber]

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

recordnumber

A numeric expression which returns a value from 1 to 32767.

Description:

GET reads the record specified by recordnumber from the data file specified by
filenumber and assigns the data to the field variable(s) specified by the FIELD
statement.

• filenumber is the file number of a data file opened by the OPEN statement.

• If a data file having no record is specified, a run-time error will occur.

• The first record in a data file is counted as 1.

• If no recordnumber is specified, the GET statement reads a record whose
number is one greater than that of the record read by the preceding GET state-
ment.

If no recordnumber is specified in the first GET statement after opening of a
file, the first record (numbered 1) in the file will be read.

• recordnumber should be equal to or less than the number of written records.
If it is greater, a run-time error will occur.

• If a GET statement without recordnumber is executed after occurrence of a
run-time error caused by an incorrect record number in the preceding GET state-
ment, then the new GET statement reads the record whose record number is one
greater than that of the latest record correctly read.

• If a GET statement without recordnumber is executed after execution of the
preceding GET statement specifying the last record (the number of the written
records), then a run-time error will occur.

File I/O statement

GET
Reads a record from a data file.
230

Syntax errors:

Run-time errors:

Example:

GET #filNo,RecordNo
GET #4
GET #3,100

Reference:

Error code and message Meaning

error 71: Syntax error filenumber is missing.

Error code Meaning

34h Bad file name or number

(You specified filenumber of an unopened file.)

36h Improper file type

(You specified filenumber of a file other than data files.)

3Ah File number out of the range

3Eh A PUT or GET statement executed without a FIELD statement.

3Fh Bad record number

(No record to be read in a data file.)

Statements: FIELD, OPEN, and PUT
231

Chapter 14. Statement Reference
Syntax:

GLOBAL varname [,varname...]

Parameter:

varname

numericvariable [(subscript)]

stringvariable [(subscript)[stringlength]]

subscript

For one-dimensional: integerconstant

For two-dimensional: integerconstant, integerconstant

Where integerconstant is a numeric expression which returns a value
from 0 to 254.

stringlength

An integer constant from 1 to 255.

Description:

GLOBAL allows variables declared by varname to be referred to or updated in
other programs.

• If a same variable name as specified inside the GLOBAL statement is already
declared in your file, the GLOBAL statement will result in an error.

• Up to 30 variables can be declared inside one GLOBAL statement.

• You may declare non-array variables and array variables together inside one
GLOBAL statement.

Declarative statement

GLOBAL
Declares one or more work variables or register variables defined in a file,
to be global.
232

Syntax errors:

Run-time errors:

Reference:

Statements: DIM and PRIVATE

Error code and message Meaning

error 7: Variable name
redefinition

The array declared with GLOBAL
statement had been already declared
with DEFREG statement.

error 71: Syntax error • stringlength is out of the
range.

• stringlength is not an integer
constant.

error 72: Variable name
redefinition

• A same variable name is double
declared inside a same GLOBAL
statement.

• A same variable name is used for a
non-array variable and array vari-
able.

error 78: Array symbols
exceed 30 for
one DIM, PRI-
VATE, or GLO-
BAL statement

• More than 30 variables are declared
inside one GLOBAL statement.

Error code Meaning

05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)
233

Chapter 14. Statement Reference
Syntax:

GOSUB label

Description:

GOSUB calls a subroutine specified by label.

• Within the subroutine itself, you use a RETURN statement which indicates the log-
ical end of the subroutine and returns control to the statement just after the
GOSUB that called the subroutine.

• You may call a subroutine any number of times as long as the Interpreter allows
the nest level and other conditions.

• Subroutines can appear anywhere in a source program. However, you should
separate subroutines from the main program by any means such as by placing
subroutines immediately following the END or GOTO statement, in order to pre-
vent the main part of the program from falling into those subroutines.

• A subroutine can call other subroutines. You can nest GOSUB statements to a
maximum of 10 levels.

• When using the GOSUB statement together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN
...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB, and
WHILE...WEND), you can nest them to a maximum of 30 levels.

Syntax errors:

Flow control statement

GOSUB
Branches to a subroutine.

Error code and message Meaning

error 71: Syntax error • label has not been defined.

• label is missing.
234

Run-time errors:

Reference:

Error code Meaning

03h RETURN without GOSUB statement

07h Insufficient memory space
(Too deep nesting)

Statements: RETURN
235

Chapter 14. Statement Reference

236

Syntax:

GOTO label

Description:

GOTO unconditionally transfers control to a label specified by label.

• In an IF statement block, you can omit GOTO immediately following THEN or
ELSE, as shown below.

IF a=0 THEN Lbl1 ELSE Lbl2
END IF

• GOTO allows you to branch anywhere in your program. However, you should
branch only to another line in a program module or subroutine at the same pro-
gram level. Avoid transferring control to a DEF FN block or other blocks at the dif-
ferent program level.

• You can use GO TO instead of GOTO.

Syntax errors:

Flow control statement

GOTO
Branches to a specified label.

Error code and message Meaning

error 71: Syntax error • label has not been defined.

• label is missing.

Syntax:
Syntax 1:

IF conditionalexpression THEN
statementblock1

[ELSE
statementblock2]

END IF

Syntax 2:

IF conditionalexpression ELSE
statementblock

END IF

Parameter:

conditionalexpression

A numeric expression which evaluates to true or false.

Description:

IF statement block tests whether conditionalexpression is true or false. If
the condition is true (not zero), statementblock which follows THEN is exe-

cuted; if it is false (zero), statementblock which follows ELSE is executed.
Then, program control passes to the first statement after END IF.

• You can omit either THEN block or ELSE block.

• IF statement block should terminate with END IF which indicates the end of the
block.

• IF statement blocks can be nested. When using the IF statement block together
with other block-structured statements (DEF FN...END DEF, FOR...NEXT, FUNC-
TION...END FUNCTION, IF...THEN...ELSE...END IF, SELECT...CASE…END
SELECT, SUB...END SUB, and WHILE...WEND), you can nest them to a maxi-
mum of 30 levels.

Flow control statement

IF...THEN...ELSE...END IF
Conditionally executes specified statement blocks depending upon the evaluation of a condi-
tional expression.
237

Chapter 14. Statement Reference
• A block-structured IF statement block has the following advantages over a sin-
gle-line IF statement (which is not supported in BHT-BASIC):

- More complex conditions can be tested since an IF statement block can con-
tain more than one line for describing conditions.

- You can describe as many statements or statement blocks as you want.

- Since it is not necessary to put more than one statement in a line, you can
describe easy-to-read programs according to the logical structure, making cor-
rection and debugging easy.

• You can use ENDIF instead of END IF.

Syntax errors:

Example:

k$=INKEY$
IF k$<>"" THEN
 PRINT k$;
END IF

Reference:

Error code and message Meaning

error 26: Too deep nesting.

error 50: Incorrect use
of IF...THEN
...ELSE...END
IF

THEN is missing.

error 51: Incomplete
control
structure

END IF is missing.

Statements: DEF FN...END DEF, FOR...NEXT, ON…GOSUB, ON...GOTO,
SELECT...CASE...END SELECT, and WHILE...WEND
238

Syntax:

INPUT [;]["prompt"{,|;}]variable

Parameter:

"prompt"
A string constant.

variable
A numeric or string variable.

Description:

When execution reaches an INPUT statement, the program pauses and waits for
the user to enter data from the keyboard while showing a prompting message spec-
ified by "prompt".

After typing data, the user must press the ENT key. Then, the INPUT statement
assigns the typed data to variable.

• "prompt" is a prompting message to be displayed on the LCD.

• The semicolon (;) or comma (,) after "prompt" has the following meaning:

If "prompt" is followed by a semicolon, the INPUT statement displays the
prompting message followed by a question mark and a space.

INPUT "data= ";a$

If "prompt" is followed by a comma, the statement displays the prompting mes-
sage but no question mark or space is appended to the prompting message.

INPUT "data= ",a$

• The cursor shape specified by the most recently executed LOCATE statement
takes effect.

I/O statement

INPUT
Reads input from the keyboard into a variable.

data= ?

data=
239

Chapter 14. Statement Reference
• Even after execution of the CURSOR OFF statement, the INPUT statement dis-
plays the cursor.

• Data inputted by the user will echo back to the LCD. To assign it to variable, it
is necessary to press the ENT key.

Pressing the ENT key causes also a line feed. If INPUT is followed by a semico-
lon (;) in an INPUT statement, however, line feed is suppressed.

If you type no data and press the ENT key, an INPUT statement automatically
assigns a zero or a null string to variable that is a numeric or string, respec-
tively.

• When any echoed back data is displayed on the LCD, pressing the Clear or BS
key erases the whole displayed data or a most recently typed-in character of the
data, respectively. If no data is displayed, pressing the Clear orþBSþkey pro-
duces no operation.

• Notes for entering numeric data:

The effective length of numeric data is 12 characters. The 13th typed-in literal
and the following will be ignored.

Valid literals include 0 to 9, a minus sign (-), and a period (.). They should be in
correct numeric data form. If not, INPUT statement accepts only numeric data
from the first literal up to correctly formed literal, as valid data. If no valid data is
found, the INPUT statement automatically assigns a zero (0) to variable.

A plus sign (+) can be typed in, but it will be ignored in evaluation of the typed-in
data.

• Notes for entering string data:

The effective length of string data is the maximum string length of variable.
Overflowed data will be ignored.

• The sizes of prompting message literals, echoed back literals and cursor depend
upon the screen mode (the single-byte ANK mode, two-byte Kanji mode, or con-
densed two-byte Kanji mode). In the single-byte ANK mode, they appear in sin-
gle-byte code size; in the two-byte Kanji or condensed two-byte Kanji mode, they
appear in half-width character size. (Note that the condensed two-byte Kanji
mode is supported by the BHT-4000/BHT-5000.)

In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, not only the screen mode but
also the display font size determines the sizes of prompting message literals, ech-
oed back literals, and cursor. If the standard-size font is selected, they appear in
standard size; if the small-size font is selected, they appear in small size.

In the BHT-7000/BHT-7500, in addition to the screen mode and display font size,
the character width (normal-width or double-width) determines those sizes. If the
double-width is selected, they appear in double width.
240

Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 71: Syntax error • Neither a comma (,) nor semicolon (;)
follows "prompt".

• "prompt" is not a string constant.

Error code Meaning

06h The operation result is out of the allowable range.
(Numeric variable is out of the range.)

Statements: LINE INPUT and LOCATE

Functions: INKEY$ and INPUT$
241

Chapter 14. Statement Reference
Syntax:

INPUT #filenumber,variable[,variable...]

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

variable

A numeric or string variable.

Description:

INPUT # reads data from a device I/O file (a communications device file or bar
code device file) specified by filenumber and assigns it to variable.

• filenumber is a number assigned to the device I/O file when it was opened.

• Reading data from a communications device file:

An INPUT # statement reads data fields separated by CR codes or commas (,)
and assigns them to variable.

If more than one variable is specified in an INPUT # statement, the program
waits until all of the specified variables receive data.

If an INPUT # statement reads data longer than the allowable string length, it
ignores only the overflowed data and completes execution, causing no run-time
error.

• Reading data from a bar code device file:

An INPUT # statement reads the scanned data into the 1st variable.

If more than one variable is specified in an INPUT # statement, the program
ignores the 2nd and the following variables.

If an INPUT # statement reads data longer than the allowable string length, it
ignores only the overflowed data and completes execution, causing no run-time
error.

In the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the
maximum number of digits has been omitted in the read code specifications of the
OPEN "BAR:" statement (except for the universal product codes), then the
INPUT # statement can read bar codes of up to 99 digits. To read bar codes of
40 digits or more, you should define a sufficient string variable length beforehand.

File I/O statement

INPUT #
Reads data from a device I/O file into specified variables.
242

• Notes for entering numeric data:

Valid characters include 0 to 9, a minus sign (-), and a period (.). They should be
in correct numeric data form. If not, INPUT # statement accepts only numeric
data from the first character up to correctly formed character, as valid data. If no
valid data is found, the INPUT # statement automatically assigns a zero (0) to
variable.

If the INPUT # statement reads alphabetical characters with a numeric variable,
it automatically assigns a zero (0) to variable. For reading of Code 39 bar
codes that may encode alphabetical characters, therefore, special care should be
taken.

Syntax errors:

Run-time errors:

Example:

INPUT #fileNo,dat$

Reference:

Error code and message Meaning

error 71: Syntax error filenumber is missing.

Error code Meaning

06h The operation result is out of the allowable range.
(Numeric variable is out of the range.)

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than device I/O
files.)

3Ah File number out of the range

Statements: CLOSE, LINE INPUT#, OPEN "BAR:", and OPEN "COM:"

Functions: INPUT$
243

Chapter 14. Statement Reference
Syntax:
Syntax 1 (Assigning a string or a control code to a function key):

KEY keynumber,stringdata

Syntax 2 (Defining a function key as the backlight function on/off key):

KEY backlightkeynumber,onduration

Syntax 3 (Defining a magic key as the battery voltage display key. Valid in the BHT-
5000/BHT-6000/BHT-6500):

KEY magickeynumber,"BAT" (Battery voltage display key)

Syntax 4 (Defining a magic key as the trigger switch or shift key. Valid in the BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500):

KEY magickeynumber,"TRG" (Trigger switch)
KEY magickeynumber,"SFT" (Shift key)

Parameter:
keynumber

(BHT-3000/BHT-4000) A numeric expression which returns a
value from 1 to 29.

(BHT-5000 with 32-key pad) A numeric expression which returns a
value from 1 to 46.

(BHT-5000 with 26-key pad) A numeric expression which returns a
value from 1 to 34.

(BHT-6000) A numeric expression which returns a
value from 1 to 31, 33, and 34.

(BHT-6500) A numeric expression which returns a
value from 1 to 31 and 33 to 38.

(BHT-7000 with 32-key pad/BHT-7500) A numeric expression which returns a
value from 1 to 31 and 33 to 50.

(BHT-7000 with 26-key pad) A numeric expression which returns a
value from 1 to 31 and 33 to 38.

stringdata

A string expression which returns up to two characters or a control code.

I/O statement

KEY
Assigns a string or a control code to a function key; also defines a function key as the LCD
backlight function on/off key. This statement also defines a magic key as the trigger switch,
shift key, or battery voltage display key.
244

backlightkeynumber

(BHT-3000/BHT-4000) A numeric expression which returns
a value from 0 to 29.

(BHT-5000 with 32-key pad) A numeric expression which returns
a value from 0 to 46.

(BHT-5000 with 26-key pad) A numeric expression which returns
a value from 0 to 34.

(BHT-6000) A numeric expression which returns
a value from 1 to 31, 33, and 34.

(BHT-6500) A numeric expression which returns
a value from 1 to 31 and 33 to 38.

(BHT-7000 with 32-key pad/BHT-7500) A numeric expression which returns
a value from 1 to 31 and 33 to 50.

(BHT-7000 with 26-key pad) A numeric expression which returns
a value from 1 to 31 and 33 to 38.

onduration

Keyword BL and a string expression which returns a value from 0 to 255. (BL0
to BL255)

magickeynumber

(BHT-5000/BHT-6000) 30 or 31
(BHT-6500/BHT-7000 with 26-key pad) 30, 31, 35, or 36

(BHT-7000 with 32-key pad/BHT-7500) 30, 31, 47, 48

Description:
■ Assigning a string or a control code to a function key

KEY in syntax 1 assigns a string or a control code specified by stringdata to a
function key specified by keynumber. Pressing the specified function key gener-
ates the assigned string data or control code and then passes it to the user program
as if each character is keyed in directly from the keyboard.

• keynumber is a key number assigned to a particular function key. (Refer to
Appendix E, "Key Number Assignment on the Keyboard.")

• In the BHT-5000, specifying 32 to keynumber assigns the trigger switch. In the
BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32 will be
ignored.

• stringdata is a character code ranging from 0 (00h) to 255 (FFh). (For the
character codes, refer to Appendix C, "Character Sets.")

• If you specify more than two characters to stringdata, only the first two char-
acters are valid.

• stringdata inputted by pressing the specified function key may be read to the
user program by INPUT or LINE INPUT statement or INKEY$ or INPUT$
function.

Note that INKEY$ or INPUT$ (1) function can read only the first one character
of the assigned two. The second character remains in the keyboard buffer and
can be read by the INPUT or LINE INPUT statement or INKEY$ or INPUT$
function.
245

Chapter 14. Statement Reference
• If pressed together with the Shift key, any numerical key can operate as a function
key.

• If you issue more than one KEY statement specifying a same function key, the last
statement takes effect.

• If a null string is assigned to a function key, pressing the function key produces no
key entry. To make a particular function key invalid, you specify a null string to
stringdata as shown below.

KEY 1,""
KEY 2,CHR$(0)
KEY 3,CHR$(&h0)

■ Defining a function key as the LCD backlight function on/off key

KEY in syntax 2 defines a function key specified by backlightkeynumber as
the backlight function on/off key and sets the length of backlight ON-time specified
by onduration. (Refer to Chapter 13, "LCD Backlight Function.")

• backlightkeynumber is a key number assigned to a particular function key.
(Refer to Appendix E, "Key Number Assignment on the Keyboard.")

Pressing the specified backlight function on/off key activates or deactivates the
backlight function.

• In the BHT-3000/BHT-4000/BHT-5000, specifying zero (0) to backlightkey-
number restores the default (which is the combination of the trigger switch and
shift key).

• In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying a
zero (0) or 32 to backlightkeynumber will be ignored.

• In the BHT-3000/BHT-4000/BHT-5000, pressing the trigger switch while holding
down the shift key functions as the backlight on/off control key by default. In the
BHT-6000/BHT-6500/BHT-7000/BHT-7500, pressing the M1 key (key number 33)
while holding down the shift key functions as the backlight on/off control key by
default.

• If pressed together with the Shift key, any numerical key can operate as a function
key.

• onduration is the length of time in seconds from when the backlight is turned
on to automatic turning-off. Pressing the trigger switch or any key (except for the
backlight function on/off key) while the backlight is on resets the counter of
onduration to the specified time length and restarts counting down.

Specification of BL0 disables the backlight function. Specification of BL255
keeps the backlight on.

• A function key defined as the LCD backlight function on/off key cannot be used to
enter string data.
246

• If you issue more than one KEY statement, the last statement takes effect. That
is, if you define more than one key as the backlight function on/off key as shown
below, only the function key numbered 8 operates as the backlight function on/off
key and the length of backlight ON-time is 15 seconds.

KEY 5,"BL40"
KEY 8,"BL15"

■ Defining a magic key as the trigger switch, shift key, or battery voltage display
key

• In the BHT-5000/BHT-6000/BHT-6500, KEY in syntax 3 defines a magic key as
the trigger switch, shift key, or battery voltage display key as well as assigning
string data.

KEY 30,"TRG" M1 key as the trigger switch
KEY 31,"SFT" M2 key as the shift key
KEY 30,"BAT" SF+M1 keys as the voltage display key

• In the BHT-7000/BHT-7500, KEY in syntax 3 defines a magic key as the trigger
switch or shift key as well as assigning string data. (It cannot define a magic key
as the battery voltage display key.)

KEY 30,"TRG" M1 key as the trigger switch
KEY 31,"SFT" M2 key as the shift key

NOTE
If you issue KEY statements specifying a same function key, only the last
KEY statement takes effect.

The description below, for example, makes the function key numbered 3
operate as the backlight function on/off key and the length of backlight
ON-time is 100 seconds.

KEY 3,"a"
KEY 3,"BL100"

The description below assigns string data "a" to the function key numbered
3. The default backlight function on/off key (in the BHT-3000/BHT-4000/
BHT-5000, the combination of the trigger switch and shift key; in the
BHT-6000/BHT-6500/BHT-7000/BHT-7500, the combination of M1 key
and shift key) will be restored.

KEY 3,"BL100"
KEY 3,"a"

The description below defines the magic key M1 as the trigger switch.
The default battery voltage display key (combination of the ENT key and
shift key) will be restored.

KEY 30,"BAT"
KEY 30,"TRG"
247

Chapter 14. Statement Reference
Syntax errors:

Run-time errors:

Example:
Syntax 1:

KEY 1,"a"
KEY 2,"F"+CHR$(13)
KEY 3,""

Syntax 2:

KEY 1,"BL60"

Reference:

Error code and message Meaning

error 71: Syntax error • keynumber is missing.

• stringdata is missing.

• backlightkeynumber is miss-
ing.

• stringdata is a numeric expres-
sion.

Error code Meaning

05h Parameter out of the range
(keynumber, backlightkeynumber, or magickey-
number is out of the range.)

Statements: KEY OFF, KEY ON, and ON KEY...GOSUB
248

Syntax:

KEY (keynumber){ON|OFF}

Parameter:

keynumber

(BHT-3000/BHT-4000) A numeric expression which returns a
value from 1 to 29.

(BHT-5000 with 32-key pad) A numeric expression which returns a
value from 1 to 46.

(BHT-5000 with 26-key pad) A numeric expression which returns a
value from 1 to 34.

(BHT-6000) A numeric expression which returns a
value from 1 to 31, 33, and 34.

(BHT-6500) A numeric expression which returns a
value from 1 to 31 and 33 to 38.

(BHT-7000 with 32-key pad/BHT-7500) A numeric expression which returns a
value from 1 to 31 and 33 to 50.

(BHT-7000 with 26-key pad) A numeric expression which returns a
value from 1 to 31 and 33 to 38.

Description:

■ KEY ON

KEY ON enables keystroke trapping for a function key specified by keynumber.
(Refer to Appendix E, "Key Number Assignment on the Keyboard.")

• Between every execution of statements, the Interpreter checks whether a function
key specified by the KEY ON statement is pressed or not. If the key is pressed,
the Interpreter transfers control to the event-handling routine defined by an ON
KEY...GOSUB statement before the KEY ON statement.

• If a function key which has been assigned a null string by the KEY statement is
specified by the KEY ON statement, the keystroke trap takes place.

• If you specify a function key which has been defined as the LCD backlight func-
tion on/off key, trigger switch, shift key, or battery voltage display key by using the
KEY ON statement, then no keystroke trap takes place.

• Keystroke trapping has priority over the INKEY$ function.

I/O statement

KEY ON and KEY OFF
Enables or disables keystroke trapping for a specified function key.
249

Chapter 14. Statement Reference
• When a program waits for the keyboard entry by the INPUT, LINE INPUT state-
ment or INPUT$ function, pressing a function key specified by the KEY ON state-
ment neither reads the pressed key data nor causes keystroke trapping.

• In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32
to keynumber will be ignored.

■ KEY OFF

KEY OFF disables keystroke trapping for a function key specified by keynumber.

• In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32
to keynumber will be ignored.

Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 71: Syntax error • keynumber is not enclosed in
parentheses ().

• Neither ON or OFF follows (key-
number).

Error code Meaning

05h Parameter out of the range
(keynumber is out of the range.)

Statements: KEY and ON KEY...GOSUB
250

Syntax:

KILL "[drivename:]filename"

Parameter:

"[drivename:]filename"

A string expression.

Description:

KILL deletes a data file or a user program file specified by "[drive-
name:]filename".

In the BHT-5000/BHT-6000/BHT-6500, the drivename may be A: or B:. If the
drivename is omitted, the default A: applies.

In the BHT-7000/BHT-7500, the drivename (A: or B:) will be ignored.

• The specified file will be deleted from both the data and the directory in the mem-
ory.

• A file to be deleted should be closed beforehand.

Syntax errors:

File I/O statement

KILL
Deletes a specified file from the memory.

Error code and message Meaning

error 3: ’"’ missing No double quote precedes or follows
[drivename:]filename.

error 71: Syntax error [drivename:]filename is not
enclosed in double quotes.
251

Chapter 14. Statement Reference
Run-time errors:

Example:

CLOSE
IF kyIn$="Y" THEN

KILL "Master.Dat"
END IF

Reference:

Error code Meaning

02h Syntax error
(The format of "[drivename:]filename" is not correct.)

35h File not found

37h File already open

Statements: CLFILE
252

Syntax:
Syntax 1 (Loading a user-defined Kanji font):

KPLOAD kanjicode, fontarrayname

Syntax 2 (Loading a user-defined cursor. Valid in the BHT-7000/BHT-7500):

KPLOAD kanjicode, cursorarrayname

Parameter:

kanjicode

• For a user-defined Kanji font

 (BHT-3000/BHT-4000/BHT-5000/BHT-6000/BHT-6500)
A numeric expression which returns a value from
EBC0h to EBDFh.

 (BHT-7000/BHT-7500) A numeric expression which returns a value from
EBC0h to EBDFh, EC40h to EC7Eh, and EC80h to
EC83h.

• For a user-defined cursor

A numeric expression which returns zero (0).

fontarrayname and cursorarrayname

An array integer variable name.

Description:
■ Loading a user-defined Kanji font

KPLOAD loads a user-defined Kanji font data defined by fontarrayname to the
user font area specified by kanjicode.

• kanjicode is a shift JIS code.

• To display user-defined Kanji fonts loaded by the KPLOAD, you use the PRINT
statement in the two-byte Kanji mode. If you attempt to display an undefined
Kanji character code, a full-width space character will appear.

I/O statement

KPLOAD
Loads a user-defined Kanji font in the two-byte Kanji mode.
This statement also loads a user-defined cursor for the BHT-7000/BHT-7500.

NOTE
Do not specify parentheses () or subscripts which represent a gen-
eral array as shown below. It will result in an error.

KPLOAD &HEBC0,kp%() ’error
KPLOAD &HEBC0,kp%(2) ’error
253

Chapter 14. Statement Reference
• The loaded user-defined fonts are effective during execution of the user program
which loaded those fonts and during execution of the successive user programs
chained by the CHAIN statement.

• If you load a font to the same kanjicode more than one time, the most recently
specified font takes effect.

• Only when the Interpreter executes the KPLOAD statement, it refers to the array
data defined by fontarrayname. So, once a user program has finished load-
ing the user font, changing the data in the array or deleting the array itself (by the
ERASE statement) will not affect the already loaded user font.

• An array integer variable--a work array, register array, or common array--for fon-
tarrayname should be declared by the DIM, DEFREG, or COMMON statement,
respectively.

DIM kp0%(15)
DEFREG kp1%(15)
COMMON kp2%(15)

The array variable should be one-dimensional and have at least 16 elements.
Each element data should be an integer and stored in the area from the 1st to
16th elements of the array.

• The loaded user-defined fonts are valid also in the condensed two-byte Kanji
mode (BHT-4000/BHT-5000). They are also effective when the small-size font is
selected (BHT-6000/BHT-6500/BHT-7000/BHT-7500). Note that the dot pattern
of each character will be condensed by the system program. (For the generating
procedure of condensed user-defined fonts, refer to Appendix C3., "Display Mode
and Letter Size.")

• The loaded user-defined fonts are valid also in the double-width mode (BHT-
7000/BHT-7500). Note that the dot pattern of each character will be doubled in
width by the system program.

■ Loading a user-defined cursor (BHT-7000/BHT-7500)

KPLOAD loads a user-defined cursor data defined by cursorarrayname to the

user font area specified by kanjicode.

• To display user-defined cursors loaded by the KPLOAD, you use the LOCATE
statement in the two-byte Kanji mode, in which you set 255 to cursorswitch
(LOCATE ,,255).

• The loaded user-defined cursors are effective during execution of the user pro-
gram which loaded those cursors and during execution of the successive user
program chained by the CHAIN statement.

• Only when the Interpreter executes the KPLOAD statement, it refers to the array
data defined by cursorarrayname. So, once a user program has finished
loading the user cursor, changing the data in the array or deleting the array itself
(by the ERASE statement) will not affect the already loaded user cursor.
254

• An array integer variable--a work array, register array, or common array--for cur-
sorarrayname should be declared by the DIM, DEFREG, or COMMON state-
ment, respectively.

DIM kp0%(5)
DEFREG kp1%(5)
COMMON kp2%(5)

The array variable should be one-dimensional and have at least 6 elements.
Each element data should be an integer and stored in the area from the 1st to 6th
elements of the array.

• If the cursor size (the number of elements in an array variable wide by the number
of bits high) defined by cursorarrayname exceeds the allowable size, the
excess will be discarded.

• The cursor size will be as follows depending upon the font size.

Font size Cursor size (W x H) No. of elements

Standard-size 8 x 16 dots 8

Small-size 6 x 12 dots 6

0 1 2 3 54
LSB

MSB

76

0 1 2 3 54
LSB

MSB
255

Chapter 14. Statement Reference
• In double-width display mode, the cursor will appear in double width as shown
below:

When the standard-size font is selected

When the small-size font is selected

Syntax errors:

Cursor loaded Cursor displayed in double width

Cursor loaded Cursor displayed in double width

Error code and message Meaning

error 71: Syntax error • No fontarrayname or cursor-
arrayname is defined.

• fontarrayname or cursorar-
rayname has an array string vari-
able.

• fontarrayname or cursorar-
rayname includes parentheses ().

• fontarrayname or cursorar-
rayname includes subscripts.

0 1 2 3 54
LSB

MSB

76
LSB

MSB

0 1 2 3 54 76 8 9 1110 12131415

0 1 2 3 54
LSB

MSB

LSB

MSB

0 1 2 3 54 76 8 9 1110
256

Run-time errors:

Example:
DIM kp%(15)
kp%(0)=&H0000
kp%(1)=&H8011
kp%(2)=&H6022
kp%(3)=&H1844
kp%(4)=&H0600
kp%(5)=&H8802
kp%(6)=&H8AF2
kp%(7)=&H4A92
kp%(8)=&H4A97
kp%(9)=&H2A92
kp%(10)=&H1FF2
kp%(11)=&H2A92
kp%(12)=&H4A97
kp%(13)=&H4A92
kp%(14)=&H8AF2
kp%(15)=&H8802

...

SCREEN 1
KPLOAD &HEBC0,kp%
PRINT CHR$(&HEB);CHR$(&HC0)

Array Elements

Reference:
Statements: APLOAD, COMMON, DEFREG, DIM, PRINT, and SCREEN

Error code Meaning

05h Parameter out of the range
(• kanjicode is out of the range.)
(• fontarrayname or cursorarrayname is not correct.)

08h Array not defined

kp%(0) kp%(5) kp%(10) kp%(15) Bit in each array element
0 (LSB)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 (MSB)
257

Chapter 14. Statement Reference
Syntax:
Syntax 1:

[LET] stringvariable = stringexpression

Syntax 2:

[LET] numericvariable = numericexpression

Description:

LET assigns a value of expression on the right-hand side to a variable on the left-
hand side.

• In a numeric data assignment, the assignment statement automatically converts
an integer value to a real value. In the type conversion from a real value to an
integer value, it rounds off the fractional part.

• Keyword LET can be omitted since the equal sign is all that is required to assign
a value.

• The data type of a variable and an expression must correspond.

Syntax errors:

Assignment statement

LET
Assigns a value to a given variable.

Error code and message Meaning

error 71: Syntax error The data type on the right- and left-
hand sides does not correspond. That
is, the variable on the left-hand side is
numeric but the expression on the
right-hand side is a string, or vice
versa.
258

Run-time errors:

Error code Meaning

06h The operation result is out of the allowable range.

0Fh String length out of the range
(In a string assignment, the string length of the evaluated result
on the right-hand side exceeds the maximum length of the string
variable on the left-hand side.)

10h Expression too long or complex
259

Chapter 14. Statement Reference
Syntax:

LINE INPUT ["prompt"{,|;}]stringvariable

Parameter:

"prompt"

A string constant.

stringvariable

A string variable.

Description:

When execution reaches a LINE INPUT statement, the program pauses and waits
for the user to enter data from the keyboard while showing a prompting message
specified by "prompt".

After typing data, the user must press the ENT key. Then, the LINE INPUT state-

ment assigns the typed data to stringvariable.

• A LINE INPUT statement cannot assign a numeric variable. (An INPUT state-
ment can do.)

• "prompt" is a prompting message to be displayed on the LCD.

• The semicolon (;) or comma (,) after "prompt" has the following meaning:

If "prompt" is followed by a semicolon, the LINE INPUT statement displays
the prompting message followed by a question mark and a space.

LINE INPUT "data= ";a$

I/O statement

LINE INPUT
Reads input from the keyboard into a string variable.

data= ?
260

If "prompt" is followed by a comma, the statement displays the prompting mes-
sage but no question mark or space is appended to the prompting message.

LINE INPUT "data= ",a$

• The cursor shape specified by the most recently executed LOCATE statement
takes effect.

• Even after execution of the CURSOR OFF statement, the LINE INPUT statement
displays the cursor.

• Data inputted by the user will echo back to the LCD. To assign it to string-
variable, it is necessary to press the ENT key.

Pressing the ENT key causes also a line feed.

If you type no data and press the ENT key, a LINE INPUT statement automati-
cally assigns a null string to stringvariable.

• When any echoed back data is displayed on the LCD, pressing the Clear or BS
key erases the whole displayed data or a most recently typed-in character of the
data, respectively. If no data is displayed, pressing the Clear or BS key produces
no operation.

• Notes for entering string data:

The effective length of string data is the maximum string length of string-
variable. Overflowed data will be ignored.

• The sizes of prompting message literals, echoed back literals and cursor depend
upon the screen mode (the single-byte ANK mode, two-byte Kanji mode, or con-
densed two-byte Kanji mode). In the single-byte ANK mode, they appear in sin-
gle-byte code size; in the two-byte Kanji or condensed two-byte Kanji mode, they
appear in half-width character size. (Note that the condensed two-byte Kanji
mode is supported by the BHT-4000/BHT-5000.)

In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, not only the screen mode but
also the display font size determines the sizes of prompting message literals, ech-
oed back literals, and cursor. If the standard-size font is selected, they appear in
standard size; if the small-size font is selected, they appear in small size.

In the BHT-7000/BHT-7500, in addition to the screen mode and display font size,
the character width (normal-width or double-width) determines those sizes. If the
double-width is selected, they appear in double width.

data=
261

Chapter 14. Statement Reference
Syntax errors:

Reference:

Error code and message Meaning

error 71: Syntax error • INPUT is missing.

• Neither a comma (,) or semicolon (;)
follows "prompt".

• "prompt" is not a string constant.

• stringvariable has a numeric
variable.

• A semicolon (;) immediately follows
LINE INPUT.

Statements: INPUT and LOCATE

Functions: INKEY$ and INPUT$
262

Syntax:

LINE INPUT #filenumber,stringvariable

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

stringvariable

A string variable.

Description:

LINE INPUT # reads data from a device I/O file (a communications device file or
bar code device file) specified by filenumber and assigns it to stringvari-
able.

• filenumber is a number assigned to the device I/O file when it was opened.

• A LINE INPUT # statement cannot assign a numeric variable. (An INPUT #
statement can do.)

• Reading data from a communications device file:

A LINE INPUT # statement reads all of the string literals preceding a CR code
and assigns them to stringvariable except for CR codes and LF codes
which immediately follow a CR code.

If a LINE INPUT # statement reads data longer than the allowable string length
before reading a CR code, it ignores only the overflowed data and completes exe-
cution, causing no run-time error.

• Reading data from a bar code device file:

A LINE INPUT # statement reads the scanned data into stringvariable.

If a LINE INPUT # statement reads data longer than the allowable string length,
it ignores only the overflowed data and completes execution, causing no run-time
error.

In the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the
maximum number of digits has been omitted in the read code specifications of the
OPEN "BAR:" statement (except for the universal product codes), then the
INPUT # statement can read bar codes of up to 99 digits. To read bar codes
exceeding 40 digits, you should define a sufficient string variable length before-
hand.

File I/O statement

LINE INPUT #
Reads data from a device I/O file into a string variable.
263

Chapter 14. Statement Reference
Syntax errors:

Run-time errors:

Example:

LINE INPUT #fileNo,dat$

Reference:

Error code and message Meaning

error 71: Syntax error • INPUT is missing.

• filenumber is missing.

• "prompt" is not a string constant.

• stringvariable has a numeric
variable.

Error code Meaning

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than device I/O
files.)

3Ah File number out of the range

Statements: CLOSE, INPUT#, OPEN "BAR:", and OPEN "COM:"

Functions: INPUT$
264

Syntax:
Syntax 1:

LOCATE [column][,row[,cursorswitch]]

Syntax 2:

LOCATE,,cursorswitch

Parameter:
A numeric expression which returns a value given below.

Single-byte ANK Mode

* Values in parentheses will be returned when the system status indication is set to ON. If you specify the
bottom line of the LCD as the desired cursor position when the system status is displayed, the cursor
cannot move to the bottom line and it will move to the next to the bottom line instead.

I/O statement

LOCATE
Moves the cursor to a specified position and changes the cursor shape.

BHT-3000 BHT-4000 BHT-5000 BHT-6000/BHT-6500

Standard-size font Small-size font

column 1 to 17 1 to 27 1 to 22 1 to 17 1 to 17

row 1 to 4 1 to 10
(1 to 9*)

1 to 8 1 to 6 1 to 8

cursorswitch 0 to 2 0 to 2 0 to 2 0 to 2 0 to 2

BHT-7000 BHT-7500

Standard-size font Small-size font Standard-size font Small-size font

column 1 to 22 1 to 22 1 to 27 1 to 27

row 1 to 8 1 to 10 1 to 20 1 to 26

cursorswitch 0 to 2, 255 0 to 2, 255 0 to 2, 255 0 to 2, 255
265

Chapter 14. Statement Reference
Two-byte Kanji Mode

Condensed Two-byte Kanji Mode

* Values in parentheses will be returned when the system status indication is set to ON. If you specify the
bottom line of the LCD as the desired cursor position when the system status is displayed, the cursor
cannot move to the bottom line and it will move to the next to the bottom line instead.

Description:

LOCATE moves the cursor to a position specified by column number and row
number as co-ordinates on the LCD. It also changes the cursor shape as specified
by cursorswitch.

• The cursor location in the upper left corner of the LCD is 1, 1 which is the default.

• cursorswitch specifies the cursor shape as listed below.

BHT-6000/BHT-6500

BHT-3000 BHT-4000 BHT-5000 Standard-size font Small-size font

column 1 to 13 1 to 21 1 to 17 1 to 13 1 to 17

row 1 to 3 1 to 9
(1 to 8*)

1 to 7 1 to 5 1 to 7

cursorswitch 0 to 2 0 to 2 0 to 2 0 to 2 0 to 2

BHT-7000 BHT-7500

Standard-size font Small-size font Standard-size font Small-size font

column 1 to 17 1 to 22 1 to 21 1 to 27

row 1 to 7 1 to 9 1 to 19 1 to 25

cursorswitch 0 to 2, 255 0 to 2, 255 0 to 2, 255 0 to 2, 255

BHT-4000 BHT-5000

column 1 to 27 1 to 22

row 1 to 9 (1 to 8*) 1 to 7

cursorswitch 0 to 2 0 to 2

cursorswitch value Cursor shape

0 Invisible

1 Underline cursor (default)

2 Full block cursor

255 User-defined cursor (valid in the BHT-7000/
BHT-7500 only)
266

• Specification of the maximum value to column moves the cursor off the screen
and out of sight.

Example: Single-byte ANK mode in the BHT-3000

If you display data on the screen under the above condition, the cursor moves to
the 1st column of the next row, from where the data appears.

• In the BHT-4000, if the system status indication is set to ON, the cursor cannot
move to the bottom line of the LCD. If you specify the bottom line, the cursor will
move to the next to the bottom line instead.

• In the BHT-5000/BHT-6000/BHT-6500, if you specify the right end of the bottom
line as the desired cursor position when the system status is displayed, the cur-
sor becomes invisible.

• If some parameter is omitted, the current value remains active. If you omit col-
umn, for example, the cursor stays in the same column but moves to the newly
specified row position.

• Any parameter value outside the range will result in a run-time error.

• The column range does not differ between the normal- and double-width charac-
ters.

Run-time errors:

Example:

LOCATE 1,2
LOCATE xPos,xCSRLIN
LOCATE ,,2

Reference:

Error code Meaning

05h Parameter out of the range

Functions: CSRLIN and POS

LOCATE 17

← Cursor
267

Chapter 14. Statement Reference

268

Syntax:

ON ERROR GOTO label

Description:

ON ERROR GOTO enables error trapping so as to pass control to the first line of an
error-handling routine specified by label if an error occurs during program execu-
tion.

• To return control from an error-handling routine to a specified program location,
you use a RESUME statement in the error-handling routine.

• Specification of zero (0) to label disables error trapping.

If ON ERROR GOTO 0 is executed outside the error-handling routine, the occur-
rence of any subsequent error displays a regular run-time error code and termi-
nates the program.

If ON ERROR GOTO 0 is executed inside the error-handling routine, the Interpreter
immediately displays the regular run-time error code and terminates the program.

• You cannot trap errors which may occur during execution of the error-handling
routine. The occurrence of such an error displays a run-time error code and ter-
minates the program.

• You can use ON ERROR GO TO instead of ON ERROR GOTO.

Syntax errors:

Reference:

Error control statement

ON ERROR GOTO
Enables error trapping.

Error code and message Meaning

error 71: Syntax error • label has not been defined.

• label is missing.

Statements: RESUME

Functions: ERL and ERR

Syntax:
Syntax 1:

ON expression GOSUB label [,label...]
Syntax 2:

ON expression GOTO label [,label...]

Parameter:

expression

A numeric expression which returns a value from 1 to 255.

Description:

ON...GOSUB or ON...GOTO block branches to a label in the label list according to
the value of expression.

• If expression has the value 3, for example, the target label is the third one in
the label list counting from the first.

• If expression has the value 0 or a value greater than the number of labels in
the label list, execution of the ON...GOSUB or ON...GOTO block causes no run-
time error and passes control to the subsequent statement.

• You can specify any number of labels so long as a statement block does not
exceed one program line (512 characters).

• You can nest ON...GOSUB statements to a maximum of 10 levels.

• When using the GOSUB statement together with block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN
...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB and
WHILE...WEND), you can nest them to a maximum of 30 levels.

• You can use ON...GO TO instead of ON...GOTO.

Flow control statement

ON...GOSUB and ON...GOTO
Branches to one of specified labels according to the value of an expression.
269

Chapter 14. Statement Reference
Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 71: Syntax error • label has not been defined.

• label is missing.

Error code Meaning

05h Parameter out of the range
(expression is negative or greater than 255.)

07h Insufficient memory space
(The program nesting by GOSUB statements only is too deep.)

Statements: GOSUB, GOTO, and SELECT...CASE...END SELECT
270

Syntax:

ON KEY (keynumber) GOSUB label

Parameter:

keynumber
(BHT-3000/BHT-4000) A numeric expression which returns

a value from 1 to 29.

(BHT-5000 with 32-key pad) A numeric expression which returns
a value from 1 to 46.

(BHT-5000 with 26-key pad) A numeric expression which returns
a value from 1 to 34.

(BHT-6000) A numeric expression which returns
a value from 1 to 31, 33, and 34.

(BHT-6500) A numeric expression which returns
a value from 1 to 31 and 33 to 38.

(BHT-7000 with 32-key pad/BHT-7500) A numeric expression which returns
a value from 1 to 31 and 33 to 50.

(BHT-7000 with 26-key pad) A numeric expression which returns
a value from 1 to 31 and 33 to 38.

Description:

According to label, ON KEY...GOSUB specifies the first line of an event-handling
routine to be invoked if a function key specified by keynumber is pressed. (Refer
to Appendix E, "Key Number Assignment on the Keyboard.")

• ON KEY...GOSUB specifies only the location of an event-handling routine but does
not enable keystroke trapping. It is KEY ON statement that enables keystroke
trapping. (Refer to KEY ON and KEY OFF.)

• Specification of zero (0) to label disables keystroke trapping.

I/O statement

ON KEY...GOSUB
Specifies an event-handling routine for keystroke interrupt.
271

Chapter 14. Statement Reference
• If a keystroke trap occurs, the Interpreter automatically executes KEY OFF state-
ment for the pressed function key before passing control to an event-handling rou-
tine specified by label in ON KEY...GOSUB statement. This prevents a same
event-handling routine from becoming invoked again by pressing a same function
key during execution of the routine until the current event-handling routine is com-
pleted by issuing a RETURN statement.

When control returns from the event-handling routine by a RETURN statement,
the Interpreter automatically executes KEY ON statement.

If it is not necessary to resume keystroke trapping, you describe a KEY OFF
statement in the event-handling routine.

• If you issue more than one ON KEY...GOSUB statement specifying a same key-
number, the last statement takes effect.

• You can nest GOSUB statements to a maximum of 10 levels.

• When using the ON KEY...GOSUB statement together with block-structured state-
ments (DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION,
IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB
and WHILE...WEND), you can nest them to a maximum of 30 levels.

• In the BHT-6000/BHT-6500/BHT-7000 with 26-key pad/BHT-7500, specifying 32
to keynumber will be ignored.

Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 71: Syntax error • label has not been defined.

• label is missing.

• keynumber is not enclosed in
parentheses ().

Error code Meaning

05h Parameter out of the range
(keynumber is out of the range.)

07h Insufficient memory space
(The program nesting by GOSUB statements is too deep.)

Statements: KEY, KEY OFF, and KEY ON
272

Syntax:

OPEN "[drivename:]filename" AS [#] filenumber [RECORD
filelength]

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

"[drivename:]filename"

A string expression.

filelength

An integer constant which has the value from 1 to 32767.

Description:

OPEN opens a data file specified by "[drivename:]filename" and associ-

ates the opened file with filenumber for allowing I/O activities according to
filenumber.

• The maximum number of files which can be opened at one time is 16 including
the bar code device file and communications device files.

• "filename" consists of a file name and a file extension.

The file name should be 1 to 8 characters long. Usable characters for the file
name include alphabet letters, numerals, a minus (-) sign, and an underline (_).
Note that a minus sign and underline should not be used for the starting character
of the file name. Uppercase and lowercase alphabet letters are not distinguished
from each other and both are treated as uppercase letters.

The file extension should be up to 3 characters long. It should be other than
.PD3, .EX3, .FN3, and .FLD and may be omitted (together with a period).

a.dat
master01.dat

• For the BHT-5000/BHT-6000/BHT-6500, the drivename may be A: or B:. If
the drivename is omitted, the default A: applies.

File I/O statement

OPEN
Opens a file for I/O activities.
273

Chapter 14. Statement Reference
• In the BHT-7000/BHT-7500, if the drivename is B:, the file specified by
filename will be opened as a read-only file. If the drivename is A: or omit-
ted, the file will be opened as a read/write file.

• filelength is the maximum number of registrable records in a file. It can be
set only when a new data file is created by an OPEN statement. If you specify
filelength when opening any of existing data files (including downloaded
data files), the filelength will be ignored.

• Specifying filelength does not allocate memory. Therefore, whether or not a
PUT statement can write records up to the specified filelength depends on
the memory occupation state.

• If filelength is omitted, the default file size is 1000 records.

Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 3: ’"’ missing No double quote precedes or follows
"[drivename:]filename".

error 71: Syntax error • filelength is out of the range.

• filelength is not an integer con-
stant.

• "[drivename:]filename" is
not enclosed in double quotes.

Error code Meaning

02h Syntax error
("[drivename:]filename" is not correct. Or the bar
code device file or communications device file is specified.)

07h Insufficient memory space

32h File type mismatch

37h File already open

3Ah File number out of the range

41h File damaged

Statements: CLOSE, OPEN "BAR:", and OPEN "COM:"
274

Syntax:

OPEN "BAR:[readmode][beepercontrol][LEDcontrol]" AS
[#]filenumber CODE readcode[,readcode...]

Parameter:

readmode

A string expression.

beepercontrol (for the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)

A string expression. Specification of B activates the beeper (vibrator).
(Default: Deactivated)

LEDcontrol (for the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)

A string expression. Specification of L deactivates the reading confirmation
LED. (Default: Activated)

filenumber

A numeric expression which returns a value from 1 to 16.

readcode

A string expression.

Description:

OPEN "BAR:" opens the bar code device file and associates it with filenum-
ber for allowing data entry from the bar code reader according to filenumber.

If the bar code device file has been opened with the OPEN "BAR:" statement,
pressing the trigger switch in the BHT-3000 makes the illumination LED start blink-
ing; pressing the trigger switch*1 in the BHT-4000/BHT-5000/BHT-6000/BHT-7000
turns on the illumination LED; pressing the trigger switch*1 in the BHT-6500/BHT-
7500 emits a laser beam*2.

In the BHT-3000, when you bring the BHT near bar codes, the illumination LED
comes to stay on.

*1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.

*2 The BHT-6500/BHT-7500 uses a laser source.

File I/O statement

OPEN "BAR:"
Opens the bar code device file. In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
this statement also activates or deactivates the reading confirmation LED and the beeper
(vibrator) individually. (Vibrator control valid only in the BHT-6500/BHT-7000/BHT-7500)
275

Chapter 14. Statement Reference
• If the BHT reads a bar code successfully, the indicator LED for reading confirma-
tion will illuminate in green. The BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500 may activate or deactivate the indicator LED. The BHT-6500/BHT-7000/
BHT-7500 may activate or deactivate the beeper and vibrator function.

• A bar code read will be decoded and then transferred to the barcode buffer. In the
BHT-3000, if the decoded data does not satisfy the reading conditions*, then the
reading confirmation LED will illuminate in red and no data will be transferred to
the barcode buffer.
(*The reading conditions include the number of digits, a check digit, the type of the
leading character, and start/stop characters.)

• Only a single bar code device file can be opened at a time. The total number of
files which can be opened at a time is 16 including data files and communications
device files.

• The BHT-6000/BHT-6500/BHT-7000/BHT-7500 cannot open the bar code device
file and the optical interface of the communications device file concurrently. If you
attempt to open them concurrently, a run-time error will occur. The BHT can open
the bar code device file and the direct-connect interface concurrently.

• The name of the bar code device file, BAR, may be in lowercase.

OPEN "bar:" AS #10 CODE "A"

• Alphabet letters to be used for readmode, beepercontrol, LEDcontrol
and readcode may be in lowercase.

• Up to eight readcodes can be specified.

• If you specify more than one condition to a same read code, all of them are valid.
The sample below makes the BHT read both of the 6- and 10-digit ITF codes.

OPEN "BAR:" AS #1 CODE "I:6","I:10"
OPEN "BAR:" AS #1 CODE "I:6,10" (For the BHT-6500/BHT-
7000/BHT-7500)

■ readmode

The BHT supports four read modes--the momentary switching mode, the auto-
off mode, the alternate switching mode, and the continuous reading mode,
which can be selected by specifying M, F, A, and C to readmode, respectively.

�Momentary switching mode (M)

OPEN "BAR:M" AS #7 CODE "A"

Only while you hold down the trigger switch*1, the illumination LED (laser
source*2) lights and the BHT can read a bar code.

In the BHT-3000/BHT-4000/BHT-5000/BHT-6000, even if the bar code device
file is closed, the illumination LED does not go off so long as the trigger
switch*1 is held down.

In the BHT-6500/BHT-7000/BHT-7500, if the bar code device file is closed
when the trigger switch*1 is held down, the illumination LED (laser source*2)
will go off.

Until the entered bar code data is read out from the barcode buffer, pressing
the trigger switch*1 cannot turn on the illumination LED (laser source*2) so that
the BHT cannot read the next bar code.

*1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.

*2 The BHT-6500/BHT-7500 uses a laser source.
276

�Auto-off mode (F)

OPEN "BAR:F" AS #7 CODE "A"

If you press the trigger switch*1, the illumination LED (laser source*2) comes
on. When you release the switch or when the BHT completes bard code read-
ing, the illumination LED (laser source*2) will go off. Holding down the trigger
switch*1 lights the illumination LED (laser source*2) for a maximum of 5 sec-
onds.

While the illumination LED (laser source*2) is on, the BHT can read a bar code
until a bar code is read successfully or the bar code devices file becomes
closed.

If the illumination LED (laser source*2) goes off after 5 seconds from when you
press the trigger switch*1, it is necessary to press the trigger switch*1 again for
reading a bar code.

In the BHT-3000/BHT-4000/BHT-5000/BHT-6000, once a bar code is read
successfully, pressing the trigger switch*1 turns on the illumination LED (laser
source*2) but the BHT cannot read the next bar code as long as the entered
bar code data is not read out from the barcode buffer.

In the BHT-6500/BHT-7000/BHT-7500, once a bar code is read successfully,
pressing the trigger switch*1 cannot turn on the illumination LED (laser
source*2) and the BHT cannot read the next bar code as long as the entered
bar code data is not read out from the barcode buffer.

�Alternate switching mode (A)

OPEN "BAR:A" AS #7 CODE "A"

If you press the trigger switch*1, the illumination LED (laser source*2) comes
on. Even if you release the switch, the illumination LED (laser source*2)
remains on until the bar code device file becomes closed or you press that
switch again. While the illumination LED (laser source*2) is on, the BHT can
read a bar code.

Pressing the trigger switch*1 toggles the illumination LED (laser source*2) on
and off.

Once a bar code is read successfully, pressing the trigger switch*1 turns on
the illumination LED (laser source*2) but the BHT cannot read the next bar
code as long as the entered bar code data is not read out from the barcode
buffer.

*1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.

*2 The BHT-6500/BHT-7500 uses a laser source.
277

Chapter 14. Statement Reference
�Continuous reading mode (C)

OPEN "BAR:C" AS #7 CODE "A"

Upon execution of the above statement, the BHT turns on the illumination LED
(laser source*2) and keeps it on until the bar code device file becomes closed,
irrespective of the trigger switch*1.

While the illumination LED (laser source*2) is on, the BHT can read a bar
code.

Once a bar code is read successfully, the BHT cannot read the next bar code
as long as the entered bar code data is not read out from the barcode buffer.

• If readmode is omitted, the BHT defaults to the auto-off mode.

• In the momentary switching mode, alternate switching mode, or continuous
reading mode, after you read a low-quality bar code which needs more than
one second to be read, keeping applying the barcode reading window to that
bar code may re-read the same bar code in succession at intervals of one sec-
ond or more.

■ beepercontrol and LEDcontrol (for the BHT-5000/BHT-6000/BHT-6500/
BHT-7000/BHT-7500)

In the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, the OPEN "BAR:"
statement can control the beeper and the reading confirmation LED to activate or
deactivate each of them when a bar code is read successfully. The BHT-6500/
BHT-7000/BHT-7500 may also control the vibrator with beepercontrol.

• You should describe parameters of readmode, beepercontrol, and
LEDcontrol without any space inbetween.

• You should describe readmode, beepercontrol, and LEDcontrol in
this order.

• In the BHT-6500/BHT-7000/BHT-7500, specifying B to beepercontrol
allows you to choose beeping only, vibrating only, or beeping & vibrating by
making setting on the "LCD contrast & beeper volume screen" or by setting
the I/O ports with the OUT statement.

To sound the beeper when a bar code is read successfully:

OPEN "BAR:B" AS #7 CODE "A"

To deactivate the reading confirmation LED when a bar code is read success-
fully:

OPEN "BAR:L" AS #7 CODE "A"

*1 In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, the trigger switch function is assigned to the
magic keys.

*2 The BHT-6500/BHT-7500 uses a laser source.
278

■ readcode

The BHT supports six types of bar codes--the universal product codes, Inter-
leaved 2 of 5 (ITF), Codabar (NW-7), Code 39, Code 93, and Code 128. In addi-
tion to them, the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500 supports the Standard 2 of 5 (STF). The BHT-6000/BHT-6500/BHT-7000/
BHT-7500 can read also EAN-128 if Code 128 is specified.

(For the allowable bar code types, refer to the BHT User’s Manual.)

�Universal product codes (A)

Syntax 1:

A[:[code][1stchara[2ndchara]][supplemental]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

A[:[code][1stchara[2ndchara]][supplemental]
[,[code][1stchara[2ndchara]][supplemental]]
[,[code][1stchara[2ndchara]][supplemental]]]

where

code is A, B, or C specifying the following:

If code is omitted, the default is all of the universal product codes.

1stchara or 2ndchara is a numeral from 0 to 9 specifying the header
character (country flag). If a question mark (?) is specified to 1stchara or
2ndchara, it acts as a wild card.

supplemental is a supplemental code. Specifying an S to supplemen-
tal allows the BHT (expect for the BHT-3000) to read also supplemental
codes. The BHT-3000 does not support supplemental codes, so specifying
the supplemental option will cause a run-time error.

OPEN "BAR:" AS #1 CODE "A:49S"

code Bar code

A EAN-13 or UPC-A

B EAN-8

C UPC-E
279

Chapter 14. Statement Reference
�Interleaved 2 of 5 (ITF) (I)

Syntax 1:

I[:[mini.no.digits[-max.no.digits]][CD]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

I[:[mini.no.digits[-max.no.digits]][CD]
[,[mini.no.digits[-max.no.digits]][CD]]
[,[mini.no.digits[-max.no.digits]][CD]]]

where

mini.no.digits and max.no.digits are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 2 to 40 in the BHT-3000 and a numeral from 2
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
and they should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, the
default reading range is 2 to 40 digits in the BHT-3000 and 2 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000. In the BHT-6500/BHT-7000/BHT-7500, if
both of them are omitted, the default reading range is from the minimum num-
ber of digits specified in System Mode up to 99 digits.

If only max.no.digits is omitted, the BHT can only read the number of
digits specified by mini.no.digits.

CD is a check digit. Specifying a C to CD makes the Interpreter check bar
codes with MOD-10. The check digit is included in the number of digits.

OPEN "BAR:" AS #1 CODE "I:6-10C"
280

�Codabar (NW-7) (N)

Syntax 1:

N[:[mini.no.digits[-max.no.digits]][startstop][CD]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

N[:[mini.no.digits[-max.no.digits]][startstop][CD]
[,[mini.no.digits[-max.no.digits]][startstop][CD]]
[,[mini.no.digits[-max.no.digits]][startstop][CD]]]

where

mini.no.digits and max.no.digits are the minimum and maxi-
mum numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 3 to 40 in the BHT-3000 and a numeral from 3
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
and they should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, the
default reading range is 3 to 40 digits in the BHT-3000 and 3 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000. In the BHT-6500/BHT-7000/BHT-7500, if
both of them are omitted, the default reading range is from the minimum num-
ber of digits specified in System Mode up to 99 digits.

If only max.no.digits is omitted, the BHT can only read the number of
digits specified by mini.no.digits.

start and stop are the start and stop characters, respectively. Each of
them should be an A, B, C, or D. If a question mark (?) is specified, it acts as
a wild card. The start and stop characters are included in the number of digits.
The A through D will be stored in the barcode buffer as a through d.

CD is a check digit. Specifying a C to CD makes the Interpreter check bar
codes with MOD-16. The check digit is included in the number of digits.

OPEN "BAR:" AS #1 CODE "N:8AAC"
281

Chapter 14. Statement Reference
�Code 39 (M)

Syntax 1:

M[:[mini.no.digits[-max.no.digits]][CD]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

M[:[mini.no.digits[-max.no.digits]][CD]
[,[mini.no.digits[-max.no.digits]][CD]]
[,[mini.no.digits[-max.no.digits]][CD]]]

where
mini.no.digits and max.no.digits are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 1 to 40 in the BHT-3000 and a numeral from 1
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
excluding start/stop characters. They should satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, the
default reading range is 1 to 40 digits in the BHT-3000 and 1 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500. If only
max.no.digits is omitted, the BHT can only read the number of digits
specified by mini.no.digits.

CD is a check digit. Specifying a C to CD makes the Interpreter check bar
codes with MOD-43. The check digit is included in the number of digits.

OPEN "BAR:" AS #1 CODE "M:8-12C"

�Code 93 (L)

Syntax 1:

L[:[mini.no.digits[-max.no.digits]]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

L[:[mini.no.digits[-max.no.digits]
 [,[mini.no.digits[-max.no.digits]]
 [,[mini.no.digits[-max.no.digits]]]

where
mini.no.digits and max.no.digits are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 1 to 40 in the BHT-3000 and a numeral from 1
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
excluding start/stop characters and check digits. They should satisfy the fol-
lowing condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, the
default reading range is 1 to 40 digits in the BHT-3000 and 1 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500. If only
max.no.digits is omitted, the BHT can only read the number of digits
specified by mini.no.digits.

OPEN "BAR:" AS #1 CODE "L:6-12"

Neither start/stop characters nor check digits will be transferred to the barcode
buffer.
282

�Code 128 (K)

Syntax 1:

K[:[mini.no.digits[-max.no.digits]]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

K[:[mini.no.digits[-max.no.digits]]
[,[mini.no.digits[-max.no.digits]]]
[,[mini.no.digits[-max.no.digits]]]]

where

mini.no.digits and max.no.digits are the minimum and maximum
numbers of digits for bar codes to be read by the BHT, respectively.

They should be a numeral from 1 to 40 in the BHT-3000 and a numeral from 1
to 99 in the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500,
excluding start/stop characters and check digit. They should satisfy the fol-
lowing condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, the
default reading range is 1 to 40 digits in the BHT-3000 and 1 to 99 digits in the
BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500. If only
max.no.digits is omitted, the BHT can only read the number of digits
specified by mini.no.digits.

OPEN "BAR:" AS #1 CODE "K:6-12"

Neither start/stop characters nor check digit will be transferred to the barcode
buffer.

If the BHT reads any bar code consisting of special characters only (such as
FNC, CODEA, CODEB, CODEC and SHIFT characters), it will not transfer the
data to the barcode buffer.

FNC characters will be handled as follows:

(1) FNC1

The BHT-3000/BHT-4000/BHT-5000/BHT-6000 will not transfer FNC1
characters to the barcode buffer at all.

The BHT-6500/BHT-7000/BHT-7500 will not transfer an FNC1 character
placed at the first or second character position immediately following the
start character, to the barcode buffer. FNC1 characters in any other posi-
tions will be converted to GS characters (1Dh) and then transferred to the
barcode buffer like normal data.

In the BHT-5000/BHT-6500/BHT-7000/BHT-7500, if an FNC1 immediately
follows the start character, the bar code will be recognized as EAN-128
and marked with W instead of K.
283

Chapter 14. Statement Reference
(2) FNC2

If the BHT reads a bar code containing an FNC2 character(s), it will not
buffer such data but transfer it excluding the FNC2 character(s).

(3) FNC3

If the BHT-3000/BHT-4000/BHT-5000/BHT-6000 reads a bar code contain-
ing an FNC3 character(s), it will transfer it excluding the FNC3 charac-
ter(s), to the barcode buffer.

If the BHT-6500/BHT-7000/BHT-7500 reads a bar code containing an
FNC3 character(s), it will regard the data as invalid and transfer no data to
the barcode buffer, while it may drive the indicator LED and beeper (vibra-
tor) if activated with the OPEN statement.

(4) FNC4

If the BHT-3000/BHT-4000/BHT-5000/BHT-6000 reads a bar code contain-
ing an FNC4 character(s), it will transfer it excluding the FNC4 charac-
ter(s), to the barcode buffer.

In the BHT-6500/BHT-7000/BHT-7500, an FNC4 converts data encoded
by the code set A or B into a set of extended ASCII-encoded data (128
added to each official ASCII code value).

A single FN4 character converts only the subsequent data character into
the extended ASCII-encoded data.

A pair of FNC4 characters placed in successive positions converts all of
the subsequent data characters preceding the next pair of FNC4 charac-
ters or the stop character, into the extended ASCII-encoded data. If a sin-
gle FNC4 character is inserted in those data characters, however, it does
not convert the subsequent data character only.

An FNC4 character does not convert any of GS characters converted by
an FNC1 character, into the extended ASCII-encoded data.
284

�Standard 2 of 5 (STF) (H) (For the BHT-4000/BHT-5000/BHT-6000/BHT-
6500/BHT-7000/BHT-7500)

Syntax 1:

H[:[mini.no.digits[-max.no.digits]][CD][start-
stop]]

Syntax 2 (BHT-6500/BHT-7000/BHT-7500):

H[:[mini.no.digits[-max.no.digits]][CD] [start-
stop]
[,[mini.no.digits[-max.no.digits]][CD] [start-
stop]]
[,[mini.no.digits[-max.no.digits]][CD] [start-
stop]]]

where

mini.no.digits and max.no.digits are the minimum and maximum
numbers of digits for bar codes to be read.

They should be a numeral from 1 to 99 (excluding start/stop characters) and
satisfy the following condition:

mini.no.digits ≤ max.no.digits

If both of mini.no.digits and max.no.digits are omitted, the
default reading range is from 1 to 99 digits in the BHT-4000/BHT-5000/BHT-
6000 and from the minimum number of digits specified in System Mode up to
99 digits in the BHT-6500/BHT-7000/BHT-7500.

If only max.no.digits is omitted, only the number of digits specified by
mini.no.digits can be read.

CD is a check digits. Specifying a C to CD makes the Interpreter check bar
codes with MOD-10. The check digit is included in the number of digits.

startstop specifies the normal or short format of the start/stop characters.
Specify N for the normal format; specify S for the short format. If startstop
is omitted, start/stop characters can be read in either format.

OPEN "BAR:" AS #1 CODE "H:6-12"
285

Chapter 14. Statement Reference
Syntax errors:

Run-time errors:

Error code and message Meaning

error 71: Syntax error The number of the specified read
codes exceeds eight.

Error code Meaning

02h Syntax error
(readcode is missing.)

05h Parameter out of the range
(readcode is not correct.)

37h File already open

3Ah File number out of the range

45h Device files prohibited from opening concurrently
(You attempted to open the bar code device file and the optical
interface of the communications device file concurrently in the
BHT-6000/BHT-6500/BHT-7000/BHT-7500.)
286

Syntax:
Syntax 1 (For the BHT-3000 and the direct-connect interface of the BHT-6000/BHT-
6500/BHT-7000/BHT-7500):

OPEN "COMn:[baud][,[parity][,[charalength][,[stop-
bit][,[RS/CS][,[timeout]]]]]] "AS [#] filenumber

Syntax 2 (For the BHT-4000):

OPEN "COMn:[baud][,[parity][,[charalength][,[stopbit]
[,[RS/CS][,[timeout][,[RS][,[ER]]]]]]] "AS [#] filenum-
ber

Syntax 3 (For the high-speed transmission in the BHT-4000):

OPEN "COMn:HS" AS [#] filenumber

Syntax 4 (For the BHT-5000):

OPEN "COMn:[baud][,[parity][,[charalength][,[stopbit]
[,[RS/CS][,[timeout][,[RS]]]]]]] "AS [#] filenumber

Syntax 5 (For the optical interface of the BHT-6000/BHT-6500/BHT-7000/BHT-7500):

OPEN "COMn: [baud] "AS [#] filenumber

Parameter:

baud

File I/O statement

OPEN "COM:"
Opens a communications device file.

BHT-3000/BHT-4000/BHT-5000 38400*, 19200, 9600, 4800, 2400,
1200, 600, or 300 (*In the BHT-3000/
BHT-4000, 38400 is supported by the
direct-connect interface only)

BHT-6000/BHT-6500 (For the optical interface)
115200, 57600, 38600, 19200, 9600,
or 2400

(For the direct-connect interface)
38400, 19200, 9600, 4800, 2400,
1200, 600, or 300

BHT-7000/BHT-7500 (For the optical interface)
115200, 57600, 38400, 19200, 9600,
or 2400

(For the direct-connect interface)
115200, 57600, 38400, 19200, 9600,
4800, 2400, 1200, 600, or 300
287

Chapter 14. Statement Reference
parity

N, E, or O

charalength

8 or 7

stopbit

1 or 2

RS/CS

0, 1, 2, 3 or 4

timeout

An integer numeral from 0 to 255.

RS

0 or 1

ER

0 or 1

filenumber

A numeric expression which returns a value from 1 to 16.

Description:

OPEN "COM:" opens a communications device file and associates it with file-
number for allowing input/output activities using the communications interface.

• If optional parameters enclosed with brackets are omitted, the most recently spec-
ified values or the defaults become active.

Listed below are the defaults:

*1 Supported by the BHT-4000 or by the optical interface of the BHT-5000.

*2 Supported by the direct-connect interface of the BHT-4000.

Baud rate 9600 bps

Parity check No parity

Character length 8 bits

Stop bit 1 bit

RS/CS control 0 (No control)

Timeout 3 seconds

RS control*1 1 (Enabled)

ER control*2 1 (Enabled)
288

■ COMn

COMn is a communications device file name.

For the BHT-3000 which supports both the optical and direct-connect interfaces
and can open them concurrently, you can set both "COM1:" and "COM2:".

For the BHT-4000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 which
supports both the optical and direct-connect interfaces but cannot open them
concurrently, you should set one of the specifications listed above. If you
attempt to open both interfaces concurrently, a run-time error will occur.

*3 The default interface refers to an interface which is selected on the Set Com menu (BHT-3000),

on the SET COM ENVIRONMENT menu (BHT-4000), on the SET COMMUNICATION menu

(BHT-5000/BHT-7000/BHT-7500), or on the SET COM menu (BHT-6000/BHT-6500) in System

Mode. (For details, refer to the BHT User’s Manual.)

The BHT-6000/BHT-6500/BHT-7000/BHT-7500 cannot open the optical inter-
face and the bar code device file concurrently. If you attempt to open them con-
currently, a run-time error will occur.

COM may be in lowercase as shown below.

OPEN "com:" AS #8

■ baud

In the BHT-3000/BHT-4000/BHT-5000, baud is one of the baud rates: 38400*,
19600, 9600 (default), 4800, 2400, 1200, 600, and 300. (*The 38400 bps is sup-
ported by the direct-connect interface of the BHT-3000/BHT-4000 and by the
BHT-5000.)

In the BHT-6000/BHT-6500, when the optical interface is used, baud is one of
the baud rates: 115200, 57600, 38400. 19200, 9600 (default), and 2400. When
the direct-connect interface is used, it is one of the baud rates: 38400, 19200,
9600 (default), 4800, 2400, 1200, 600, and 300.

In the BHT-7000/BHT-7500, when the optical interface is used, baud is one of
the baud rates: 115200, 57600, 38400, 19200, 9600 (default), and 2400. When
the direct-connect interface is used, it is one of the baud rates: 115200, 57600,
,38400, 19200 (default), 9600, 4800, 2400, 1200, 600, and 300.

■ parity

parity is a parity check. It should be N (default), E, or O, which corresponds
to None, Even, or Odd parity, respectively.

■ charalength

charalength is a character length or the number of data bits. It should be 8
(default) or 7 bits.

Interface Communications device file name

Optical interface "COM1:"

Direct-connect interface "COM2:"

Default interface*3 "COM:"
289

Chapter 14. Statement Reference
■ stopbit

stopbit is the number of stop bits. It should be 1 (default) or 2 bits.

■ RS/CS

RS/CS enables or disables the RS/CS control. It should be 0 (default), 1, 2, 3,
or 4, which corresponds to the following function:

As listed above, you can specify RS/CS option for the direct-connect interface
of the BHT-3000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 and for the BHT-
4000/BHT-5000. If you specify it for the optical interface of the BHT-3000/BHT-
6000/BHT-6500/BHT-7000/BHT-7500, it will be ignored resulting in no run-time
error.

RS/CS option is also applicable to Busy control when the direct-connect inter-
face is used in the BHT-3000/BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500. To do so, interface cable connection should be modified. For details,
refer to the BHT User’s Manual.

NOTE
The optical interface of the BHT-6000/BHT-6500/BHT-7000/BHT-7500 is
compliant with the IrDA physical layer (IrDA-SIR1.0), so the vertical par-
ity, character length, and stop bit length are fixed to none, 8 bits, and 1 bit,
respectively. If selected, those parameters will be ignored.

Value of
RS/CS

BHT-3000/BHT-6000/
BHT-6500/BHT-7000/

BHT-7500
BHT-4000 BHT-5000

Optical I/F
Direct-
connect
I/F

Optical I/F
Direct-
connect
I/F

Optical I/F
Direct-
connect
I/F

0
(default)

Ignored
RS/CS control
disabled

RS/CS con-
trol disabled

Ignored

1 Ignored RS/CS control enabled
RS/CS con-
trol enabled

Ignored

2 Ignored

High RD
will be
regarded
as a high
CS.

Run-time error
Run-time
error

High RD
will be
regarded
as high
CS.

3 Ignored

Low RD
will be
regarded
as high
CS.

Run-time error
Run-time
error

Low RD
will be
regarded
as high
CS.

4 Ignored

CS
control dis-
abled
 (RD will
be used as
an input
port.)

Run-time error
Run-time
error

CS
control dis-
abled
(RD will be
used as an
input port.
290

Shown below is a coding sample for enabling the RS/CS control.

OPEN "COM:,,,,1" AS #16

Instead of the OPEN "COM:" statement, you can use an OUT statement for
controlling the RS signal (supported by the optical interface of the BHT-5000 and
by the BHT-4000) or the ER signal (which is supported by the BHT-4000). Also,
you can use a WAIT statement or INP function for monitoring the CS signal or
CD signal (supported by the BHT-4000). (To connect the BHT to an asynchro-
nous half-duplex modem, it is necessary to use the OUT and WAIT statements
and INP function.)

■ timeout

timeout is a maximum waiting time length until the CS signal goes ON after
the BHT becomes ready to send data. It should be 0 to 255 in increment of 100
ms.

Specification of zero (0) causes no timeout.

Timeout is supported by the optical interface of the BHT-5000 and by the BHT-
4000. Shown below is a coding sample for setting 10 seconds to timeout.

OPEN "COM:,,,,1,100" AS #6

To make the direct-connect interface of the BHT-3000/BHT-5000/BHT-6000/
BHT-6500/BHT-7000/BHT-7500 support timeout, the RS/CS option should be
set to "2" or "3" so that the RD signal is regarded as CS. If any of "0," "1," and
"4" has been set to the RS/CS option, the value of the timeout option will be
modified.

The optical interface of the BHT-3000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500 does not support timeout. If specified, the timeout option will be
ignored resulting in no run-time error.

■ RS (For the BHT-4000/BHT-5000)

RS specifies whether the RS signal should go ON or OFF when the OPEN
"COM:" statement opens a communications device file of the optical interface
in the BHT-4000/BHT-5000. You should set 0 (OFF) or 1 (ON: default). This
specification is effective only when the RS/CS control is disabled.

■ ER (For the BHT-4000)

ER specifies whether the ER signal should go ON or OFF when the OPEN
"COM:" statement opens a communications device file in the BHT-4000. You
should set 0 (OFF) or 1 (ON: default). This specification is effective only when
the direct-connect interface is selected. If specified for the optical interface, the
ER option will be ignored resulting in no run-time error. In the BHT-3000/BHT-
5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500, specifying this ER option
results in a run-time error.

■ HS (High-speed transmission for the BHT-4000)

This specification is effective only in the BHT-4000. In other BHTs, specifying
HS results in a run-time error.
291

Chapter 14. Statement Reference
Syntax errors:

Run-time errors:

Error code and message Meaning

error 71: Syntax error filenumber is missing.

Error code Meaning

02h Syntax error
(The x in "COM:x" contains an invalid parameter.)

37h File already open

3Ah File number out of the range

45h File already open
(You attempted to open the bar code device file and the optical
interface of the communications device file concurrently in the
BHT-6000/BHT-6500/BHT-7000/BHT-7500.)
(You attempted to open the wireless interface and optical inter-
face of the communications device file, or the wireless interface
and direct-connect interface concurrently in the BHT-7500.)
292

Syntax:

OUT portnumber,data

Parameter:

portnumber

A numeric expression.

data

A numeric expression which returns a value from 0 to 255.

Description:

OUT sends a data byte designated by data to a port specified by portnumber.

• portnumber is not an actual hardware port number on the BHT but a logical
one which the Interpreter assigns. (Refer to Appendix D, "I/O Ports.")

• If bits not assigned a hardware resource are specified to portnumber or data,
they will be ignored.

Syntax errors:

I/O statement

OUT
Sends a data byte to an output port.

Error code and message Meaning

error 71: Syntax error • portnumber is missing.

• data is missing.
293

Chapter 14. Statement Reference
Run-time errors:

Example:

OUT 3,7

The above example sets the LCD contrast to the maximum.

Reference:

Error code Meaning

05h Parameter out of the range
(portnumber or data is out of the range.)

Statements: WAIT

Functions: NP
294

Syntax:
Syntax 1 (Turning off the power according to the power-off counter):

POWER counter

Syntax 2 (Turning off the power immediately):

POWER {OFF|0}

Syntax 3 (Disabling the automatic power-off facility):

POWER CONT

Parameter:

counter
A numeric expression which returns a value from 0 to 32767.

Description:
■ Turning off the power according to the power-off counter

POWER counter turns off the power after the length of time specified by
counter from execution of the POWER statement.

• counter is a setting value of the power-off counter in seconds. Shown below is
a sample program for turning off the power after 4800 seconds from execution of
POWER statement.

POWER 4800

• If no POWER statement is issued, the default counter value is 180 seconds.

• If any of the following operations and events happens while the power-off counter
is counting, the counter will be reset to the preset value and start counting again:

- Any key is pressed.

- The trigger switch is pressed.

- The BHT sends or receives data via a communications device file. (If a com-
munications device file is closed, this operation does not reset the power-off
counter.)

I/O statement

POWER
Controls the automatic power-off facility.
295

Chapter 14. Statement Reference
■ Turning off the power immediately

Execution of POWER OFF or POWER 0 immediately turns off the power.

• The execution of POWER OFF or POWER 0 deactivates the resume function if pre-
set.

■ Disabling the automatic power-off facility

POWER CONT disables the automatic power-off facility.

Run-time errors:

Error code Meaning

05h Parameter out of the range
(counter is out of the range.)
296

Syntax:

PRINT [data[CR/LFcontrol...]]

Parameter:

data

A numeric or string expression.

CR/LFcontrol

A comma (,) or a semicolon (;).

Description:

PRINT displays a number or a character string specified by data at the current
cursor position on the LCD screen (To position the cursor, use a LOCATE state-

ment.) and then repositions the cursor according to CR/LFcontrol.

■ data

• data may be displayed in any of the screen modes (the single-byte ANK mode,
two-byte Kanji mode, and condensed two-byte Kanji mode). (The condensed
two-byte Kanji mode is supported by the BHT-4000/BHT-5000.) It is, however,
necessary to select the screen mode by a SCREEN statement before execution of
the PRINT statement.

If you specify single-byte ANK characters for data after selecting the two-byte
Kanji mode or condensed two-byte Kanji mode with a SCREEN statement, then
those ANK characters will appear in the half-width size.

CLS
SCREEN 1 ’Kanji mode
PRINT "ABC123"
SCREEN 0 ’ANK mode
PRINT "DEF456"

hese statements produce this output:

I/O statement

PRINT
Displays data on the LCD screen.

ABC123
DEF456
297

Chapter 14. Statement Reference
• In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, data may be displayed in
standard size or small size depending upon the display font size selected.

• If you omit data option, a blank line is outputted. That is, the cursor moves to
the first column of the next screen line.

• Positive numbers and zero automatically display with a leading space.

• Control codes (08h to 1Fh) appear as a space, except for BS (08h), CR (0Dh) and
C (18h) codes.

BS (08h) deletes a character immediately preceding the cursor so that the cursor
moves backwards by one column.

PRINT CHR$(8);

CR (0Dh) causes a carriage return so that the cursor moves to the first column of
the next screen line.

PRINT CHR$(&h0D);

C (18h) clears the LCD screen so that the cursor moves to its home position in the
top left corner, just like the CLS statement.

PRINT CHR$(&h18);

■ CR/LFcontrol

CR/LFcontrol determines where the cursor is to be positioned after the PRINT
statement executes.

• If CR/LFcontrol is a comma (,), the cursor moves to the column position of a
least multiple of 8 plus one following the last character output.

• If CR/LFcontrol is a semicolon (;), the cursor moves to the column position
immediately following the last character output.

Statement example: PRINT 123,

Output:

Statement example: PRINT 123;

Output:

123 _

123_
298

• If neither a comma (,) nor semicolon (;) is specified to CR/LFcontrol, the cur-
sor moves to the first column on the next screen line.

In any of the above cases, the screen automatically scrolls up so that the cursor
always positions in view on the LCD screen.

To extend one program line to more than 512 characters in a single PRINT state-
ment, you should use an underline (_) preceding a CR code, not a comma (,) pre-
ceding a CR code.

Syntax errors:

Reference:

Statement example: PRINT 123

Output:

Error code and message Meaning

error 71: Syntax error data contains a comma (,) or semico-
lon (;).

Statements: LOCATE, PRINT USING, and SCREEN

123
_

299

Chapter 14. Statement Reference
Syntax:

PRINT #filenumber[,data[CR/LFcontrol...]]

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

data

A numeric or string expression.

CR/LFcontrol

A comma (,) or a semicolon (;).

Description:

PRINT # outputs a numeric value or a character string specified by data to a com-
munications device file specified by filenumber.

■ filenumber

• filenumber is a communications device file number assigned when the file is
opened.

■ CR/LFcontrol

• If CR/LFcontrol is a comma (,), the PRINT # statement pads data with
spaces so that the number of data bytes becomes a least multiple of 8, before
outputting the data.

Statement example: PRINT #1,"ABC","123"

Output: ABC_ _ _ _ _123 CR LF ("_" denotes a space.)

File I/O statement

PRINT #
Outputs data to a communications device file.
300

• If CR/LFcontrol is a semicolon (;), the PRINT # statement outputs data with-
out adding spaces or control codes.

Statement example: PRINT #1,"ABC";"123";

Output: ABC123

• If neither a comma (,) nor semicolon (;) is specified to CR/LFcontrol, the
PRINT # statement adds a CR and LF codes.

Statement example: PRINT #1,"ABC123"

Output: ABC123 CR LF

To extend one program line to more than 512 characters in a single PRINT # state-
ment, you should use an underline (_) preceding a CR code, not a comma (,) pre-
ceding a CR code.

Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 71: Syntax error • filenumber is missing.

• data contains a comma (,) or semi-
colon (;).

Error code Meaning

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than communica-
tions device files.)

3Ah File number out of the range

Statements: OPEN
301

Chapter 14. Statement Reference
Syntax:
Syntax 1 (Displaying numbers):

PRINT USING "numericformat";expression[CR/LFcontrol
[expression]...]

Syntax 2 (Displaying strings):

PRINT USING "stringformat";stringexpression
[CR/LFcontrol[stringexpression]...]

Parameter:

numericformat

#, a decimal point (.), and/or +.

stringformat

!, @, and/or &

CR/LFcontrol

A comma (,) or a semicolon (;).

Description:

PRINT USING displays a number or a character string specified by expression
or stringexpression on the LCD according to a format specified by numer-
icformat or stringformat, respectively.

• To extend one program line to more than 512 characters in a single PRINT
USING statement, you should use an underline (_) preceding a CR code, not a
comma (,) preceding a CR code.

I/O statement

PRINT USING
Displays data on the LCD screen under formatting control.
302

■ numericformat

numericformat is a formatting string consisting of #, decimal point (.), and/or +,
each of which causes a special printing effect as described below.

Represents a digit position.

If the number specified by expression has fewer digits than the number
of digit positions specified by #, it is padded with spaces and right-justified.

If the number specified by expression has more digits than the number
of digit positions specified by #, the extra digits before the decimal point are
truncated and those after the decimal point are rounded.

. Specifies the position of the decimal point.

If the number specified by expression has fewer digits than the number
of digit positions specified by # after the decimal point, the insufficient digits
appear as zeros.

+ Displays the sign of the number.

If + is at the beginning of the format string, the sign appears before the num-
ber specified by expression; if + is at the end of the format string, the
sign appears after the number. If the number specified by expression is
a positive number or zero, it is preceded or followed by a space instead of a
sign. (+)

Statement example: PRINT USING "#####";123

Output:

Statement example: PRINT USING "###.#";1234.56

Output:

Statement example: PRINT USING "####.###";123

Output:

Statement example: PRINT USING "+#####";-123

Output:

123

234.6

123.000

-123
303

Chapter 14. Statement Reference
■ stringformat

stringformat is a formatting string consisting of !, @, and/or &&, each of which
causes a special printing effect as described below.

! Displays the first character of the stringexpression.

@ Displays the entire stringexpression.

&& Displays the first n+2 characters of the stringexpression, where n is
the number of spaces between the ampersands (&&).

If the format field specified by stringformat is longer than the
stringexpression, the string is left-justified and padded with space; if
it is shorter, the extra characters are truncated.

Below are statement examples containing incorrect formatting strings.

■ expression or stringexpression

If more than one number or string is specified, the PRINT USING statement dis-
plays each of them according to numericformat or stringformat, respec-
tively.

PRINT USING "###";a,b,c

Statement example: PRINT USING "!";"ABC"

Output:

Statement example: PRINT USING "@";"ABC"

Output:

Statement example: PRINT USING "& &";"ABCDE"

Output:

Example: PRINT USING "Answer=###";a

Example: PRINT USING "####.# ######";a,b

A

ABC

ABCDE
304

■ CR/LFcontrol

CR/LFcontrol determines where the cursor is to be positioned after the PRINT
USING statement executes. For details, refer to the CR/LFcontrol in the
PRINT statement.

Syntax errors:

Error code and message Meaning

error 71: Syntax error • numericformat is not correct.

• expression or stringex-
pression contains a comma (,) or
semicolon (;).

error 86: ’;’ missing No semicolon (;) follows "numeric-
format" or "string-format".
305

Chapter 14. Statement Reference
Syntax:
Syntax 1:

PRIVATE varname [,varname...]

Syntax 2:

PRIVATE DEFREG registerdefinition [,registerdefini-
tion...]

Parameter:

varname

numericvariable [(subscript)]

stringvariable [(subscript)[[stringlength]]]

registerdefinition

non-arraynumericvariable [=numericconstant]

arraynumericvariable(subscript)
[=numericinitialvaluedefinition]

non-arraystringvariable[[stringlength]]
[=stringconstant]

arraystringvariable(subscript)[[stringlength]]
[=stringinitialvaluedefinition]

numericinitialvaluedefinition

For one-dimensional:
{numericconstant[,numericconstant...]}

For two-dimensional:
{{numericconstant[,numericconstant...]},
{numericconstant[,numericconstant...]} ...}

stringinitialvaluedefinition

For one-dimensional:
{stringconstant[,stringconstant...]}

For two-dimensional:
{{stringconstant[,stringconstant...]},
{stringconstant[,stringconstant...]} ...}

Declarative statement

PRIVATE
Declares one or more work variables or register variables defined in a file, to be private.
306

subscript

For one-dimensional: integerconstant

For two-dimensional:
integerconstant,integerconstant

Where integerconstant is a numeric expression which returns a
value from 0 to 254.

stringlength

An integer constant from 1 to 255.

Description:

PRIVATE allows variables declared by varname or registerdefinition to
be referred to or updated in that file.

• Inside one PRIVATE statement, up to 30 variables can be declared to varname
or registerdefinition.

• You may declare non-array variables and array variables together to varname.

• For details about registerdefinition, refer to DEFREG statement.

Syntax errors:

Error code and message Meaning

error 7: Variable name
redefinition

The array declared with PRIVATE had
been already declared with DEFREG.

error 71: Syntax error • stringlength is out of the
range.

• stringlength is not an integer
constant.

error 72: Variable name
redefinition

• A same variable name is double
declared inside a same PRIVATE
statement.

• A same variable name is used for a
non-array variable and array vari-
able.

error 78: Array symbols
exceed 30 for
one DIM, PRI-
VATE, or GLO-
BAL statement

More than 30 variables are declared
inside one PRIVATE statement.
307

Chapter 14. Statement Reference
Run-time errors:

Reference:

Statements: DEFREG, DIM, and GLOBAL

Error code Meaning

05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)
308

Syntax:

PUT [#]filenumber[,recordnumber]

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

recordnumber

A numeric expression which returns a value from 1 to 32767.

Description:

PUT writes a record from a field variable(s) declared by the FIELD statement to a
data file specified by filenumber.

• filenumber is the number of a data file opened by the OPEN statement.

• recordnumber is the record number where the data is to be placed in a data
file.

It should be within the range from 1 to the maximum number of registrable
records (filelength) specified by the OPEN statement (when a new data file
is created).

• If recordnumber option is omitted, the default record number is one more than
the last record written.

• Record numbers to be specified do not have to be continuous. If you specify
record number 10 when records 1 through 7 have been written, for example, the
PUT statement automatically creates records 8 and 9 filled with spaces and then
writes data to record 10.

• If the actual data length of a field variable is longer than the field width specified
by the FIELD statement, the excess is truncated from the right end column.

• Since data in a data file is treated as text data (ASCII strings), numeric data
should be converted into the proper string form with the STR$ function before
being assigned to a field variable.

• In the BHT-5000/BHT-6000/BHT-6500, the PUT statement cannot write data to
files stored in drive B.

• In the BHT-7000/BHT-7500, the PUT statement cannot write data to files opened
as read-only by specifying drive B in the OPEN statement.

File I/O statement

PUT
Writes a record from a field variable to a data file.
309

Chapter 14. Statement Reference
Syntax errors:

Run-time errors:

Reference:

Error code and message Meaning

error 71: Syntax error filenumber is missing.

Error code Meaning

05h Parameter out of the range
(• filenumber is out of the range.)
(• recordnumber is out of the range.)

07h Insufficient memory space

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than data files.)

3Ah Filenumber out of the range

3Eh A PUT statement executed without a FIELD statement.

41h File damaged

42h File write error
(You attempted to write onto a read-only file.)

43h Not allowed to access the data in drive B.

Statements: GET and OPEN
310

Syntax:

READ variable[,variable...]

Parameter:

variable

A numeric or string variable.

Description:

READ reads as many data values as necessary in turn from data stored by DATA
statement and assigns them, one by one, to each variable in the READ statement.

• If the data type of a read value does not match that of the corresponding variable,
the following operations take place so that no error occurs:

- Assigning a numeric data to a string variable:

The READ statement converts the numeric data into the string data type and then
assigns it to the string variable.

- Assigning a string data to a numeric variable:

If the string data is valid as numeric data, the READ statement converts the string
data into the numeric data type and then assigns it to the numeric variable.

I/O statement

READ
Reads data defined by DATA statement(s) and assigns them to variables.

Statement example: DATA 123
READ a$
PRINT a$

Output:

Statement example: DATA "123"
READ b
PRINT b

Output:

123

123
311

Chapter 14. Statement Reference
If the string data is invalid as numeric data, the READ statement assigns the value
0 to the numeric variable.

• The number of data values stored by the DATA statement must be equal to or
greater than that of variables specified by the READ statement. If not, a run-time
error occurs.

• To specify the desired DATA statement location where the READ statement
should start reading data, you use the RESTORE statement.

Run-time errors:

Reference:

Statement example: DATA "ABC"
READ c
PRINT c

Output:

Error code Meaning

04h Out of DATA
(No DATA values remain to be read by the READ statement.)

Statements: DATA and RESTORE

0

312

313

Syntax:
Syntax 1:

REM comment

Syntax 2:

’ comment

Description:

REM causes the rest of a program line to be treated as a programmer’s remark or
comment for the sake of the program readability and future program maintenance.
The remark statements are non-executable.

• Difference in description between syntax 1 and syntax 2:

The keyword REM cannot begin in the first column of a program line. When fol-
lowing any other statement, REM should be separated from it with a colon (:).

An apostrophe ('), which may be replaced for keyword REM, can begin in the first
column. When following any other statement, an apostrophe (') requires no colon
(:) as a delimiter.

• You can branch to a REM statement labelled by the GOTO or GOSUB statement.
The control is transferred to the first executable statement following the REM
statement.

Syntax errors:

Reference:

Declarative statement

REM
Declares the rest of a program line to be remarks or comments.

Error code and message Meaning

error 2: Improper label
name
(redefinition, vari-
able name, or
reserved word used)

REM begins in the first column of a pro-
gram line.

Statements: $INCLUDE

Chapter 14. Statement Reference

314

Syntax:

RESTORE [label]

Description:

RESTORE specifies a DATA statement location where the READ statement should
start reading data, according to label designating the DATA statement.

• You can specify DATA statements in included files.

• If label option is omitted, the default label is a DATA statement appearing first
in the user program.

Syntax errors:

Reference:

I/O statement

RESTORE
Specifies a DATA statement location where the READ statement should start reading data.

Error code and message Meaning

error 81: Must be DATA
statement
label

label is not a DATA statement label.

Statements: DATA and READ

Syntax:
Syntax 1:

RESUME [0]

Syntax 2:

RESUME NEXT

Syntax 3:

RESUME label

Description:

RESUME returns control from the error-handling routine to a specified location of the
main program to resume program execution.

• The RESUME statement has three forms as listed below. The form determines
where execution resumes.

• The RESUME statement should be put inside the error-handling routine.

Syntax errors:

Error control statement

RESUME
Causes program execution to resume at a specified location after control is transferred to an
error-handling routine.

RESUME or RESUME 0 Resumes program execution with the
statement that caused the error.

RESUME NEXT Resumes program execution with the
statement immediately following the one
that caused the error.

RESUME label Resumes program execution with the
statement designated by label.

Error code and message Meaning

error 71: Syntax error label has not been defined.
315

Chapter 14. Statement Reference
Run-time errors:

Reference:

Error code Meaning

14h RESUME without error
(RESUME statement occurs outside of an error-handling rou-
tine.)

Statements: ON ERROR GOTO

Functions: ERL and ERR
316

317

Syntax:

RETURN

Description:
RETURN statement in a subroutine returns control to the statement immediately fol-

lowing the GOSUB that called the subroutine.

RETURN statement in an event-handling routine for keystroke interrupt returns con-
trol to the program location immediately following the one where the keystroke trap
occurred.

• No label designating a return location should be specified in a RETURN state-
ment.

• You may specify more than one RETURN statement in a subroutine or an event-
handling routine.

Reference:

Flow control statement

RETURN
Returns control from a subroutine or an event-handling routine (for keystroke interrupt).

Statements: GOSUB and ON KEY...GOSUB

Chapter 14. Statement Reference
Syntax:
Syntax 1:

SCREEN screenmode[,charaattribute]

Syntax 2:

SCREEN ,charaattribute

Parameter:

screenmode and charaattribute

A numeric expression which returns a value from 0 to 3.

Description:

SCREEN sets the screen mode and the character attribute of the LCD screen

according to screenmode and charaattribute, respectively, as listed below.

* The condensed two-byte Kanji mode is supported by the BHT-4000/BHT-5000. Specifying
this mode in the BHT-3000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 will result in a run-
time error (05h).

* Double-width is supported by the BHT-7000/BHT-7500. Specifying it in the BHT-3000/BHT-
4000/BHT-5000/BHT-6000/BHT-6500 will result in a run-time error (05h).

I/O statement

SCREEN
Sets the screen mode and the character attribute.

Screen mode screenmode SCREEN statement

Single-byte ANK mode (default) 0 SCREEN 0

Two-byte Kanji mode 1 SCREEN 1

Condensed two-byte Kanji mode* 2 SCREEN 2

Character attribute charaattribute
SCREEN
statement

Normal display (default) 0 SCREEN , 0

Highlighted display 1 SCREEN , 1

Normal display, double-width characters* 2 SCREEN , 2

Highlighted display, double-width characters* 3 SCREEN , 3
318

• At program startup, the defaults--single-byte ANK mode and normal display--are
active.

• If a parameter is omitted, the corresponding screen mode or character attribute
does not change.

• In the two-byte Kanji mode, characters can be displayed in either the full-width
size (16 dots wide by 16 dots high) or the half-width size (8 dots wide by 16 dots
high). In the BHT-6000/BHT-6500/BHT-7000/BHT-7500, if the small-size font is
selected, characters will be displayed in either the full-width size (12 dots wide by
12 dots high) or the half-width size (6 dots wide by 12 dots high).

• In the condensed two-byte Kanji mode (supported by the BHT-4000/BHT-5000),
characters can be displayed in either the full-width size (12 dots wide by 16 dots
high) or the half-width size (6 dots wide by 16 dots high).

Run-time errors:

Error code Meaning

02h Syntax error
(BHT-3000: The two-byte Kanji mode is set by the SCREEN
statement although you have selected the English message ver-
sion on the Set Resume menu in System Mode.)

05h Parameter out of the range
319

Chapter 14. Statement Reference
Syntax:

SELECT conditionalexpression
CASE test1

[statementblock]
[CASE test2

[statementblock]]...
[CASE ELSE

[statementblock]]
END SELECT

Parameter:

conditionalexpression, test1, and test2

A numeric or string expression.

Description:

This statement executes one of statementblocks depending upon the value of

conditionalexpression according to the steps below.

(1) SELECT evaluates conditionalexpression and compares it with
tests sequentially to look for a match.

(2) When a match is found, the associated statementblock executes and
then control passes to the first statement following the END SELECT.

If no match is found, the statementblock following the CASE ELSE exe-
cutes and then control passes to the first statement following the END SELECT.

If you include no CASE ELSE, control passes to the first statement following the
END SELECT.

• If the SELECT statement block includes more than one CASE statement contain-
ing the same value of test, only the first CASE statement executes and then
control passes to the first statement following the END SELECT.

• If a CASE followed by no executable statement is encountered, control passes to
the first statement following the END SELECT.

• conditionalexpression (numeric or string) and tests must agree in
type.

Flow control statement

SELECT...CASE...END SELECT
Conditionally executes one of statement blocks depending upon the value of an expression.
320

• You can nest the SELECT…CASE…END SELECT statements to a maximum of
10 levels.

SELECT a

 CASE 1

 SELECT b

 CASE 3

 PRINT "a=1,b=3"

 END SELECT

 CASE 2

 PRINT "a=2"

END SELECT

• When using the SELECT...CASE statement block together with block-structured

statements (DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION,
IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB
and WHILE...WEND), you can nest them to a maximum of 30 levels.

Syntax errors:

Run-time errors:

Error code and message Meaning

error 26: Too deep nesting.

error 55: Incorrect use
of SELECT...
CASE...END
SELECT

CASE, CASE ELSE, or END SELECT
statement appears outside of the
SELECT statement block.

error 56: Incomplete
control struc-
ture

No END SELECT corresponds to
SELECT.

error 71: Syntax error conditionalexpression and
tests do not agree in type.

Error code Meaning

0Ch CASE and END SELECT without SELECT

10h Expression too long or complex
(The program nesting by SELECT statement block is too deep.)
321

Chapter 14. Statement Reference
Syntax:
Syntax 1 (Defining a numeric function):

SUB subname [(dummyparameter[,dummyparameter]...)]

Syntax 2 (Exiting from the function block prematurely):

EXIT SUB

Syntax 3 (Ending the function block):

END SUB

Syntax 4 (Calling a function):

[CALL] subname[(realparameter[,realparameter]...)]

Parameter:

subname

Real function name

dummyparameter

A non-array integer variable, a non-array real variable, or a non-array string
variable.

realparameter

A numeric or string expression.

User-defined function statement

SUB...END SUB
Names and defines user-created function SUB.
322

Description:
■ Creating a user-defined function

SUB...END SUB creates a user-defined function. The function definition block
between SUB and END SUB is a set of some statements and functions.

• You cannot make double definition to a same function name.

• This statement block should not be defined in the block-structured statements
(DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN
...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB, and

WHILE...WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

• SUB...END SUB functions can be recursive.

• dummyparameter, which corresponds to the variable having the same name in
the function definition block, is a local variable valid only in that block. Therefore,
if a variable having the same name as dummyparameter is used outside

SUB...END SUB statement block or used as a dummyparameter of any other
function in the same program, it will be independently treated.

• In user-defined functions, you can call other user-defined functions. You can nest
SUB...END SUB statements to a maximum of 10 levels.

• When using the SUB...END SUB together with block-structured statements (DEF
FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION, IF...THEN
...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB, and
WHILE...WEND), you can nest them to a maximum of 30 levels.

• If variables other than dummyparameter(s) are specified in the function defini-
tion block, they will be treated as local variables whose current values are avail-
able only in that function definition block, unless PRIVATE or GLOBAL is
specified.

• EXIT SUB exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

• Unlike other user-defined functions, SUB function cannot assign a return value.

■ Calling a user-defined function

CALL statement and subname call a user-defined function. CALL can be omitted.

• The number of realparameters should be equal to that of dummyparame-
ters, and the types of the corresponding variables used in those parameters
should be identical.

• If you specify a global variable in realparameter when calling a user-defined
function, the user-defined function cannot update the value of the global variable.
This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")
323

Chapter 14. Statement Reference
Syntax errors:
■ When defining a user function

NOTE
Before any call to a SUB...END SUB function, you need to place definition
of the SUB function or declaration of the SUB by the DECLARE statement
in your source program.

A function name is defined globally. If more than one same function name
exists in a same project, therefore, a multiple symbol definition error will
occur when files will be linked. The same error will occur also if the
SUB...END SUB defines a user-created function in a file to be included and
more than one file in a same project reads that included file.

Error code and message Meaning

error 64: Function
redefinition

You made double definition to a same
function name.

error 71: Syntax error • The string length is out of the range.

• The string length is not an integer
constant.

error 92: Incorrect use
of SUB, EXIT
SUB or END SUB

• The EXIT SUB statement is speci-
fied outside the function definition
block.

• The END SUB statement is specified
outside the function definition block.

error 93: Incomplete
control struc-
ture
(SUB...END SUB)

END SUB is missing.

error 94: Cannot use SUB
in control
structure

The SUB...END SUB statement is
defined in other block-structured state-
ments such as FOR and IF statement
blocks.
324

■ When calling a user-defined function

Run-time errors:

Reference:

Statements: DECLARE

Example:
File 1 File 2

DECLARE SUB add(x,y) SUB add(X,Y)
A=1:B=2 PRINT X+Y
PRINT "TEST" END SUB
CALL add(A,B)

...

Error code and message Meaning

error 68: Mismatch
argument type
or number

• The number of the real parameters is
not equal to that of the dummy
parameters.

• dummyparameter was an integer
variable in defining a function, but
realparameter is a real type in
calling the function. (If dummypa-
rameter was a real variable in
defining a function and realpa-
rameter is an integer type, then no
error occurs.)

error 69: Function
undefined

Calling of a user-defined function pre-
cedes the definition of the user-created
function.

Error code Meaning

07h Insufficient memory space
(You nested SUB statements to more than 10 levels.)

0Fh String length out of the range
(The returned value of the string length exceeds the allowable
range.)

TEST
3

325

Chapter 14. Statement Reference
Syntax:

WAIT portnumber,ANDbyte[,XORbyte]

Parameter:

portnumber

A numeric expression

ANDbyte and XORbyte

A numeric expression which returns a value from 0 to 255.

Description:

WAIT suspends a user program while monitoring the input port designated by
portnumber until the port presents the bit pattern given by ANDbyte and XOR-
byte. (Refer to Appendix D, "I/O Ports.")

Each bit in ANDbyte corresponds to a port bit you want to turn on. Each bit in
XORbyte corresponds to a port bit you want to turn off.

The byte at the input port is first XORed with the XORbyte parameter. Next, the
result is ANDed with the value of ANDbyte parameter.

If the final result is zero (0), the WAIT statement rereads the input port and contin-
ues the same process. If it is nonzero, control passes to the statement following the
WAIT.

• If XORbyte option is omitted, the WAIT statement uses a value of zero (0).

WAIT 1,x ’ = WAIT 1,x,0

• If an invalid port number or bit data is specified, it will be assumed as zero (0) so
that the WAIT statement may fall into an infinite loop.

I/O statement

WAIT
Pauses program execution until a designated input port presents a given bit pattern.
326

Syntax errors:

Run-time errors:

Example:

WAIT 0,&H03

The above statement suspends a user program until any data is inputted from the
keyboard or the bar code reader.

Reference:

Error code and message Meaning

error 71: Syntax error • portnumber is missing.

• ANDbyte is missing.

Error code Meaning

05h Parameter out of the range

Statements: OUT

Functions: INP
327

Chapter 14. Statement Reference
Syntax:

WHILE conditionalexpression
 [statementblock]

WEND

Description:

A WHILE...WEND continues to execute statementblock as long as the con-
ditionalexpression is true (not zero) according to the steps below.

(1) The conditionalexpression in the WHILE statement is evaluated.

(2) If the condition is false (zero), the statementblock is bypassed and control
passes to the first statement following the WEND.

If the condition is true (not zero), the statementblock is executed. When
WEND statement is encountered, control returns to the WHILE statement. (Go
back to step (1) to be repeated.)

• The WHILE and WEND statements cannot be written on a same program line.

• If no WEND statement is written corresponding to the WHILE, a syntax error
occurs.

• The BHT-BASIC does not support a DO…LOOP statement block.

• You can nest the WHILE...END statements to a maximum of 10 levels.

• When using the WHILE...WEND statement together with block-structured state-
ments (DEF FN...END DEF, FOR...NEXT, FUNCTION...END FUNCTION,
IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, SUB...END SUB,

and WHILE...WEND), you can nest them to a maximum of 30 levels.

WHILE a
 WHILE b
 WHILE c

...

 WEND
 WEND
WEND

Flow control statement

WHILE...WEND
Continues to execute a statement block as long as the conditional expression is true.
328

Syntax errors:

Reference:

Error code and message Meaning

error 26: Too deep nesting.

error 57: Incorrect use
of WHILE...WEND

WEND appears outside of the WHILE
statement block.

error 58: Incomplete
control struc-
ture

No WEND corresponds to WHILE.

Statements: FOR…NEXT
329

Chapter 14. Statement Reference
Syntax:
XFILE "[drivename:]filename"[,"protocolspec"]

Parameter:
"[drivename:]filename" and "protocolspec"

String expressions.

Description:
XFILE transmits a data file designated by "[drivename:]filename"
between the BHT and host computer or between BHTs according to the communi-
cations protocol specified by "protocolspec." (For the BHT-protocol, refer to
the BHT User’s Manual. For the BHT-Ir protocol, refer to the "BHT-6000 User’s
Manual," "BHT-6500 User’s Manual," "BHT-7000 User’s Manual," or "BHT-7500
User’s Manual.")

■ "[drivename:]filename"

filename is a data file name. For the format of data file names, refer to OPEN
statement.

For the BHT-5000/BHT-6000/BHT-6500, the drivename may be A: or B:. If the
drivename is omitted, the default A: applies.

In the BHT-7000/BHT-7500, the drivename (A: or B:) will be ignored.

■ "protocolspec"

"protocolspec" parameter can specify the following protocol specifications:

*1 Supported by the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.
*2 Supported by the BHT-7000/BHT-7500.

I/O statement

XFILE
Transmits a designated file according to the specified communications protocol.

Specifications BHT-protocol BHT-Ir protocol Multilink protocol

Transmission direction √ √ √
Serial number √
Horizontal parity checking (BCC) √
Transmission monitoring √ √ √
Handling of space codes in the tail
of a data field during file transmis-
sion*1

√ √ √

Timeout length when a link will be
established*1

√ √

Checking whether filenames are
identical*2

√ √
330

- Transmission direction

Example: XFILE "d2.dat","R"

"[drivename:]filename" cannot be omitted even in file reception.

- Serial number

Example: XFILE "d2.dat","S"

A serial number immediately follows a text control character heading each trans-
mission block. It is a 5-digit decimal number. When it is less than five digits, the
upper digits having no value are filled with zeros.

- Horizontal parity checking (BCC)

Example: XFILE "d2.dat","P"

A block check character (BCC) immediately follows a terminator of each trans-
mission block. The horizontal parity checking checks all bits except for headers
(SOH and STX).

- Transmission monitoring

Example: XFILE "d2.dat","M"

A serial number will appear in the 5-digit decimal format at the current cursor
position before execution of the XFILE statement.

- Handling of space codes in the tail of a data field during file transmission (for the
BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500)

Example: XFILE "d2.dat","T"

Space codes placed in the tail of a data field will be handled as 20h in file recep-
tion.

Parameter omitted (default) Transmits a file from the BHT.

R or r Receives a file from the host com-
puter or any other BHT.

Parameter omitted (default) No serial number setting.

S or s Adds a serial number to every trans-
mission block.

Parameter omitted (default) No horizontal parity checking.

P or p Suffixes a BCC to every transmission
block.

Parameter omitted (default) No serial number indication.

M or m Displays a serial number of the trans-
mission block during file transmis-
sion.

Parameter omitted (default) Ignores space codes.

T or t Handles space codes as data.
331

Chapter 14. Statement Reference
- Timeout length when a link will be established (for the BHT-5000/BHT-6000/BHT-
6500/BHT-7000/BHT-7500)

Specify the timeout length by 1 to 9.

Example: XFILE "d2.dat","2"

In file reception, the timeout length is 60 seconds; in file transmission, the max-
mum number of ENQ retries is 20 (when the BHT-protocol is used.)

- Checking whether filenames are identical (BHT-7000/BHT-7500)

This option can apply only to file reception (that is, when the transmission direc-
tion is specified with R or r).

Example: If a file is named "TEST.DAT" in the sending station

Sample 1. XFILE "TEST.DAT","RN" ’Receives TEST.DAT as
’TEST2.DAT.

Sample 2. XFILE "","RN" ’Receives the file
’with the same name
’as used in the sending
’station.

Set value Downloading
Uploading

BHT-protocol BHT-Ir protocol

1 30 sec. Retries of ENQ, 10 times Retries of ENQ, 60 times

2 60 sec. Retries of ENQ, 20 times Retries of ENQ, 120 times

3 90 sec. Retries of ENQ, 30 times Retries of ENQ, 180 times

4 120 sec. Retries of ENQ, 40 times Retries of ENQ, 240 times

5 150 sec. Retries of ENQ, 50 times Retries of ENQ, 300 times

6 180 sec. Retries of ENQ, 60 times Retries of ENQ, 360 times

7 210 sec. Retries of ENQ, 70 times Retries of ENQ, 420 times

8 240 sec. Retries of ENQ, 80 times Retries of ENQ, 480 times

9 No timeout No timeout No timeout

Parameter omitted
(default)

Receives only a data file having the same name as
specified in filename. The "filename" should be
the same as that used in the sending station.

N or n No checking whether filenames are identical. The BHT
may receive a data file with a different name (given in
the sending station) from that specified by filename.
That is, the received file is renamed as specified by
filename. If filename is omitted (only "" is speci-
fied), the BHT receives a data file with the name as is in
the sending station.
332

• A communications device file should be opened before execution of the XFILE
statement. (For the file opening, refer to the OPEN "COM:" statement.)

• The XFILE statement uses the interface specified by the OPEN "COM:" state-
ment.

(If an XFILE statement is executed in the BHT-3000, not the interface specified
by the OPEN "COM:" statement but the interface selected for the BHT-BASIC on
the Set Com menu in System Mode will become active.)

• A data file to be transmitted should be closed beforehand.

• To transfer a file by using the BHT-Ir protocol or multilink protocol, set the BHT's
ID to any of 1 to FFFFh. Specifying zero (0) to the ID will result in a run-time error.

• Undefined letters, if specified in protocolspec, will be ignored. The specifica-
tions below, therefore, produce the same operation. The last one of the timeout
values goes active.

"RSPMT1"
"R,S,P,M,T,1"
"r,s,p,m,t,1"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ1"

"2"
"3462"
"22"

• If you transmit a data file having the same name as that already used in the
receiving station:

- the newly transmitted file replaces the old one when the field structure is
matched.

- a run-time error occurs when the field structure is not matched.

To receive a data file having the same name at the BHT but having a different
structure, therefore, it is necessary to delete that old file.

• Pressing the Clear key during file transmission aborts the execution of the XFILE
statement by issuing an EOT code and displays a run-time error.

Syntax errors:

Error code and message Meaning

error 3: ’"’ missing No double quote precedes or follows
[drivename:]filename.

error 71: Syntax error [drivename:]filename is not
enclosed in double quotes.
333

Chapter 14. Statement Reference
Run-time errors:

Example:
The sample below transmits a data file by adding a serial number and horizontal
parity checking, and then displays the serial number at the 1st line of the screen.

CLOSE
OPEN "d0.dat"AS #1
FIELD #1,10 AS A$,20 AS B$
L%=LOF(1)
CLOSE
LOCATE 1,1
PRINT "00000/";RIGHT$("00000"+MID$(STR$(L%),2),5)
LOCATE 1,1
OPEN "COM:19200,N,8,1" AS #8
XFILE "d0.dat","SPM"
CLOSE #8

Reference:

Statements: OPEN and OPEN "COM:"

Error code Meaning

02h Syntax error
([drivename:]filename is not correct.)

07h Insufficient memory space
(During file reception, the memory runs out.)

32h File type mismatch
(The received file is not a data file.)

33h Received text format not correct

34h Bad file name or number
(You specified filename of an unopened file.)

35h File not found

37h File already open

38h The file name is different from that in the receive header.

3Bh The number of the records is greater than the defined maximum
value.

3Eh FIELD statement not executed yet

40h ID not set

44h No empty area of the specified size in the RAM

46h Communications error
(A communications protocol error has occurred.)

47h Abnormal end of communications or termination of communica-
tions by the Clear key
(The Clear key has aborted the file transmission.)

49h Received program file not correct

00000/00100

Before file transmission

00100/00100

After file transmission
→

334

Syntax:
Syntax 1:

REM $INCLUDE:’filename’

Syntax 2:

’$INCLUDE:’filename’

Description:

$INCLUDE reads a source program specified by ’filename’ into the program

line immediately following the $INCLUDE line in compilation.

Storing definitions of variables, subroutines, user-defined functions, and other data
to be shared by source programs into the included files will promote application of
valuable program resources.

• filename is a file to be included.

• If the specified filename does not exist in compiling a source program, a fatal error
occurs and the compilation terminates.

• No characters including space should be put between $ and INCLUDE and
between single quotes (') and filename.

• As shown below, if any character except for space or tab codes is placed between
REM and $INCLUDE in syntax 1 or between a single quote (') and $INCLUDE in
syntax 2, the program line will be regarded as a comment line so that the
$INCLUDE statement will not execute.

REM xxx $INCLUDE:’mdlprg1.SRC’

• Before specifying included files, it is necessary to debug them carefully.

• $INCLUDE statements cannot be nested.

• The program lines in included files are not outputted to the compile list.

If a compilation error occurs in an included file, the error message shows the line
number where the $INCLUDE statement is described.

Symbols defined in included files are not outputted to the symbol list.

• If a program line in an included file refers to a variable, user-defined function, or
others defined outside the included file, then the program line number where the
$INCLUDE statement is described is outputted to the cross reference list, as the
referred-to line.

File I/O statement

$INCLUDE
Specifies an included file.
335

Chapter 14. Statement Reference
Fatal Error:

Error code and message Meaning

fatal error 30: Cannot find
include file
"XXX"

No included file is found.

fatal error 31: Cannot nest
include file

Included files are nested.
336

Additional Explanation for Statements

■ Effective range of labels

Labels are effective only in a file.

■ Definition of common variables (by COMMON statement)

In an object to be executed first (that is, in a main object), you should define all common vari-
ables to be accessed. In any other objects, declare common variables required only in each
object. If a first executed object is linked with an object where an undefined common vari-
able(s) is newly defined, an error will result.

■ Definition and initialization of register variables (by DEFREG statement)

As for work variables, you should declare required register variables in each object. You may
specify an initial value to a register variable in each object; however, giving different initial val-
ues to a same register variable in more than one object will result in an error in linking process.
337

338

Chapter 15
Function Reference

CONTENTS

ABS ...339
ASC ...340
BCC$...341
CHKDGT$...343
CHR$..347
COUNTRY$..349
CSRLIN ...351
DATE$...352
EOF ...354
ERL ...356
ERR ...357
ETX$...358
FRE ...359
HEX$...360
INKEY$...361
INP ..362
INPUT$...363
INSTR ...365

INT .. 367
LEFT$... 368
LEN ... 369
LOC .. 370
LOF ... 372
MARK$... 373
MID$... 374
POS .. 376
RIGHT$.. 377
SEARCH ... 378
SOH$.. 380
STR$.. 381
STX$... 382
TIME$... 383
TIMEA/TIMEB/TIMEC 385
VAL ... 386

Chapter 15. Function Reference

339

Syntax:

ABS(numericexpression)

Description:

ABS returns the absolute value of numericexpression. The absolute value is
the magnitude of numericexpression without regard to sign. For example,
both ABS (-12.34) and ABS (12.34) are equal to 12.34.

• If you give a real number, this function returns a real number; if an integer number,
this function returns an integer number.

ABSolute Numeric function

ABS
Returns the absolute value of a numeric expression.

340

Syntax:

ASC(stringexpression)

Description:

ASC returns the ASCII code value of the first character of stringexpression,
which is an integer from 0 to 255. (For the ASCII character codes, refer to Appendix
C, "Character Sets.")

• If stringexpression is a null string, this function returns the value 0.

• If given a two-byte Kanji character, this function cannot return the two-byte Kanji
code.

Reference:

ASCii code String function

ASC
Returns the ASCII code value of a given character.

Functions: CHR$

Chapter 15. Function Reference
Syntax:

BCC$(datablock,checktype)

Parameter:

datablock

A string expression.

checktype

A numeric expression which returns a value from 0 to 2.

Description:

BCC$ calculates a block check character (BCC) of datablock according to the
block checking method specified by checktype, and returns the BCC.

• checktype is 0, 1, or 2 which specifies SUM, XOR, or CRC-16, respectively, as
described below.

*The upper byte and the lower byte of the operation result will be set to the 1st and 2nd characters,
respectively.

• A common use for BCC$ is to perform block checking or to generate a BCC for a
data block.

Block Check Character String function

BCC$
Returns a block check character (BCC) of a data block.

checktype
Block check-
ing method

No. of charas
for BCC

BCC
Generative
polynomial

0 SUM 1 Lowest one byte of the
sum of all character
codes contained in a
datablock.

1 XOR 1 One byte gained by
XORing all character
codes contained in a
datablock.

2 CRC-16 2* Two bytes gained rom
the cyclic redundancy
check operation
applied to bit series of
all characters in dat-
ablock with the bit
order in each byte
inverted.

X16+X15+X2+1
341

Run-time errors:

Error code Meaning

05h Parameter out of the range
(checktype is out of the range.)
342

Chapter 15. Function Reference
Syntax:

CHKDGT$(barcodedata,CDtype)

Parameter:

barcodedata and CDtype

String expressions.

Description:

CHKDGT$ calculates a check digit (CD) of barcodedata according to the calcu-
lation method specified by CDtype, and then returns it as one-character string.

• CDtype is A, H, I, M or N, which specifies the bar code type and the corre-
sponding calculation method as listed below.

* Supported by the BHT-7000/BHT-7500 only.

CDtype may be in lowercase.

• In the BHT-7000/BHT-7500, if barcodedata contains a character(s) out of the
specification of the bar code type specified by CDtype, CHKDGT$ returns a null
string. However, if only the CD position character in barcodedata is out of the
specification, CHKDGT$ calculates the correct CD and returns it as one-character
string.

Sample coding 1: CD.Data$=CHKDGT$("494AB4458","A")

"A" and "B" are out of the specification of the EAN or UPC, so
CD.Data$ will become a null string.

Sample coding 2: CD.Data$=CHKDGT$("4940045X","A")

"X" is a CD position character, so CHKDGT$ calculates the
correct CD and CD.Data$ will become "8."

Sample coding 3: CD.Data$=CHKDGT$("a0ef3-a","N")

"e" and "f" are out of the specification of the Codabar (NW-7),
so CD.Data$ will become a null string.

CHecK DiGiT String function

CHKDGT$
Returns a check digit of bar code data.

CDtype Bar Code Type Calculation Method

A EAN and UPC MOD-10 (Modulo arithmetic-10)

H* STF (Standard 2 of 5) MOD-10 (Modulo arithmetic-10)

I ITF (Interleaved 2 of 5) MOD-10 (Modulo arithmetic-10)

M Code 39 MOD-43 (Modulo arithmetic-43)

N Codabar (NW-7) MOD-16 (Modulo arithmetic-16)
343

Sample coding 4: CD.Data$=CHKDGT$("a123Qa","N")

"Q" is a CD position character, so CHKDGT$ calculates the
correct CD and CD.Data$ will become "-."

■ When CDtype is A (EAN or UPC), CHKDGT$ identifies the EAN or UPC of
barcodedata depending upon the data length (number of digits) as listed
below.

If the data length is a value other than 13, 8, and 7, this function returns a null
string.

- To check that the CD is correct:

Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the
returned value is equal to the CD, the CD data is suitable for the barcodedata.

Sample coding: IF CHKDGT$("49400458","A")="8"
THEN...

- To add a CD to barcode data:

Pass barcodedata followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRINT"4940045"+CHKDGT$("4940045"+"0","A")

■ When CDtype is H (STF), the length of barcodedata must be two or more
digits. If not, CHKDGT$ returns a null string.

- To check that the CD is correct:

Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the
returned value is equal to the CD, the CD data is suitable for the barcodedata.

Sample coding: IF CHKDGT$("12345678905","H")="5"
THEN...

- To add a CD to barcode data:

Pass barcodedata followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRINT
"1234567890"+CHKDGT$("1234567890"+"0"."H")

Data length of barcodedata Universal Product Codes

13 EAN-13 or UPC-A

8 EAN-8

7 UPC-E

49400458

12345678905
344

Chapter 15. Function Reference
■ When CDtype is I (ITF), the length of barcodedata must be an even num-
ber of two or more digits. If not, CHKDGT$ returns a null string.

- To check that the CD is correct:

Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the

returned value is equal to the CD, the CD data is suitable for the barcodedata.

Sample coding: IF CHKDGT$("123457","I")="7"
THEN...

- To add a CD to barcode data:

Pass barcodedata followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRINT "12345"+CHKDGT$("12345"+"0","I")

■ When CDtype is M (Code 39), the length of barcodedata must be two or

more digits except for start and stop characters. If not, CHKDGT$ returns a null
string.

- To check that the CD is correct:

Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the
returned value is equal to the CD, the CD data is suitable for the barcodedata.

Sample coding: IF CHKDGT$("CODE39W","M")="W"
THEN...

- To add a CD to barcode data:

Pass barcodedata followed by a dummy character to a CHKDGT$ as shown
below. The returned value will become the CD to be replaced with the dummy char-
acter.

Sample coding: PRINT "CODE39"+CHKDGT$("CODE39"+"0","M")

123457

CODE39W
345

■ When CDtype is N (Codabar), the length of barcodedata must be three dig-
its or more including start and stop characters. If not, CHKDGT$ returns a null
string.

- To check that the CD is correct:

Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the

returned value is equal to the CD, the CD data is suitable for the barcodedata.

Sample coding: IF CHKDGT$("a0123-a","N")="-"
THEN...

- To add a CD to barcode data:

Pass barcodedata followed by a dummy character and enclosed with start and

stop characters, to a CHKDGT$ as shown below. The returned value will become
the CD to be replaced with the dummy character.

Sample coding: ld%=LEN("a0123a")
PRINT LEFT$("a0123a",ld%-1)+CHKDGT$
("a01230a","N")+RIGHT$("a0123a",1)

Run-time errors:

Reference:

Error code Meaning

05h Parameter out of the range
(CDtype is out of the range.)

Statements: OPEN "BAR:"

a0123-a
346

Chapter 15. Function Reference
Syntax:

CHR$(characode)

Parameter:

characode
A numeric expression which returns a value from 0 to 255.

Description:

CHR$ converts a numerical ASCII code specified by characode into the equiva-
lent single-byte character. This function is used to send control codes (e.g., ENQ
and ACK) to a communications device file or to display a double quotation mark or
other characters having special meanings in the BHT-BASIC.

Run-time errors:

Example:

• To output an ACK code to a communications device file, use CHR$(&H06). The
ASCII value for the ACK code is &H06.

PRINT #1,CHR$(&H06);

• To display control codes from 8 (08h) to 31 (1Fh), refer to the program examples
shown in the PRINT statement.

• To display double quotation marks around a string, use CHR$(34) as shown
below. The ASCII value for a double quotation mark is 34 (22h).

PRINT CHR$(34);"Barcode";CHR$(&H22)

CHaRacter code String function

CHR$
Returns the character corresponding to a given ASCII code.

Error code Meaning

05h Parameter out of the range
(characode is out of the range.)

"Barcode"
347

• To display a Kanji code, use a shift JIS code as shown below. The shift JIS code
for is 8ABFh.

SCREEN 1
PRINT CHR$(&h8A);CHR$(&hBF)

Reference:

Statements: PRINT

Functions: ASC
348

Chapter 15. Function Reference
Syntax:
Syntax 1 (Setting a national character set):

COUNTRY$="countrycode"

Syntax 2 (Returning a country code):

COUNTRY$

Parameter:

countrycode

A string expression--A, D, E, F, G, I, J, N, S, or W

Description:
■ Syntax 1

COUNTRY$ sets a national character set specified by "countrycode". The
national character set is assigned to codes from 32 (20h) to 127 (7Fh). (Refer to
Appendix C2, "National Character Sets.")

• "countrycode" specifies one of the following national character sets:

COUNTRY I/O function

COUNTRY$
Sets a national character set or returns a current country code.

countrycode National character set

A America (default)

D Denmark

E England

F France

G Germany

I Italy

J Japan (default)

N Norway

S Spain

W Sweden
349

• After setting a national character set, you may display it for codes from 32 (20h) to
127 (7Fh), on the LCD.

• If "countrycode" is omitted, the default national character set is America
(code A) or Japan (code J) when you have selected the English or Japanese mes-
sage version on the menu screen* in System Mode, respectively.

* Menu screen for selecting the message version

• "countrycode" set by this function remains effective in the programs chained
by CHAIN statements.

• If "countrycode" has more than one character, only the first one takes effect.

• If "countrycode" is an invalid letter other than those listed above, the func-
tion is ignored.

• "countrycode" may be in lowercase.

COUNTRY$="j"

■ Syntax 2

COUNTRY$ returns a current country code as an uppercase alphabetic letter.

BHT Series Menu screen

BHT-3000 Set Resume menu

BHT-4000/BHT-5000/BHT-6000/
BHT-6500/BHT-7000/BHT-7500

SET DISPLAY menu
350

Chapter 15. Function Reference

351

Syntax:

CSRLIN

Description:

CSRLIN returns the current row number of the cursor as an integer, in the current
screen mode selected by a SCREEN statement.

* When the system status is displayed on the LCD.

• Even if the cursor is invisible (by a LOCATE statement), the CSRLIN function
operates.

• For the current column number of the cursor, refer to the POS function.

Reference:

CurSoR LINe I/O function

CSRLIN
Returns the current row number of the cursor.

Screen mode
BHT-
3000

BHT-4000
BHT-
5000

BHT-
6000/
BHT-6500

BHT-
7000

BHT-
7500

Single-byte
ANK mode

Standard-size font 1 to 4 1 to 10
(1 to 9*)

1 to 8 1 to 6 1 to 8 1 to 20

Small-size font – – – 1 to 8 1 to 10 1 to 26

Two-byte
Kanji mode

Standard-size font 1 to 3 1 to 9
(1 to 8*)

1 toto 7 1 to 5 1 to 7 1 to 19

Small-size font – – – 1 to 7 1 to 9 1 to 25

Condensed two-
byte Kanji mode

–
1 to 9

(1 to 8*)
1 to 7 – – –

Statements: LOCATE and SCREEN

Functions: POS

Syntax:
Syntax 1 (Retrieving the current system date):

DATE$

Syntax 2 (Setting the current system date):

DATE$="date"

Parameter:

date

A string expression.

Description:
■ Syntax 1

DATE$ returns the current system date as an 8-byte string. The string has the for-
mat below.

yy/mm/dd

where yy is the lower two digits of the year from 00 to 99, mm is the month from 01
to 12, and dd is the day from 01 to 31.

■ Syntax 2

DATE$ sets the system date specified by "date". The format of "date" is the
same as that in syntax 1.

Example: date$="00/10/12"

• The year yy must be the lower two digits of the year: otherwise, the system does
not compensate for leap years automatically.

• The calendar clock is backed up by the battery. (For the system time, refer to the
TIME$ function.)

DATE I/O function

DATE$
Returns the current system date or sets a specified system date.
352

Chapter 15. Function Reference
Run-time errors:

Reference:

Error code Meaning

05h Parameter out of the range
(date is out of the range.)

Functions: TIME$
353

Syntax:

EOF([#]filenumber)

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

Description:

EOF tests for an end of a device I/O file designated by filenumber. Then it
returns -1 (true) if no data remains; it returns 0 (false) if any data remains, as listed
below.

• filenumber should be the file number of an opened device file.

• The EOF function cannot be used for data files. Specifying a data file number for

filenumber causes a run-time error.

End Of File File I/O function

EOF
Tests whether the end of a device I/O file has been reached.

File Type Returned Value End-of-file Condition

Communications device file -1 (true) No data remains in the
receive buffer.

0 (false) Any data remains in the
receive buffer.

Barcode device file -1 (true) No data remains in the
barcode buffer

0 (false) Any data remains in the
barcode buffer.
354

Chapter 15. Function Reference
Run-time errors:

Reference:

Error code Meaning

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a data file.)

3Ah File number out of the range

Statements: INPUT#, LINE INPUT#, OPEN "BAR:", and
OPEN "COM:"

Functions: INPUT$, LOC, and LOF
355

356

Syntax:

ERL

Description:

ERL returns the current statement location of the program where a run-time error
occurred most recently.

• The ERL function works only with line numbers and not with labels.

• The returned value is in decimals, so it may be necessary to use the HEX$ func-
tion for decimal-to-hexadecimal conversion when using the ERL function in error-
handling routines.

• Addresses which the ERL returns correspond to ones that are outputted to the left
end of the address-source list in hexadecimals when a +L option is specified in
compilation, if converted from decimals to hexadecimals with the HEX$ function.

• Since the ERL function returns a significant value only when a run-time error
occurs, you should use this function in error-handling routines where you can
check the error type for effective error recovery.

Reference:

ERror Line Error-handling function

ERL
Returns the current statement location of the program where a run-time error occurred.

Statements: ON ERROR GOTO and RESUME

Functions: ERR and HEX$

Chapter 15. Function Reference

357

Syntax:

ERR

Description:

ERR returns the code of a run-time error that invoked the error-handling routine.

• The returned value is in decimals, so it may be necessary to use the HEX$ func-
tion for decimal-to-hexadecimal conversion when using the ERR function in error-
handling routines.

• Codes which the ERR returns correspond to ones that are listed in Appendix A1,
"Run-time Errors," if converted from decimals to hexadecimals with the HEX$
function.

• Since the ERR function returns a significant value only when a run-time error
occurs, you should use this function in error-handling routines where you can
check the error type for effective error recovery.

Reference:

ERRor code Error-handling function

ERR
Returns the error code of the most recent run-time error.

Statements: ON ERROR GOTO and RESUME

Functions: ERL and HEX$

358

Syntax:
Syntax 1 (Changing the value of a terminator):

ETX$=stringexpression

Syntax 2 (Returning the current value of a terminator):

ETX$

Parameter:

stringexpression

A string expression which returns a single-byte character.

Description:
■ Syntax 1

ETX$ modifies the value of a terminator (one of the text control characters) which
indicates the end of data text in the BHT-protocol when a data file is transmitted by
an XFILE statement. (For the BHT-protocol, refer to the BHT User’s Manual.)

• ETX$ is called a protocol function.

• The initial value of a terminator (ETX) is 03h.

■ Syntax 2

ETX$ returns the current value of a terminator.

Run-time errors:

Reference:

End of TeXt I/O function

ETX$
Modifies the value of a terminator (ETX) for the BHT-protocol; also returns the
current value of a terminator.

Error code Meaning

05h Parameter out of the range
(stringexpression is a null string.)

0Fh String length out of the range
(stringexpression is more than a single byte.)

Statements: OPEN "COM:" and XFILE

Functions: SOH$ and STX$

Chapter 15. Function Reference

359

Syntax:

FRE(areaspec)

Parameter:

areaspec

A numeric expression which returns a value from 0 to 3.

Description:

FRE returns the number of bytes left unused in a memory area specified by

areaspec listed below.

• The file area will be allocated to data files and program files in cluster units. The
FRE function returns the total number of bytes of non-allocated clusters. (For
details about a cluster, refer to Appendix F, "Memory Area.")

• The operation stack area for the Interpreter is mainly used for numeric operations,
string operations, and for calling user-defined functions.

• A returned value of this function is a decimal number.

Run-time errors:

FREe area Memory management function

FRE
Returns the number of bytes available in a specified area of the memory.

areaspec Memory area

0 Array work variable area

1 File area

2 Operation stack area for the Interpreter

3 File area in drive B (in the BHT-5000/BHT-6000/BHT-6500)

Error code Meaning

05h Parameter out of the range
(areaspec is out of the range.)

360

Syntax:

HEX$(numericexpression)

Parameter:

numericexpression

A numeric expression which returns a value from -32768 to 32767.

Description:

HEX$ function converts a decimal number from -32768 to 32767 into the equivalent
hexadecimal string which is expressed with 0 to 9 and A to F.

Listed below are conversion examples.

Run-time errors:

HEXadecimal String function

HEX$
Converts a decimal number into the equivalent hexadecimal string.

numericexpression Returned value

-32768 8000

-1 FFFF

0 0

1 1

32767 7FFF

Error code Meaning

06h The operation result is out of the allowable range.

Chapter 15. Function Reference

361

Syntax:

INKEY$

Description:

INKEY$ reads from the keyboard to see whether a key has been pressed, and
returns one character read. If no key has been pressed, INKEY$ returns a null
string. (For the character codes, refer to Appendix C. For the key number assign-
ment, refer to Appendix E.)

• INKEY$ does not echo back a read character on the LCD screen.

• A common use for INKEY$ is to monitor a keystroke while the BHT is ready for
bar code reading or other events.

• If any key previously specified for keystroke trapping is pressed, INKEY$ cannot
return the typed data since the INKEY$ has lower priority than keystroke trap-
ping.

• To display the cursor, you use the LOCATE and CURSOR statements as shown
below.

LOCATE,,1:CURSOR ON
k$=INKEY$
IF k$="" THEN...

Reference:

INput KEYboard I/O function

INKEY$
Returns a character read from the keyboard.

Statements: CURSOR, KEY OFF, KEY ON, and LOCATE

Functions: ASC and INPUT$

362

Syntax:

INP(portnumber)

Parameter:

portnumber

A numeric expression which returns a value from 0 to 32767.

Description:

INP reads one-byte data from an input port specified by portnumber and returns
the value. (For the input port numbers, refer to Appendix D, "I/O Ports.")

• If you specify an invalid value to portnumber, INP returns an indeterminate
value.

Run-time errors:

Reference:

INPort data I/O function

INP
Returns a byte read from a specified input port.

Error code Meaning

05h Parameter out of the range
(portnumber is out of the range.)

Statements: OUT and WAIT

Chapter 15. Function Reference
Syntax:
Syntax 1 (Reading from the keyboard):

INPUT$(numcharas)

Syntax 2 (Reading from a device file):

INPUT$(numcharas,[#]filenumber)

Parameter:

numcharas

A numeric expression which returns a value from 1 to 255.

filenumber

A numeric expression which returns a value from 1 to 16.

Description:

INPUT$ reads the number of characters specified by numcharas from the key-

board or from a device file specified by filenumber, then returns the resulting
string.

■ Syntax 1 (without specification of filenumber)

INPUT$ reads a string or control codes from the keyboard.

• INPUT$ does not echo back read characters on the LCD screen.

• The cursor shape (invisible, underlined, or full block) depends upon the specifica-
tion selected by the LOCATE statement.

• If any key previously specified for keystroke trapping is pressed during execution
of the INPUT$, the keyboard input will be ignored; that is, neither typed data is

read by INPUT$ nor keystroke is trapped.

■ Syntax 2 (with specification of filenumber)

INPUT$ reads from a device file (the bar code device file or any of the communica-
tions device files).

• The number of characters in a device file can be indicated by using a LOC func-
tion.

INPUT File I/O function

INPUT$
Returns a specified number of characters read from the keyboard or from a device file.
363

Run-time errors:

Reference:

Error code Meaning

05h Parameter out of the range
(numcharas is out of the range.)

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a data file.)

3Ah File number out the range

Statements: CURSOR, INPUT, LINE INPUT, LOCATE,
OPEN "BAR:", and OPEN "COM:"

Functions: EOF, INKEY$, LOC, and LOF
364

Chapter 15. Function Reference
Syntax:

INSTR([startposition,]targetstring,searchstring)

Parameter:

startposition

A numeric expression which returns a value from 1 to 32767.

targetstring and searchstring

A string expression.

Description:

INSTR searches a target string specified by targetstring to check whether a

search string specified by searchstring is present in it, and then returns the
first character position of the search string first found.

• startposition is the character position where the search is to begin in
targetstring. If you omit startposition option, the search begins at

the first character of targetstring.

• targetstring is the string being searched.

• searchstring is the string you are looking for.

IN STRing String function

INSTR
Searches a specified target string for a specified search string, and then returns the position
where the search string is found.

NOTE
Do not mistake the description order of targetstring and search-
string.
365

• A returned value of INSTR is a decimal number from 0 to 255, depending upon
the conditions as listed below.

Run-time errors:

Reference:

Conditions Returned value

If searchstring is found within
targetstring:

First character position of the search
string first found

If startposition is greater
than the length of targetstring
or 255:

0

If targetstring is a null string: 0

If searchstring is not found: 0

If searchstring is a null string: Value of startposition

1 if startposition option is omit-
ted.

Error code Meaning

05h Parameter out of the range
(startposition is out of the range.)

Functions: LEN
366

Chapter 15. Function Reference

367

Syntax:

INT(numericexpression)

Parameter:

numericexpression

A real expression.

Description:

INT returns the largest whole number less than or equal to the value of

numericexpression by stripping off the fractional part.

• You use INT as shown below to round off the fractional part of a real number.

INT(realnumber+0.5)

Example: dat=1.5
PRINT INT(dat+0.5)

• If numericexpression is negative, this function operates as shown below.

PRINT INT(-1.5)
PRINT INT(-0.2)

INTeger Numeric operation function

INT
Returns the largest whole number less than or equal to the value of a given numeric expres-
sion

2

-2
-1

368

Syntax:

LEFT$(stringexpression,stringlength)

Parameter:

stringlength

A numeric expression which returns a value from 0 to 255.

Description:

LEFT$ extracts a portion of a string specified by stringexpression by the

number of characters specified by stringlength, starting at the left side of the
string.

• If stringlength is zero, LEFT$ returns a null string.

• If stringlength is greater than the length of stringexpression, the
whole stringexpression will be returned.

Run-time errors:

Reference:

LEFT String function

LEFT$
Returns the specified number of leftmost characters from a given string expression.

Error code Meaning

05h Parameter out of the range
(stringlength is out of the range.)

Functions: LEN, MID$, and RIGHT$

Chapter 15. Function Reference

369

Syntax:

LEN(stringexpression)

Description:

LEN returns the length of stringexpression, that is, the number of bytes in
the range from 0 to 255.

• If stringexpression is a null string, LEN returns the value 0.

• LEN counts a full-width Kanji (in the two-byte code mode) as two characters.

PRINT LEN(" ")

LENgth String function

LEN
Returns the length (number of bytes) of a given string.

4

Syntax:

LOC([#]filenumber)

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

Description:

LOC returns the current position within a file (a data file, communications device file,

or bar code device file) specified by filenumber.

• Depending upon the file type, the content of the returned value differs as listed
below.

* The size of the barcode buffer is 40 bytes in the BHT-3000, and 99 bytes in the BHT-4000/BHT-5000/

BHT-6000/BHT-6500/BHT-7000/BHT-7500.

• If LOC is used before execution of the first GET statement after a data file is
opened, it returns 1 or 0 when the data file has any or no data, respectively.

LOcation Counter of file File I/O function

LOC
Returns the current position within a specified file.

File type Returned value

Data file Record number following the number of the
last record read by a GET statement

Communications device file Number of characters contained in the
receive buffer
(0 if no data is present in the receive buffer.)

Bar code device file Number of characters contained in the bar-
code buffer*
(0 if the BHT is waiting for bar code reading.)
370

Chapter 15. Function Reference
Run-time errors:

Reference:

Error code Meaning

34h Bad file name or number
(You specified filenumber of an unopened file.)

3Ah File number out of the range

3Eh A PUT or GET statement executed without a FIELD statement.
(No FIELD statement is found.)

Statements: OPEN

Functions: EOF and LOF
371

372

Syntax:

LOF([#]filenumber)

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

Description:

LOF returns the length of a data file or communications device file specified by

filenumber.

• Depending upon the file type, the content of the returned value differs as listed
below.

• If you specify the bar code device file, a run-time error will occur.

Run-time errors:

Reference:

Location Of File File I/O function

LOF
Returns the length of a specified file.

File type Returned value

Data file Number of written records

Communications device file Number of bytes of unoccupied area in the
receive buffer

Error code Meaning

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a bar code device file.)

3Ah File number out of the range

Statements: GET, INPUT, LINE INPUT, OPEN, and OPEN "COM:"

Functions: EOF, INPUT$, and LOC

Chapter 15. Function Reference

373

Syntax:

MARK$

Description:

MARK$ returns a 3-byte string which consists of the first one byte representing a bar
code type and the remaining two bytes indicating the number of digits of the bar
code.

• The first one byte of a returned value contains one of the following letters repre-
senting bar code types:

• The remaining two bytes of a returned value indicate the number of digits of the
bar code in decimal notation.

• MARK$ returns a null string until bar code reading takes place first after start of
the program.

code MARK I/O function

MARK$
Returns a bar code type and the number of digits of the bar code.

Bar code type First one byte of a returned value

EAN-13 or UPC-A A

EAN-8 B

UPC-E C

ITF (Interleaved 2 of 5) I

STF (Standard 2 of 5) H

Codabar (NW-7) N

Code 39 M

Code 93 L

Code 128 K

EAN-128 W

Syntax:

MID$(stringexpression,startposition[,stringlength])

Parameter:

startposition

A numeric expression which returns a value from 1 to 255.

stringlength

A numeric expression which returns a value from 0 to 255.

Description:

Starting from a position specified by startposition, MID$ extracts a portion of
a string specified by stringexpression, by the number of characters specified
by stringlength.

• A returned value of MID$ depends upon the conditions as listed below.

MIDdle String function

MID$
Returns a portion of a given string expression from anywhere in the string.

Conditions Returned value

If stringlength
option is omitted:

All characters from startposition to the end
of the string
Example: PRINT MID$("ABC123",3)

If stringlength is
greater than the number
of characters contained
between startposi-
tion and the end of the
string:

All characters from startposition to the end
of the string
Example: PRINT MID$("ABC123",3,10)

If startposition is
greater than the length of
stringexpression:

Null string
Example: PRINT MID$("ABC123",10,1)

C123

C123
374

Chapter 15. Function Reference
Run-time errors:

Reference:

NOTE
BHT-BASIC does not support such MID$ function that replaces a part of a
string variable.

Error code Meaning

05h Parameter out of the range

Functions: LEFT$, LEN, and RIGHT$
375

376

Syntax:

POS(0)

Description:
POS returns the current column number of the cursor in the current screen mode
selected by a SCREEN statement, as an integer.

• Even if the cursor is invisible (by a LOCATE statement), the POS function oper-
ates.

• If the maximum value in the current screen mode is returned, it means that the
cursor stays outside of the rightmost column.

• (0) is a dummy parameter that can have any value or expression, but generally it
is 0.

• In the BHT-7000/BHT-7500, the range of the column numbers does not differ
between the normal- and double-width characters.

• For the current row number of the cursor, refer to the CSRLIN function.

Reference:

POSition I/O function

POS
Returns the current column number of the cursor.

Screen mode
BHT-
3000

BHT-
4000

BHT-
5000

BHT-6000/
BHT-6500

BHT-
7000

BHT-
7500

Single-byte
ANK mode

Standard-size font 1 to 17 1 to 27 1 to 22 1 to 17 1 to 22 1 to 27

Small-size font – – – 1 to 17 1 to 22 1 to 27

Two-byte
Kanji mode

Standard-size font 1 to 13 1 to 21 1 to 17 1 to 13 1 to 17 1 to 21

Small-size font – – – 1 to 17 1 to 22 1 to 27

Condensed two-
byte Kanji mode

– 1 to 27 1 to 22 – – –

Statements: LOCATE and SCREEN

Functions: CSRLIN

Chapter 15. Function Reference

377

Syntax:

RIGHT$(stringexpression,stringlength)

Parameter:

stringlength

A numeric expression which returns a value from 0 to 255.

Description:

Starting at the right side of the string, RIGHT$ extracts a portion of a string speci-

fied by stringexpression by the number of characters specified by string-
length.

• If stringlength is zero, RIGHT$ returns a null string.

• If stringlength is greater than the length of stringexpression, the
whole stringexpression will be returned.

Run-time errors:

Reference:

RIGHT String function

RIGHT$
Returns the specified number of rightmost characters from a given string expression.

Error code Meaning

05h Parameter out of the range
(stringlength is out of the range.)

Functions: LEFT$, LEN, and MID$

Syntax:

SEARCH([#]filenumber,fieldvariable,searchdata
[,startrecord])

Parameter:

filenumber

A numeric expression which returns a value from 1 to 16.

fieldvariable

A non-array string variable.

searchdata

A string expression.

startrecord

A numeric expression which returns a value from 1 to 32767.

Description:

SEARCH searches a target field specified by fieldvariable in a data file spec-

ified by filenumber for data specified by searchdata, starting from a record
specified by startrecord, and then returns the number of the record where the
search data is found.

• fieldvariable is a string variable defined by a FIELD statement.

• searchdata is the data you are looking for.

• startrecord is the number of a record where the search is to begin in a data
file. The search ends when all of the written records have been searched.

If you omit startrecord option, the search begins at the first record of the
data file.

• If the search data is not found, SEARCH returns the value 0.

• A convenient use for SEARCH is, for example, to search for a particular product
name, unit price, or stock quantity in a product master file by specifying a bar
code data to searchdata.

• Since the search begins at a record specified by startrecord in a data file
and finishes at the last record, sorting records in the data file in the order of fre-
quency of use before execution of this function will increase the searching speed.

SEARCH File I/O function

SEARCH
Searches a specified data file for specified data, and then returns the record
number where the search data is found.
378

Chapter 15. Function Reference
Run-time errors:

Reference:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than data files.)

3Ah File number out of the range

3Eh A PUT or GET statement executed without a FIELD statement.
(No FIELD statement is found.)

Statements: FIELD, GET, and OPEN

Functions: LOF
379

380

Syntax:
Syntax 1 (Changing the value of a header):

SOH$=stringexpression

Syntax 2 (Returning the current value of a header):

SOH$

Parameter:

stringexpression

A string expression which returns a single-byte character.

Description:
■ Syntax 1

SOH$ modifies the value of a header (one of the text control characters) which indi-
cates the start of heading text in the BHT-protocol when a data file is transmitted by
an XFILE statement. (For the BHT-protocol, refer to the BHT User’s Manual.)

• SOH$ is called a protocol function.

• The initial value of a header (SOH) is 01h.

■ Syntax 2

SOH$ returns the current value of a header.

Run-time errors:

Reference:

Start Of Heading I/O function

SOH$
Modifies the value of a header (SOH) for the BHT-protocol; also returns the
current value of a header.

Error code Meaning

0Fh String length out of the range
(stringexpression is more than a single byte.)

Statements: OPEN "COM:" and XFILE

Functions: ETX$ and STX$

Chapter 15. Function Reference

381

Syntax:

STR$(numericexpression)

Parameter:

numericexpression

A numeric expression.

Description:

STR$ converts the value of numericexpression into a string.

• If numericexpression is 0 or positive, STR$ automatically adds a leading
space as shown below.

PRINT STR$(123);LEN(STR$(123))

To delete the leading space, you should use the MID$ function as shown below.

PRINT MID$(STR$(123),2);LEN(STR$(123))

• If numericexpression is negative, STR$ adds a minus sign as shown
below.

PRINT STR$(-456);LEN(STR$(-456))

• A common use for STR$ is to write numeric data into a data file.

• The VAL function has the opposite capability to STR$.

Reference:

STRing String function

STR$
Converts the value of a numeric expression into a string.

Functions: VAL

 123 4

 123 4

-456 4

382

Syntax:
Syntax 1 (Changing the value of a header):

STX$=stringexpression

Syntax 2 (Returning the current value of a header):

STX$

Parameter:

stringexpression

A string expression which returns a single-byte character.

Description:
■ Syntax 1

STX$ modifies the value of a header (one of the text control characters) which indi-
cates the start of data text in the BHT-protocol when a data file is transmitted by an
XFILE statement. (For the BHT-protocol, refer to the BHT User’s Manual.)

• STX$ is called a protocol function.

• The initial value of a header (STX) is 02h.

■ Syntax 2

STX$ returns the current value of a header.

Run-time errors:

Reference:

Start of TeXt I/O function

STX$
Modifies the value of a header (STX) for the BHT-protocol; also returns the
current value of a header.

Error code Meaning

0Fh String length out of the range
(stringexpression is more than a single byte.)

Statements: OPEN "COM:" and XFILE

Functions: ETX$ and SOH$

Chapter 15. Function Reference
Syntax:
Syntax 1 (Retrieving the current system time or the wakeup time):

TIME$

Syntax 2 (Setting the current system time or the wakeup time):

TIME$="time"

Parameter:

time

A string expression.

Description:
■ Syntax 1

Retrieving the current system time

TIME$ returns the current system time as an 8-byte string. The string has the for-
mat below.

hh:mm:ss

where hh is the hour from 00 to 23 in 24-hour format, mm is the minute from 00 to

59, and ss is the second from 00 to 59.

Example: CLS
PRINT TIME$

Retrieving the wakeup time (For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/
BHT-7500)

TIME$ returns the wakeup time as a 5-byte string. The string has the format below.

hh:mm

TIME I/O function

TIME$
Returns the current system time or wakeup time, or sets a specified system time or wakeup
time.
383

■ Syntax 2

Setting the system time

TIME$ sets the system time specified by "time." The format of "time" is the
same as that in syntax 1.

Example: TIME$="13:35:45"

Setting the wakeup time (For the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-
7500)

TIME$ sets the wakeup time specified by "time." The format of "time" is the
same as that in syntax 1.

• The calendar clock is backed up by the battery. (For the system date, refer to the
DATE$ function.)

• For returning the current wakeup time or setting a specified wakeup time, bit 2 of
port 8 should be set to 1 with the OUT statement before execution of this function.

• For the wakeup function, refer to Chapter 12, Section 12.3, "Wakeup Function."

Run-time errors:

Reference:

Error code Meaning

05h Parameter out of the range
(time is out of the range.)

Functions: DATE$
384

Chapter 15. Function Reference

385

Syntax:
Syntax 1 (Retrieving the current value of a specified timer):

TIMEA
TIMEB
TIMEC

Syntax 2 (Setting a specified timer):

TIMEA=count
TIMEB=count
TIMEC=count

Parameter:

count

A numeric expression which returns a value from 0 to 32767.

Description:
■ Syntax 1

TIMEA, TIMEB, or TIMEC returns the current value of timer-A, -B, or -C, respec-
tively, as a 2-byte integer.

■ Syntax 2

TIMEA, TIMEB, or TIMEC sets the count time specified by count.

• count is a numeric value in units of 100 ms.

• Upon execution of this function, the Interpreter starts a specified timer counting
down in decrements of 100 ms (equivalent to -1) until the timer value becomes 0.

Run-time errors:

TIMER-A/TIMER-B/TIMER-C I/O function

TIMEA/TIMEB/TIMEC
Returns the current value of a specified timer or sets a specified timer.

Error code Meaning

05h Parameter out of the range
(count is a negative value.)

06h The operation result is out of the allowable range.
(count is greater than 32767.)

386

Syntax:

VAL(stringexpression)

Parameter:

stringexpression

A string expression which represents a decimal number.

Description:

VAL converts the string specified by stringexpression into a numeric value.

• If stringexpression is nonnumeric, VAL returns the value 0.

PRINT VAL("ABC")

• If stringexpression contains a nonnumeric in midstream, VAL converts the
string until it reaches the first character that cannot be interpreted as a numeric.

PRINT VAL("1.2E-3ABC")

• The STR$ function has the opposite capability to VAL.

Reference:

VALue String function

VAL
Converts a string into a numeric value.

Functions: ASC and STR$

0

1.200000000E-03

Chapter 16
Extended Functions

CONTENTS

16.1 Overview.. 388

16.2 Reading or writing system settings from/to the memory (SYSTEM.FN3).... 388
16.2.1 Function Number List of SYSTEM.FN3.. 388
16.2.2 Detailed Function Specifications .. 389
387

Chapter 16. Extended Functions
16.1 Overview
In addition to the BHT-BASIC statements and functions, the BHT-7000/BHT-7500/BHT-7500S
supports the following extended functions which can be invoked by the CALL statement.

16.2 Reading or writing system set-
tings from/to the memory
(SYSTEM.FN3)

16.2.1 Function Number List of SYSTEM.FN3

The SYSTEM.FN3 may read or write system settings depending upon the function number
specified, as listed below.

Extented functions Used to: Integrated in:

SYSTEM.FN3 Read or write system settings from/to the memory. BHT-7000/
BHT-7500/
BHT-7500S

SS.FN3 Connect or disconnect the BHT-7500S to/from the
spread spectrum system. (For details, see Chapter
17.)

BHT-7500S

SOCKET.FN3 Implement a subset of the TCP/IP socket application
program interface (API). (For details, see Chapter 18.)

BHT-7500S

FTP.FN3 Implement FTP client services for file transfer to/from
FTP servers. (For details, see Chapter 18.)

BHT-7500S

Function
number

Used to:

0 Get SYSTEM.FN3 version

1 Read numeric data from System Mode settings

2 Write numeric data to System Mode settings

3 Read string data from System Mode settings

4 Write string data to System Mode settings

5 Get font information
388

16.2.2 Detailed Function Specifications

Syntax: CALL "SYSTEM.FN3" 0 VERSION$

Description: This function returns the SYSTEM.FN3 library version in VER-
SION$.

Parameter: (None)

Returned value: VERSION$ Version which is fixed to 7 characters

Syntax: CALL "SYSTEM.FN3" 1 PARA%,DATA%

Description: This function reads numeric data (DATA%) from the system menu
item specified by PARA%.

Parameter: PARA% Item number of the system menu

Returned value: DATA% Numeric data read from the specified system menu item

System menu items list:

*1 R/W: Read and write possible
RO: Read only

Function #0: Get SYSTEM.FN3 version

Function #1: Read numeric data from System Mode settings

Item number
(PARA%)

System menu item Attribute*1 DATA%, numeric data of the
system menu item

Initial value

1 Shift key mode R/W 0: Nonlock
1: Onetime

0

2 Assignment to M1 key R/W 0: None
1: Enter key
2: Trigger switch
3: Shift key
4: Backlight on/off function key

0

3 Assignment to M2 key R/W Same as above. 0

4 Assignment to M3 key R/W Same as above. 2

5 Assignment to M4 key R/W Same as above. 2

6 Black-and-white inverted label
reading function

R/W 0: OFF
1: ON

0

7 Reserved for system –

8 Decode level R/W 1 to 9 4

9 Minimum number of digits to be
read for ITF

R/W 2 to 20 4

10 Minimum number of digits to be
read for STF

R/W 1 to 20 2
389

Chapter 16. Extended Functions
Item number
(PARA%)

System menu item Attribute*1 DATA%, numeric data of the
system menu item

Initial value

11 Minimum number of digits to be
read for Codabar

R/W 3 to 20 4

12 Default interface to be used for
user programs

R/W 0: Optical interface
1: Direct-connect interface

0

13 Default interface to be used for
System Mode

R/W 0: Optical interface
1: Direct-connect interface

0

14 Transmission speed for optical
interface

R/W 0: 2400 bps 1: 9600 bps
2: 19200 bps 3: 38400 bps
4: 57600 bps 5: 115200 bps

1

15
|
17

Reserved for system –

18 Transmission speed for direct-
connect interface

R/W 0: 300 bps 1: 600 bps
2: 1200 bps 3: 2400 bps
4: 4800 bps 5: 9600 bps
6: 19200 bps 7: 38400 bps
8: 57600 bps 9: 115200 bps

6

19 Vertical parity for direct-
connect interface

R/W 0: None
1: Odd
2: Even

0

20 Character length for direct-
connect interface

R/W 0: 7 bits
1: 8 bits

1

21 Stop bit length for direct-
connect interface

R/W 0: 1 bit
1: 2 bits

0

22 Serial numbers for optical inter-
face

R/W 0: No numbers (OFF)
1: Add numbers (ON)

1

23 Horizontal parity for optical
interface

R/W 0: No parity (OFF)
1: Add (ON)

1

24 Timeout for data link establish-
ment for optical interface

R/W 0: No timeout
1: 30 sec, 2: 60 sec,
3: 90 sec, 4: 120 sec

1

25 Space codes in the tail of a data
field for optical interface

R/W 0: Ignore
1: Handle as data

0

26 Serial numbers for direct-
connect interface

R/W 0: No numbers (OFF)
1: Add numbers (ON)

1

27 Horizontal parity for direct-
connect interface

R/W 0: No parity (OFF)
1: Add (ON)

1

28 Timeout for data link establish-
ment for direct-connect inter-
face

R/W 0: No timeout
1: 30 sec, 2: 60 sec,
3: 90 sec, 4: 120 sec

1

29 Space codes in the tail of a data
field for direct-connect interface

R/W 0: Ignore
1: Handle as data

0

*1 R/W: Read and write possible
RO: Read only
390

*1 R/W: Read and write possible
RO: Read only

*2 The resume function setting made here is effective also in user programs downloaded to the BHT.
*3 These values will vary depending upon the hardware type.

Syntax: CALL "SYSTEM.FN3" 2 PARA%,DATA%

Description: This funcion writes numeric data (DATA%) to the system menu item
specified by PARA%.

Parameter: PARA% Item number of the system menu
DATA% Numeric data to be specified
(See the system menu items list given in Function #1.)

Returned value: None

System menu items list: Refer to the System menu items list given in Function #1.

30 Communications protocol type R/W 0: BHT protocol
2: BHT-Ir protocol

0

31 Resume function R/W 0: OFF
1: ON

1*2

32
|
34

Reserved for system
–

35 RAM size RO 512/1024/2048 (kilobytes) *3

36 ROM size RO 2048/4096/8192 (kilobytes) *3

37 Cluster size RO 4096 (bytes)

38 Scanning range marker
(BHT-7000 only)

R/W 0: Normal mode
1: OFF mode

0

Function #2: Write numeric data to System Mode settings

Item number
(PARA%)

System menu item Attribute*1 DATA%, numeric data of the
system menu item

Initial value
391

Chapter 16. Extended Functions
Syntax: CALL "SYSTEM.FN3" 3 PARA%,DATA$

Description: This funcion reads string data (DATA$) from the system menu item
specified by PARA%.

Parameter: PARA% Item number of the system menu
Returned value: DATA$ String data read from the specified system menu item

System menu items list:

Syntax: CALL "SYSTEM.FN3" 4 PARA%,DATA$

Description: This funcion writes string data (DATA$) to the system menu item
specified by PARA%.

Parameter: PARA% Item number of the system menu
DATA$ String data to be specified
(See the System menu items list given in Function #3.)

Returned value: None

System menu items list: Refer to the System menu items list given in Function #3.

Function #3: Read string data from System Mode settings

Item number
(PARA%)

System menu item Attribute
DATA$, numeric data of the sys-
tem menu item

1 System version RO "X.XX" fixed to 4 characters

2 Reserved for system –

3 Model name RO Max. of 8 characters
(e.g., "BHT75")

4 Product number assigned to the BHT RO Fixed to 16 characters
(e.g., "496310….")

5 Serial number assigned to the BHT R/W Fixed to 6 characters

6 Execution program R/W Filename.xxx
(Filename followed by period and
extension)
If not selected, a null string

7 Version of the BHT system parameter
file

RO "X.XX" fixed to 4 characters

Function #4: Write string data to System Mode settings
392

Syntax: CALL "SYSTEM.FN3" 5 N.FONT%,VERSION$()

Description: This funcion returns font information--the number of downloaded
fonts, font name, font size, and font version.

Parameter: None

Returned value: N.FONT% Number of fonts
VERSION$ Sets of the font name, font size, and font version in

the following format

Note: If the number of elements of VERSION$ is less than the number of
fonts, the SYSTEM.FN3 returns the sets of the font information by
the number of elements.

Function #5: Get font information

Font name Font size Font version

8 bytes 2 bytes 8 bytes
393

Chapter 17
Spread Spectrum Communication
(BHT-7500S only)

CONTENTS

17.1 Overview.. 395

17.2 Programming for Wireless Communication ... 397

17.3 Wireless Communications-related Statement.. 398

17.4 Wireless Communication Library (SS.FN3) ... 399

17.4.1 Overview .. 399
17.4.2 Detailed Function Specifications .. 400
394

17.1 Overview

■ Spread spectrum wireless device
The BHT-7500S system consists of the BHT main system and the spread spectrum wireless
device; the former executes user programs and the latter performs spread spectrum communi-
cations.

User programs use the logical device file (named "COM3") to control the spread spectrum
wireless device.

■ Spread spectrum communications method
The BHT-7500S uses the TCP/IP protocol subset over the spread spectrum wireless device.
For details about programming for spread spectrum communications, refer to Chapter 18,
"TCP/IP."

■ Configuration of spread spectrum system
Shown below is an example of the spread spectrum system configuration using the BHT-
7500S. For details, refer to the BHT-7500/7500S User’s Manual.

Spread
spectrum
wireless device

Main system

BHT-7500S

User programs
(written in BHT-BASIC)

Logical device
file

Ethernet 10BASE-T

BHT-7500S
(station)
Domain: 0
Security ID: DENSO

Host computer
Access point (master)
Domain: 0
Security ID: DENSO
Channel: 1
Sub channel: 1

BHT-7500S (station)
Domain: 0
Security ID: DENSO

Roaming function

BHT-7500S (station)
Domain: 0
Security ID: DENSO

Wireless board
connection

Wireless card
connection Access point

(master)
Domain: 0
Security ID: DENSO
Channel: 2
Sub channel: 1

BHT-7500S (station)
Domain: 0
Security ID: DENSO
395

Chapter 17. Spread Spectrum Communication (BHT-7500S only)
The table below shows the communications status transition as the state of the wireless com-
munications device built in the BHT-7500S changes.

If always being opened, the wireless communications device will consume much power. When
the device is not in use, therefore, close it as soon as possible.

However, it will take several seconds to open the wireless communications device and syn-
chronize it with the master for making communications ready. Frequent opening and closing of
the device will require much time, resulting in slow response. Take into account the application
purposes of user programs when programming.

When the wireless communications device is synchronized with the maser, the BHT-7500S will
display a bar on the LCD as shown below.

Spread spectrum
wireless device

Communication

Open (power on) Impossible

Checking synchronization with
master

Impossible

Synchronization complete Possible

Roaming Impossible if roaming leads to the loss of synchronization
Possible if synchronization with the master is kept

End of roaming Possible

Close (power off) Impossible

A bar will appear if the wireless
communications device is
synchronized with the maser.
396

17.2 Programming for Wireless Com-
munication

When programming for spread spectrum communications, use the following statement and
extension functions:

(1) OPEN statement (OPEN "COM3:")

Refer to Section 17.3, "Wireless Communications-related Statement."

(2) Spread spectrum library (SS.FN3) for controlling the spread spectrum wireless device

Refer to Section 17.4, "Wireless Communication Library (SS.FN3)."

(3) Socket library (SOCKET.FN3) for data transmission according to TCP/IP

Refer to Section 18.5, "Socket Library (SOCKET.FN3)."

(4) FTP library (FTP.FN3) for file transfer

Refer to Section 18.6, "FTP Library (FTP.FN3)."
397

Chapter 17. Spread Spectrum Communication (BHT-7500S only)
17.3 Wireless Communications-
related Statement

Syntax: OPEN "COM3:" AS [#] filenumber

Description: This statement opens a wireless communications device file.

A wireless communications device file cannot be opened with an optical
interface device file concurrently. If you attempt to open them concur-
rently, a run-time error will occur.

A wireless communications device file can be opened with a bar code
device file concurrently.

Syntax error: Refer to Chapter 14, "Statement Reference."

Run-time errors:

OPEN "COM3:"Open a wireless communications device file

Error code Meaning

02h Syntax error

37h File already open

3Ah File number out of the range

45h File already open (You attempted to open a wireless communica-
tions file and the optical interface of a communications device file
concurrently.)

401h Failed to open a wireless communications device file.

TIP A wireless communications device uses TCP/IP for reading or writing data, unlike
other communications devices. For details about programming for using TCP/IP over
a wireless communications device, refer to Chapter 18, "TCP/IP."

To close a wireless communications device file, use a CLOSE statement listed in
Chapter 14.
398

17.4 Wireless Communication Library
(SS.FN3)

17.4.1 Overview

The spread spectrum library (SS.FN3) used in a BHT-BASIC CALL statement gets or sets
parameters from/to the wireless block.

If wireless communications are frequent, a run-time error may occur when you set or refer to
wireless-related parameters. In such a case, set or refer to them again.

■ Function Number List of SS.FN3

Number Function

0 Get SS.FN3 version

1 Get parameter value (integer) from the wireless block

2 Get parameter value (string) from the wireless block

3 Set parameter value (integer) to the wireless block

4 Set parameter value (string) to the wireless block

7 Check wireless block synchronization with master
399

Chapter 17. Spread Spectrum Communication (BHT-7500S only)
17.4.2 Detailed Function Specifications

Syntax: CALL "SS.FN3" 0 VERSION$

Description: This function returns the SS.FN3 library version in VERSION$.

Parameters: (None)

Returned value: VERSION$: Version information, 7 characters, fixed length

Run-time errors:

Syntax: CALL "SS.FN3" 1 PARA%,DATA%

Description: This function gets integer (DATA%) from the wireless block setting speci-
fied by PARA%.

Parameters: PARA% Setting number

Returned value: DATA% Integer read from the specified wireless block setting

Correspondence table:

Run-time errors:

Function #0 Get SS.FN3 version

Error code Meaning

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Insufficient string variable storage area

Function #1 Get parameter value (integer) from the wireless block

Setting number
(PARA%)

Description
Values for setting

(DATA%)
Initial
value

1 Domain information 0 to 15 0

Error code Meaning

05h Parameter out of the range

F0h Mismatch parameter number

F1h Mismatch parameter type
400

Syntax: CALL "SS.FN3" 2 PARA%,DATA$

Description: This function gets string (DATA$) from the wireless block setting specified
by PARA%.

Parameters: PARA% Setting number

Returned value: DATA% String read from the specified wireless block setting

Correspondence table:

Run-time errors:

Function #2 Get parameter value (string) from the wireless block

Setting number
(PARA%)

Description Values for setting (DATA%)

1
Wireless block

firmware version
Character string, 4 bytes

2 Physical address Character string, 6 bytes

Error code Meaning

05h Parameter out of the range

34h Bad file name or number (The wireless communications device is
not opened.)

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Insufficient string variable storage area

105h Power-off detected

400h Failed to get the setting value. (Failed to set the value.)

NOTE After executing an OPEN "COM3:" statement, refer to the above parameter.
401

Chapter 17. Spread Spectrum Communication (BHT-7500S only)
Syntax: CALL "SS.FN3" 3 PARA%,DATA%

Description: This function sets integer (DATA%) to the wireless block setting specified
by PARA%.

Parameters: PARA% Setting number

Returned value: DATA% Integer to be set to the specified wireless block

Correspondence table:

Run-time errors:

Function #3 Set parameter value (integer) to the wireless block

Setting number
(PARA%)

Description
Values for setting

(DATA%)

1 Domain information 0 to 15

Error code Meaning

05h Parameter out of the range

37h File already open (The wireless communications device has
already been opened.)

F0h Mismatch parameter number

F1h Mismatch parameter type

NOTE The above parameter will take effect when the immediately following OPEN
"COM3:" statement executes.

NOTE The above parameter should be set with the wireless communications device file
being closed.
402

Syntax: CALL "SS.FN3" 4 PARA%,DATA%

Description: This function sets string (DATA$) to the wireless block setting specified by
PARA%.

Parameters: PARA% Setting number

Returned value: DATA% String to be set to the specified wireless block

Correspondence table:

Run-time errors:

Function #4 Set parameter value (string) to the wireless block

Setting number
(PARA%)

Description Values for setting (DATA%)

3 Security ID
Character string,

maximum 20 bytes

Error code Meaning

05h Parameter out of the range

37h File already open (The wireless communications device has
already been opened.)

45h Device files prohibited from opening concurrently
(The optical interface communications device has been opened.)

F0h Mismatch parameter number

F1h Mismatch parameter type

105h Power-off detected

400h Failed to get the setting value. (Failed to set the value.)

NOTE The above parameter will take effect when the immediately following OPEN
"COM3:" statement executes.

NOTE Set the above parameter after closing both the optical interface communications
device file and wireless communications device file.

NOTE The allowable entry range of the ASCII codes is from 20h to 7Eh. If you set " " to
DATA$, the default will apply.
403

Chapter 17. Spread Spectrum Communication (BHT-7500S only)
Syntax: CALL "SS.FN3" 7 TIMEOUT%,ASSOC%

Description: This function checks whether the wireless block is synchronized with the
master.

According to the timeout length specified by TIMEOUT%, the system oper-
ates as follows:

- If greater than zero (0) is specified to TIMEOUT% (recommended), this
program will check synchronization with the master during the specified
time. Upon completion of synchronization, the program will set zero (0)
to ASSOC% to end the checking operation.

If the wireless block fails to synchronize with the master within the spec-
ified time, the program will set -1 to ASSOC% to end the checking opera-
tion.

- If zero (0) is specified to TIMEOUT%, this function will check synchroni-
zation with the master and immediately return.

- If -1 is specified to TIMEOUT%, no timeout will occur so that this function
will wait until synchronization will be complete.

Parameters: TIMEOUT% Maximum time (unit: 100ms) to wait for synchronization
with master

Returned value: ASSOC% 0 (Synchronization with master complete)|
-1 (Failed to synchronize with master)

Run-time errors:

Function #7 Check wireless block synchronization with master

Error code Meaning

F0h Mismatch parameter number

F1h Mismatch parameter type

105h Power-off detected

NOTE After executing an OPEN "COM3:" statement, refer to the above parameter.
404

Chapter 18
TCP/IP

CONTENTS

18.1 Two Sides .. 406

18.1.1 BHT-7500S... 406
18.1.2 Hosts .. 406

18.2 TCP/IP over Spread SpectrumSystem .. 407

18.2.1 General Procedure ... 407
[1] Configure Wireless Communications Device 407
[2] Configure TCP/IP System ... 408
[3] Declare TCP/IP Communications Pathway............................. 409
[4] Open Wireless Communications Device 409
[5] Check Wireless Communications Device Synchronization

with Master 410
[6] Connect to TCP/IP Communications Pathway........................ 411
[7] Transfer Data or File via Socket Interface............................... 411
[8] Disconnect TCP/IP Communications Pathway 412
[9] Close Spread Spectrum Wireless Device 412

18.2.2 Programming Notes for Socket API According to UDP.................... 413
18.2.3 Programming Notes for Resume Function 415

18.3 Socket API ... 417

18.3.1 Overview .. 417

18.4 FTP Client.. 419

18.4.1 Overview .. 419
18.4.2 File Formats ... 419

[1] User Programs (*.PD3) ... 419
[2] Extension Libraries (*.FN3 and *.EX3) 421
[3] Data Files .. 422

18.4.3 Using FTP Client .. 425
[1] Basic Procedure.. 425
[2] Configuring FTP Client .. 425
[3] Calculating Memory Requirements ... 426
[4] Optimizing Drive (Recommended) .. 427
[5] FTP Transfers ... 427

18.5 Socket Library (SOCKET.FN3).. 428

18.5.1 Overview .. 428
18.5.2 Detailed Function Specifications .. 431

18.6 FTP Library (FTP.FN3) .. 452

18.6.1 Overview .. 452
18.6.2 Detailed Function Specifications .. 454
405

18.1 Two Sides

18.1.1 BHT-7500S

The BHT-7500S includes two built-in libraries providing BHT-BASIC programs with access to a
subset of the TCP/IP family of protocols over the spread spectrum communication system.

SOCKET.FN3: This library implements a subset of the BSD4.4 socket application program
interface (API).

FTP.FN3: This library implements FTP client services for file transfers to and from FTP
servers.

18.1.2 Hosts

SOCKET.FN3 and FTP.FN3 require a host machine with the equivalent TCP/IP functionality
and running the appropriate server software.
406

Chapter 18. TCP/IP
18.2 TCP/IP over Spread Spectrum
System

18.2.1 General Procedure

The following is the procedure for using TCP/IP over a wireless communications device.

[1] Configure Wireless Communications Device

To connect to the wireless communications pathway, specify the following system settings in
System Mode or by using the extension library SS.FN3 in a user program:

• Domain

• Security ID

For the procedure in System Mode, refer to the "BHT-7500/BHT-7500S User’s Manual." For
the details of the SS.FN3, refer to Section 17.4, "Wireless Communication Library (SS.FN3)" in
this manual.

If no system settings are made in a user program, those made in System Mode will apply; if
made with SS.FN3, those will become system settings.

Given below is a setting example with SS.FN3:

para% = 1 ’Specify domain (#1)

data% = 9 ’Value to be set to domain

call "ss.fn3" 3 para%, data% ’Set domain (SS.FN3 function #3)

para% = 3 ’Specify security ID (#3)

data$ = "9999" ’Value to be set to security ID

call "ss.fn3" 4 para%, data$ ’Set security ID
’(SS.FN3 function #4)
407

[2] Configure TCP/IP System

To connect to the TCP/IP pathway, specify the following system settings in System Mode or by
using the extension library SOCKET.FN3 in a user program:

• IP address

• Subnet mask

• Default gateway

These settings will be used in [6].

For the procedure in System Mode, refer to the "BHT-7500/7500S User’s Manual." For the
details of the SOCKET.FN3, refer to Section 18.5, "Socket Library (SOCKET.FN3)."

Given below is a setting example with SOCKET.FN3:

my.addr$ = "192.168.0.125" ’IP address of the BHT

subnetmask$ = "255.255.255.0" ’Subnet mask

gateway$ = "0.0.0.0" ’Default gateway

para% = 1 ’Specify IP address (#1)

call "socket.fn3" 45 para%, my.addr$ ’Set IP address
’(SOCKET.FN3 Function #45)

para% = 2 ’Set subnet mask (#2)

call "socket.fn3" 45 para%, subnetmask$ ’Set subnet mask
’(SOCKET.FN3 Function #45)

para% = 3 ’Specify default gateway (#3)

call "socket.fn3" 45 para%, gateway$ ’Set default gateway
’(SOCKET.FN3 Function #45)
408

Chapter 18. TCP/IP
[3] Declare TCP/IP Communications Pathway

Specify the following system settings by using the socket library (SOCKET.FN3):

• Communications device: Wireless communications device

• Link layer: Ethernet

For the setting procedure with the SOCKET.FN3, refer to Section 18.5, "Socket Library
(SOCKET.FN3)."

Given below is a setting example using SOCKET.FN3:

iftype% = 2 ’Specify wireless communications device
layermode% = 2 ’Specify Ethernest as a link layer

call "socket.fn3" 40 iftype%, layermode%, interface%
’Specify communications pathway
’(SOCKET.FN3 function #40)
’Returns value in interface%
’(The returned value will be used in
’[6] and [8].)

[4] Open Wireless Communications Device

Use the OPEN "COM3:" statement.

At the opening time, the following will take place:

• Powering up the wireless block

• Performing the self test of the wireless block

• Initializing the wireless block

For the details, refer to Section 17.3, "Wireless Communications-related Statement."

Given below is an example using the wireless communications-related statement:

hCom3% = 1 ’Specify a file number to be opened
’(The file number will be used also in [9].)

open "COM3:" as #hCom3% ’Open the wireless communications device
’(OPEN "COM3:" statement)
409

[5] Check Wireless Communications Device Synchronization
with Master

Using a wireless communications device for TCP/IP communication requires synchronizing
with the master (e.g., access point). To check the synchronization, use the extension library
SS.FN3.

In any of the following cases, a wireless communications device may not be synchronized with
the master:

• When a wireless communications device is opened (Opening a wireless communications
device and synchronizing with the master will take a few seconds.)

• When a wireless block tries to synchronize with a new master in roaming.

• When a wireless block is moved out of the radio-wave area with the master.

• When a wireless block is moved to a place where there is any radio-wave obstruction
between the wireless block and the master.

For details about SS.FN3, refer to Section 17.4, "Wireless Communication Library (SS.FN3)."

Given below is a setting example using SS.FN3.

timeout% = 100 ’Set time (10 sec.) to wait for
’synchronization with master.

call "ss.fn3" 7 timeout%, assoc% ’Check synchronization with master.
’(SS.FN3 function #7)
’Returns value in assoc%

if assoc% = -1 then ’If synchronization is not complete, go
goto Sync.Erro ’to Sync.Err.

endif
410

Chapter 18. TCP/IP
[6] Connect to TCP/IP Communications Pathway

Use the extension library SOCKET.FN3. Connecting to the TCP/IP communications pathway
requires the following settings (specified in [2]):

• IP address

• Subnet mask

• Default gateway

There are two ways to specify these parameters.

(a) Use the system settings with the extension library SOCKET.FN3. Refer to Section 18.5,
"Socket Library (SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

call "socket.fn3" 41 interface% ’Connect to communications pathway
’(SOCKET.FN3 function #41)
’Use the returned value of [3] in
’interface%.

(b) Use user-defined values provided by the application with the extension library
SOCKET.FN3. Refer to Section 18.5, "Socket Library (SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

my.addr$ = "192.168.0.125" ’IP address of the BHT

subnetmask$ = "255.255.255.0" ’Subnet mask

gateway$ = "0.0.0.0" ’Default gateway

call "socket.fn3" 42 interface%, my.addr$, subnetmask$, gateway$

’Connect to communications pathway
’(SOCKET.FN3 function #42)
’Use the returned value of [3] in
’interface%.

[7] Transfer Data or File via Socket Interface

To transfer data via the socket interface, use the extension library SOCKET.FN3. Refer to Sec-
tion 18.3, "Socket API" and Section 18.5, "Socket Library (SOCKET.FN3)."

To transfer file via the socket interface, refer to Section 18.4.3, "Using FTP Client."
411

[8] Disconnect TCP/IP Communications Pathway

Use the extension library SOCKET.FN3. Refer to Section 18.5, "Socket Library
(SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

Call "socket.fn3" 43 interface% ’Disconnect TCP/IP communications pathway

’(SOCKET.FN3 function #43)

’Use the returned value of [3] in interface%.

[9] Close Spread Spectrum Wireless Device

Use the CLOSE statement in BHT-BASIC.

Closing the device will power off the wireless block. For details about the CLOSE statement,
refer to Chapter 14 "Statement Reference."

Given below is an example using the CLOSE statement.

close #hCom3% ’Close the wireless communications device

’(Use CLOSE statement)

’Use the file number specified in [4]

For details, refer to the sample programs.
412

Chapter 18. TCP/IP
18.2.2 Programming Notes for Socket API According
to UDP

The user datagram protocol (UDP) has no flow control, so send/receive data may go missing
due to poor line conditions or difference of communications capabilities between wireless and
Ethernet. To prevent data missing, be sure to incorporate some flow control process into user
programs at both the BHT and host.

Given below are message transmission examples that support retransmission controls at each
of the BHT and host.

■ BHT’s retransmission control for a transmission error
Assume that the BHT uses the protocol of receiving transmission completion message from
the host after sending a message.

If the BHT times out for waiting a transmission completion message, it will transmit the unsent
message again.

Normal end

Transmission error in a message sent from the BHT

 BHT

Disconnect

Host

Data message

Transmission
completion message

BHT

Timeout for receiving
the transmission
completion message

Disconnect

HostData message

Error

Transmission
completion message

Data message
(sent again)

Transmission
completion message
413

■ Host’s retransmission control for a transmission error
Assume that the host uses the protocol of receiving transmission completion message from the
BHT after sending a message.

If the host times out for waiting a transmission completion message, it will transmit the unsent
message again.

Normal end

Transmission error in a message sent from the host

BHT

Disconnect

Host

Data message

Transmission
completion message

BHT

Timeout for receiving
the transmission
completion message

Disconnect

HostData message

Error

Transmission
completion message

Data message
(sent again)

Transmission
completion message
414

Chapter 18. TCP/IP
18.2.3 Programming Notes for Resume Function

If the BHT is turned off and on during data transmission in wireless communications, the wire-
less communications device will remain off so that subsequent data will no longer be sent or
received.

In such a case, BHT-BASIC interpreter will return a run-time error (Error code: &h105) inform-
ing that the power is off. Develop such user programs that perform the following procedure and
then open the wireless communications device again.

■ Procedure for opening the wireless communications device again after detec-
tion of a power-off error

(1) Use the ON ERROR GOTO statement for error interrupt (at this step, none of (3) through
(5) should be carried out)

(2) Use the RESUME statement for transferring control to the main program

(3) Close the socket.

(4) Disconnect the TCP/IP communications pathway.

(5) Close the wireless communications device.

On the next page is a sample program.
415

main: ’ Main program
on error goto Err.TCP ’ Prepare for error interrupt (To Err.TCP

’ at the time of error occurrence)
...

open "COM3:" as #hCom3% ’ Open a wireless communications device
...

’ Use the OPEN "COM3:" statement

sock.stts% = 1 ’ Set "1" to socket processing number
...

call "socket.fn3" 41 interface% ’ Connect TCP/IP communications pathway
’ (system settings)

...
’ Use SOCKET.FN3 function #41

sock.stts% = 2 ’ Set "2" to socket processing number
...

call "socket.fn3" 26 family%,type%,protocol%,sockfd% ’ Generate socket
...

’ Use SOCKET.FN3 function #26

sock.stts% = 3 ’ Set "3" to socket processing number
...

call "socket.fn3" 3 sockfd%,family%,port%,serv.addr$ ’ Connect socket
...

’ Use SOCKET.FN3 function #3

sock.stts% = 4 ’ Set "4" to socket processing number
......

return ’
Err.TCP: ’ Error interrupt processing

’ Control transferred to this step if an
’ error occurs

err.code% = ERR ’ Get error number
err.line% = ERL ’ Get error line number
resume Sock.Err ’ RESUME statement to transfer control from

’ error interrupt processing to socket error
’ processing routine

Sock.Err: ’ Socket error processing routine
print " ERR : " ; hex$(err.code%) ’ Display error number
print " ERL : " ; hex$(err.line%) ’ Display error line number
if sock.stts% >= 3 then ’ If OK until socket generation,
 call "socket.fn3" 28 sockfd% ’ close socket
endif
if sock.stts% >= 2 then ’ If OK until connection of TCP/IP

’ communications pathway
 call "socket.fn3" 43 interface% ’ disconnect the pathway
endif ’
if sock.stts% >= 1 then ’ If OK until opening the wireless device
 close #hCom3% ’ close the device
endif ’
goto main ’ To main program
416

Chapter 18. TCP/IP
18.3 Socket API

18.3.1 Overview

The SOCKET.FN3 library implements a subset of the BSD4.4 socket application program
interface (API).

The following flowcharts show the BSD4.4 socket API calls for the two communications proto-
cols required for the TCP/IP transport layer: transmission control protocol (TCP) for streams
and user datagram protocol (UDP) for datagrams.

■ Transmission Control Protocol (TCP)

socket()

connect()

send()

select()

recv()

close()

socket()

bind()

listen()

accept()

select()

recv()

send()

close()

Client Server
417

■ User Datagram Protocol (UDP)

socket()

bind()

sendto()

select()

recvfrom()

close()

socket()

bind()

select()

recvfrom()

sendto()

close()

Client Server
418

Chapter 18. TCP/IP
18.4 FTP Client

18.4.1 Overview

The FTP.FN3 library implements FTP client services for file transfers to and from FTP servers.
Note that there are no server capabilities.

This FTP client transfers files between operating systems in image (binary) format. The only
translation support is for line delimiter conversion.

In particular, note that this FTP client does not convert between such double-byte character
encodings as Shift JIS and EUC. Provide your own code conversion if the server uses a differ-
ent encoding--for directory and file specifications, in particular.

18.4.2 File Formats

The FTP client classifies files into three types by their extensions: user programs (*.PD3),
extension libraries (*.FN3 and *.EX3), and data files (other extensions).

The following describes each file format in turn, assuming that the line delimiter setting speci-
fies the CR-LF combination: a carriage return (0Dh) plus a line feed (0Ah).

[1] User Programs (*.PD3)

The FTP client reserves the .PD3 extension for user program files generated by the BHT-
BASIC compiler.

Program files use a fixed record length of 128 bytes for all records except the last. These
records are separated with line delimiters.

CR LF

CR LF

CR LF

CR LF

CR LF

Program code

Record

Record length (128 bytes)
419

The FTP client automatically pads the last record of a downloaded program file with null codes
(00h) to maintain the fixed-length format. (The number required is 128 less the number of
bytes in the last record).

Aside: To conserve memory and boost performance, the BHT packs a pair of ASCII bytes
into a single byte by converting each byte into a 4-bit hexadecimal number.

CR LF

CR LF

CR LF

Record length (128 bytes)

Record length (128 bytes)

Zeros

Download
420

Chapter 18. TCP/IP
[2] Extension Libraries (*.FN3 and *.EX3)

The FTP client treats files with extensions .FN3 and .EX3 as extension libraries.

Extension libraries use a fixed record length of 130 bytes for all records except the last. These

records are separated with line delimiters.

The FTP client automatically pads the last record of a downloaded program file with null codes
(00h) to maintain the fixed-length format. (The number required is 130 less the number of

bytes in the last record.)

Aside: When downloading extension libraries, the BHT uses 128 bytes out of 130 bytes of
record length (the remaining 2 bytes will be used for checking data). To conserve
memory and boost performance, the BHT packs a pair of ASCII bytes into a single
byte by converting each byte into a 4-bit hexadecimal number.

CR LF

CR LF

CR LF

CR LF

CR LF

Program code

Record

Record length (130 bytes)

CR LF

CR LF

CR LF

CR LF

Record length (130 bytes)

Record length (130 bytes)

Zeros

Download

CR LF
421

[3] Data Files

The FTP client treats files with extensions other than .PD3, .FN3, and .EX3 as data files.

Data file records consist of fields separated with line delimiters. An EOF (1Ah) at the end of the
data file is optional.

Data files are not limited to ASCII characters. They can use all bytes codes from 00h to FFh.

There can be 1 to 16 fields, each 1 to 254 bytes long. The sum of the field lengths and the
number of fields, however, must not exceed 255.

If the actual record length is different from the specified record length

The FTP client discards any excess beyond the specified record length during downloads.

CR LF

CR LF

CR LF

CR LF

CR LF

Field 1Record

Record length

Field 2 Field n

EOF (optional)

CR LF

CR LF

Specified record length

Specified record length

← Specified lengthRecord 1

Record 2

Record 1

Record 2

← Length over
specification

← As is

← Truncated
422

Chapter 18. TCP/IP
The treatment of short records is under application control. The default is to delete any trailing
spaces (20h).

Alternatively, the FTP client can pad such short records to the specified record length with
spaces (20h).

CR LF

CR LF

CR LF

Specified record length

Specified record length

← Specified lengthRecord 1

Record 2

Record 3

Record 1

Record 2

← Short

← Short, with trailing spaces

← As is

← As is

← Truncated further

Spaces

Record 3

CR LF

CR LF

CR LF

Specified record length

Specified record length

← Specified lengthRecord 1

Record 2

Record 3

Record 1

Record 2

← Short

← Short, with trailing spaces

← As is

← Padded

← PaddedRecord 3 SpacesSpaces

Spaces

Spaces
423

Line Delimiters inside Data Records

The treatment of line delimiters (CR-LF, CR, or LF) inside downloaded data records, which can
use all codes from 00h to FFh, is under application control. The default, described above, is to
split the incoming stream into short records.

Alternatively, the FTP client can ignore any line delimiters inside downloaded data records,
treating them as data. Note, however, that the specified line delimiters must appear in the
specified positions between records. Otherwise, the FTP client cancels the transfer with an
error because a record is either too long or too short.

CR LF CR LF

Specified record length

Specified record length

Record n1 Record n2

SpacesRecord n1

Record n2 Spaces
Split

CR LF CR LF

Specified record length

Specified record length

Record n1 Record n2

Single recordCR LFRecord n1 Record n2
424

Chapter 18. TCP/IP
18.4.3 Using FTP Client

[1] Basic Procedure

First, set up for using the FTP client, as necessary, with the following steps. All three are
optional, but the last two are highly recommended for downloads.

(1) Configure the FTP client with the appropriate FTP.FN3 extension functions.

(2) Use the FRE function to check whether there is sufficient free memory available to hold
the downloaded file.

(3) Use a BHT-BASIC OUT statement to optimize the drive.

The rest of the procedure is the same as in Section 18.2, "TCP/IP over Spread Spectrum Sys-
tem." The key step is to use the FTP.FN3 extension functions for the file transfers.

[2] Configuring FTP Client

The FTP client requires the following information before it can transfer files.

• IP address for server

• Login (user) name for server

• Password for that login (user) name

SOCKET.FN3 provides functions #8 and #9 for reading and changing these settings. For fur-
ther details on these two functions, see their descriptions in Section 18.6, "FTP Library
(FTP.FN3)," Subsection 18.6.2.
425

[3] Calculating Memory Requirements

The FTP protocol specifications do not provide for checking the amount of BHT memory avail-
able during downloads. If the BHT runs out of memory during a download, the FTP client can-
cels the transfer and deletes the partially downloaded file. The user application program must,
therefore, check availability with the FRE function or equivalent method and compare the result
with the BHT file size (BFS) before using the download function. The formula for calculating the
BHT memory requirements (MEM) depends on the file format.

■ User Programs (*.PD3)
Determine MEM from HFS.

BFS = ROUND_UP (HFS ÷ (128 + LDS)) × 64

MEM = ROUND_UP (BFS ÷ 4096) × 4096

Example: File size of 12,345 bytes on operating system using CR-LF combination

BFS = ROUND_UP (12345 ÷ (128 + 2)) × 64 = ROUND_UP(94.96) × 64 = 6080

MEM = ROUND_UP (6080 ÷ 4096) × 4096 = ROUND_UP(1.48) × 4096 = 8192

Note that 128K of free memory is enough to download even the largest (128K) BASIC pro-
gram.

■ Extension Libraries (*.FN3 and *.EX3)
Determine MEM from HFS.

BFS = ROUND_UP (HFS ÷ (130 + LDS)) × 64

MEM = ROUND_UP (BFS ÷ 4096) × 4096

The rest of the procedure is the same as for BASIC program files.

NOTE * The line delimiter size (LDS) refers to the number of bytes in each line delimiter:
two for operating systems using the CR-LF combination and one for those using
only LF or CR.

* The number 4096 (4K) is the assumed memory management unit. Change this to
8192 (8K) if the handy terminal uses that larger block size.

* HFS = host file size
426

Chapter 18. TCP/IP
■ Data Files
Determine MEM from the field lengths and number of records.

BPR = bytes per record = (number of fields) + (sum of field lengths)

RPB = records per block = ROUND_DOWN (4096 ÷ BPR)

MEM = ROUND_UP (records ÷ RPB) × 4096

Example: File with 1000 records with four fields of lengths 13, 12, 6, and 1

BPR = 4 + (13 + 12 + 6 + 1) = 36

RPB = ROUND_UP (4096 ÷ 36) = ROUND_UP (113.778) = 113

MEM = ROUND_UP (1000 ÷ 113) × 4096 = ROUND_UP (8.850) × 4096
= 9 × 4096 = 36,864

[4] Optimizing Drive (Recommended)

File system delays can sometimes retard file FTP downloads. The surest way to prevent such
delays is to use a BHT-BASIC OUT statement to optimize the drive.

Another reason for recommending this step is that it reduces air time, the period that the wire-
less device is open.

[5] FTP Transfers

The following is the basic procedure for transferring files with the FTP.FN3 extension func-
tions.

(1) Open an FTP client session with function #1 or #2.

(2) Verify the FTP server current directory with function #4 or #5, if necessary.

(3) Download and upload files with functions #6 and #7.

(4) Close the FTP client session with function #3.
427

18.5 Socket Library (SOCKET.FN3)

18.5.1 Overview

■ String Variables
The following are the string variables used by this library together with their memory
requirements.

■ String Array Variables
The following are the string array variables used by this library together with their memory
requirements.

Description Name Size in Bytes

Version information VERSION$ min. 7

Internet address IPADDRESS$ min. 15

Subnet mask SUBNETMASK$ min. 15

Default gateway GATEWAY$ min. 15

Receive buffer RECVBUFF$ 1 to 255

Transmit buffer SENDBUFF$ 1 to 255

Socket identifier set SOCKFDSET$
READFDSET$
WRITEFDSET$
EXCEPTFDSET$

min. 41
min. 41
min. 41
min. 41

Description Name Size in Bytes

Receive buffer RECVBUFF$() 1 to 4096

Transmit buffer SENDBUFF$()

TCP 1 to 4096

UDP 1 to 1472
428

Chapter 18. TCP/IP
■ Function Number List

Number Function
Corresponding

Socket API Function

0 Get socket.FN3 version ––

1* –– accept()

2 Assign address to socket bind()

3 Connect socket connect()

4* –– getpeername()

5* –– getsockname()

6 Get socket option getsockopt()

7 Convert host long (4 bytes) to network byte order htonl()

8 Convert host short (2 bytes) to network byte order htons()

9 Convert Internet address from dotted quad nota-
tion to 32-bit integer

inet_addr()

10* –– listen()

11 Convert network long (4 bytes) to host byte order ntohl()

12 Convert network short (2 bytes) to host byte order ntohs()

13* –– readv()

14 Receive message from TCP socket recv()

15 Receive message from UDP socket recvfrom()

16* –– rresvport()

17 Monitor socket requests select()

18 Initialize socket identifier set FD_ZERO macro

19 Add socket identifier to socket identifier set FD_SET macro

20 Delete socket identifier from socket identifier set FD_CLR macro

21 Get socket identifier status from socket identifier
set

FD_ISSET macro

22 Send message to another TCP socket send()

23 Send message to another UDP socket sendto()

24 Set socket options setsockopt()

25 Shut down socket shutdown()

26 Create socket socket()

27* –– writev()

28 Close socket close()

* Socket API function not supported by SOCKET.FN3 library.
429

* Socket API function not supported by SOCKET.FN3 library.

40 Specify TCP/IP communications pathway Unique to BHT

41 Connect TCP/IP communications pathway with
system settings

Unique to BHT

42 Connect TCP/IP communications pathway with
user settings

Unique to BHT

43 Disconnect TCP/IP communications pathway Unique to BHT

44 Get TCP/IP system settings Unique to BHT

45 Set TCP/IP system settings Unique to BHT

46 Get TCP socket status Unique to BHT

Number Function
Corresponding

Socket API Function
430

Chapter 18. TCP/IP
18.5.2 Detailed Function Specifications

Syntax: CALL "SOCKET.FN3" 0 VERSION$

Description: This function returns the SOCKET.FN3 library version in VERSION$.

Parameters: (None)

Return value: VERSION$: Version information, 7 characters, fixed length

Syntax: CALL "SOCKET.FN3" 2 SOCKFD%, FAMILY%, PORT%, address

where address is ADDRESS or IPADDRESS$

Description: This function assigns an address to the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API bind() function.

Parameters: SOCKFD% Socket identifier
FAMILY% Protocol family

PORT% Port
ADDRESS Local address for connection

IPADDRESS$ Internet address in dotted quad notation

The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

Return value: (None)

Run-time errors:

Function #0 Get SOCKET.FN3 version

Function #2 Assign address to socket

Error code Meaning

209h Socket identifier is invalid.

216h A parameter is invalid, or the socket is already bound.

224h The socket is being assigned an address.

230h The specified IP address is already in use.
431

Syntax: CALL "SOCKET.FN3" 3 SOCKFD%, FAMILY%, PORT%, address

where address is ADDRESS or IPADDRESS$

Description: This function connects the specified socket identifier to another socket.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API connect() function.

Parameters: SOCKFD% Socket identifier
FAMILY% Protocol family
PORT% Port

ADDRESS Local address for connection
IPADDRESS$ Internet address in dotted quad notation

The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

Return value: (None)

Run-time errors:

Function #3: Connect socket

Error code Meaning

105h Power-off detected. (BHT-7500S only)

201h Cannot connect to socket.

209h Socket identifier is invalid.

216h A parameter is invalid.

229h The specified socket does not match the connection target socket.

22Fh The specified address family is invalid for this socket.

230h The specified address is already in use.

231h The specified address is invalid.

238h The specified socket is already connected.

23Ch The connection attempt has timed out.

23Dh Failed to connect.

241h There is no connection pathway to the host for TCP socket.
432

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 6 SOCKFD%, OPTNAME%, option

where option is OPTION% or OPTION

Description: This function gets the specified option setting for the specified socket.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API getsockopt() function.

Parameters: SOCKFD% Socket identifier
OPTNAME% Option name

Return value: option Current setting for socket option (OPTION%/OPTION)
of type integer/real

Correspondence tables:

Run-time errors:

Function #6: Get socket option

Option Number
(OPTNAME%)

Description Values for Option (OPTION%)

2 Keep-alive timer enable/disable 0 (disabled), 1 (enabled)

Option Number
(OPTNAME%)

Description Values for Option (OPTION)

8 Transmit buffer size (byte) 1 to 8192

9 Receive buffer size (byte) 1 to 8192

26 Retry count 0 to 32

30 Initial round trip time (ms) 100 to 3000

31 Minimum round trip time (ms) 100 to 1000

32 Maximum round trip time (ms) 100 to 60000

Error code Meaning

209h Socket identifier is invalid.

216h A parameter is invalid.
433

Syntax: CALL "SOCKET.FN3" 7 HOSTLONG, NETLONG

Description: This function converts a (4-byte) long from host byte order to network byte
order.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API htonl() function.

Parameters: HOSTLONG Long in host byte order

Return value: NETLONG Long in network byte order

Syntax: CALL "SOCKET.FN3" 8 HOSTSHORT%, NETSHORT%

Description: This function converts a (2-byte) short from host byte order to network byte
order.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API htons() function.

Parameters: HOSTSHORT% Short in host byte order

Return value: NETSHORT% Short in network byte order

Syntax: CALL "SOCKET.FN3" 9 IPADDRESS$, ADDRESS

Description: This function converts an Internet address in dotted quad notation to a 4-
byte Internet address.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API inet_addr() function.

Parameters: IPADDRESS$ Internet address in dotted quad notation

Return value: ADDRESS 4-byte Internet address

Function #7: Convert host long (4 bytes) to network byte order

Function #8: Convert host short (2 bytes) to network byte order

Function #9: Convert Internet address from dotted quad notation to 32-bit integer
434

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 11 NETLONG, HOSTLONG

Description: This function converts a (4-byte) long from network byte to host byte order.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API ntohl() function.

Parameters: NETLONG Long in network byte order

Return value: HOSTLONG Long in host byte order

Syntax: CALL "SOCKET.FN3" 12 NETSHORT%, HOSTSHORT%

Description: This function converts a (2-byte) short from network byte order to host byte
order.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API ntohs() function.

Parameters: NETSHORT% Short in network byte order

Return value: HOSTSHORT% Short in host byte order

Syntax: CALL "SOCKET.FN3" 14 SOCKFD%, RECVBUFF$[()],
RECVLEN%, RECVMODE%, RECVSIZE% [,RECVFLAG%]

Description: This function receives data from the IP address and port number con-
nected to the specified socket identifier into the specified buffer.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API recv() function.

Parameters: SOCKFD% Socket identifier
RECVBUFF$[()] Receive buffer
RECVLEN% Maximum number of bytes to receive
RECVMODE% Receive mode
RECVFLAG% Storage method (optional)

The receive buffer (RECVBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
4096.

The receive mode (RECVMODE%) must be one of the following values:

0 Normal
1 Out of band data
2 Peek at next message

The storage method (RECVFLAG%) is required for a string array buffer. It
is ignored for a string variable and new data will be written.

Function #11: Convert network long (4 bytes) to host byte order

Function #12: Convert network short (2 bytes) to host byte order

Function #14: Receive message from TCP socket
435

The storage method (RECVFLAG%) must be one of the following values:

0 Append data to buffer (default if omitted)
1 Overwrite buffer with data

Note: If RECVFLAG% is 0 or omitted, the user application program must
initialize the receive buffer string array variable before receiving any data.

Return value: RECVSIZE% Number of bytes received

Run-time errors:

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

228h The maximum number of bytes to receive is too small.

236h An RST from the opposite end has forced connection.

237h There is insufficient system area memory.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.
436

Chapter 18. TCP/IP
Example: Append operation

Incoming data: 1024 bytes ("0123456789..........0123")

Receive buffer: 8 elements, 128 characters each for a total of 1024 bytes

• After initializing receive buffer

• After receiving first 512 bytes

• After receiving remaining 512 bytes

Element 0

Element 7

– • • • • • • • •

[Strings]1 2 3 4 5 125 126 127 128

– – – – – – – –

– • • • • • • • •– – – – – – – –

Element 0

Element 7

‘0’ • • • • • • • •

[Strings]1 2 3 4 5 125 126 127 128

‘1’ ‘2’ ‘3’ ‘4’ ‘4’ ‘5’ ‘6’ ‘7’

– • • • • • • • •– – – – – – – –

‘8’ • • • • • • • •‘9’ ‘0’ ‘1’ ‘2’ ‘2’ ‘3’ ‘4’ ‘5’

‘4’ • • • • • • • •‘5’ ‘6’ ‘7’ ‘8’ ‘8’ ‘9’ ‘0’ ‘1’

– • • • • • • • •– – – – – – – –

Element 1

Element 3

Element 4

Element 0

Element 7

‘0’ • • • • • • • •

[Strings]1 2 3 4 5 125 126 127 128

‘1’ ‘2’ ‘3’ ‘4’ ‘4’ ‘5’ ‘6’ ‘7’

‘6’ • • • • • • • •‘7’ ‘8’ ‘9’ ‘0’ ‘0’ ‘1’ ‘2’ ‘3’

‘8’ • • • • • • • •‘9’ ‘0’ ‘1’ ‘2’ ‘2’ ‘3’ ‘4’ ‘5’

‘4’ • • • • • • • •‘5’ ‘6’ ‘7’ ‘8’ ‘8’ ‘9’ ‘0’ ‘1’

‘2’ • • • • • • • •‘3’ ‘4’ ‘5’ ‘6’ ‘6’ ‘7’ ‘8’ ‘9’

Element 1

Element 3

Element 4
Second half is
appended to first.
437

Example: Overwrite operation

Incoming data: 1024 bytes ("0123456789..........0123")

Receive buffer: 8 elements, 128 characters each for a total of 1024 bytes

• After initializing receive buffer

• After receiving first 512 bytes

• After receiving remaining 512 bytes

Element 0

Element 7

– • • • • • • • •

[Strings]

1 2 3 4 5 125 126 127 128

– – – – – – – –

– • • • • • • • •– – – – – – – –

Element 0

Element 7

‘0’ • • • • • • • •

1 2 3 4 5 125 126 127 128

‘1’ ‘2’ ‘3’ ‘4’ ‘4’ ‘5’ ‘6’ ‘7’

– • • • • • • • •– – – – – – – –

‘8’ • • • • • • • •‘9’ ‘0’ ‘1’ ‘2’ ‘2’ ‘3’ ‘4’ ‘5’

‘4’ • • • • • • • •‘5’ ‘6’ ‘7’ ‘8’ ‘8’ ‘9’ ‘0’ ‘1’

– • • • • • • • •– – – – – – – –

Element 1

Element 3

Element 4

[Strings]

Element 0

Element 7

‘2’ • • • • • • • •

1 2 3 4 5 125 126 127 128

‘3’ ‘4’ ‘5’ ‘6’ ‘6’ ‘7’ ‘8’ ‘9’

– • • • • • • • •– – – – – – – –

‘0’ • • • • • • • •1’ ‘2’ ‘3’ ‘4’ ‘4’ ‘5’ ‘6’ ‘7’

‘6’ • • • • • • • •‘7’ ‘8’ ‘9’ ‘0’ ‘0’ ‘1’ ‘2’ ‘3’

– • • • • • • • •– – – – – – – –

Element 1

Element 3

Element 4

Second half
overwrites first.

[Strings]
438

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 15 SOCKFD%, RECVBUFF$[()], RECV-
LEN%, RECVMODE%, FAMILY%, PORT%, address, RECVSIZE%
[,RECVFLAG%]

where address is ADDRESS or IPADDRESS$

Description: This function receives data from the IP address and port number con-
nected to the specified socket identifier into the specified buffer.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API recvfrom() function.

Parameters: SOCKFD% Socket identifier

RECVBUFF$[()] Receive buffer
RECVLEN% Maximum number of bytes to receive
RECVMODE% Receive mode

FAMILY% Protocol family
PORT% Port
ADDRESS Local address for connection

IPADDRESS$ Internet address in dotted quad notation
RECVFLAG% Storage method (optional)

The receive buffer (RECVBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
4096.

The receive mode (RECVMODE%) must be one of the following values:

0 Normal
1 Out of band data
2 Peek at next message

The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

The storage method (RECVFLAG%) is required for a string array buffer. It
is ignored for a string variable and new data will be written.

The storage method (RECVFLAG%) must be one of the following values:

0 Append data to buffer (default if omitted)
1 Overwrite buffer with data

Note: If RECVFLAG% is 0 or omitted, the user application program must
initialize the receive buffer string array variable before receiving any data.

Return value: RECVSIZE% Number of bytes received

Function #15: Receive message from UDP socket
439

Run-time errors:

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

228h The maximum number of bytes to receive is too small.

229h TCP is the wrong protocol here.

237h There is insufficient system area memory.
440

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 17 MAXFD%, READFDSET$, WRITEFD-
SET$, EXCEPTFDSET$, TIMEOUT, RESULT%

Description: This function waits for changes in the socket identifier sets (read, write,
and exception conditions) for the specified socket identifiers.

The only exception condition is out of band data.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API select() function.

Parameters: MAXFD% Number of socket identifiers + 1
READFDSET$ Socket identifier set to monitor for read
WRITEFDSET$ Socket identifier set to monitor for write

EXCEPTFDSET$ Socket identifier set to check for exception conditions
TIMEOUT Waiting period (in seconds)

The waiting period (TIMEOUT) must be one of the following values:

-1 No waiting period
0 No timeout

Other time interval in seconds

Return value: RESULT% Number of sockets that are ready.

After a timeout, RESULT% contains 0.

Run-time errors:

Syntax: CALL "SOCKET.FN3" 18 SOCKFDSET$

Description: This function initializes the specified socket identifier set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API FD_ZERO macro.

Parameters: SOCKFDSET$ Socket identifier set

Return value: (None)

Function #17: Monitor socket requests

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

Function #18: Initialize socket identifier set
441

Syntax: CALL "SOCKET.FN3" 19 SOCKFD%, SOCKFDSET$

Description: This function adds the specified socket identifier to the specified identifier
set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API FD_SET macro.

Parameters: SOCKFD% Socket identifier
SOCKFDSET$ Socket identifier set

Return value: (None)

Syntax: CALL "SOCKET.FN3" 20 SOCKFD%, SOCKFDSET$

Description: This function deletes the specified socket identifier from the specified iden-
tifier set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API FD_CLR macro.

Parameters: SOCKFD% Socket identifier

SOCKFDSET$ Socket identifier set

Return value: (None)

Syntax: CALL "SOCKET.FN3" 21 SOCKFD%, SOCKFDSET$, FDISSET%

Description: This function gets the status of the specified socket identifier in the speci-
fied socket identifier set.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API FD_ISSET macro.

Parameters: SOCKFD% Socket identifier

SOCKFDSET$ Socket identifier set

Return value: FDISSET% Socket identifier status

The socket identifier status (FDISSET%) has the following values:

0 No change
1 Change in status

Function #19: Add socket identifier to socket identifier set

Function #20: Delete socket identifier from socket identifier set

Function #21: Get socket identifier status from socket identifier set
442

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 22 SOCKFD%, SENDBUFF$[()],
SENDLEN%, SENDMODE%, SENDSIZE%

Description: This function transmits data from the specified buffer to the IP address and
port number connected to the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API send() function.

Parameters: SOCKFD% Socket identifier

SENDBUFF$[()] Transmit buffer
SENDLEN% Number of bytes to transmit
SENDMODE% Transmit mode

The transmit buffer (SENDBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
4096.

The transmit mode (SENDMODE%) must be one of the following values:

0 Normal
1 Out of band data
4 Bypass pathway control function

Return value: SENDSIZE% Number of bytes transmitted

Run-time errors:

Function #22: Send message to another TCP socket

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

228h The maximum number of bytes to receive is too small.

237h There is insufficient system area memory.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

241h There is no connection pathway to the host for UDP socket.
443

Syntax: CALL "SOCKET.FN3" 23 SOCKFD%, SENDBUFF$[()],
SENDLEN%, SENDMODE%, FAMILY%, PORT%, address,
SENDSIZE%

where address is ADDRESS or IPADDRESS$

Description: This function transmits data from the specified buffer to the IP address and
port number connected to the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API sendto() function.

Parameters: SOCKFD% Socket identifier

SENDBUFF$[()] Transmit buffer
SENDLEN% Number of bytes to transmit
SENDMODE% Transmit mode

FAMILY% Protocol family
PORT% Port
ADDRESS Local address for connection

IPADDRESS$ Internet address in dotted quad notation

The transmit buffer (SENDBUFF$) can be either a string or string array
variable. The maximum size for a string is 255 bytes; for a string array,
1472.

The transmit mode (SENDMODE%) must be one of the following values:

0 Normal
1 Out of band data
4 Bypass pathway control function

The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

Return value: SENDSIZE% Number of bytes transmitted

Run-time errors:

Function #23: Send message to another UDP socket

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

228h The maximum number of bytes to receive is too small.

229h TCP is the wrong protocol here.

237h There is insufficient system area memory.

241h There is no connection pathway to the host.
444

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 24 SOCKFD%, OPTNAME%, option

where option is OPTION% or OPTION

Description: This function sets the specified option for the specified socket to the new
value.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API setsockopt() function.

Parameters: SOCKFD% Socket identifier
OPTNAME% Option name
OPTION%/OPTION New setting for socket option of type integer/real

Return value: (None)

Correspondence tables:

* To be set in units of 100.

Run-time errors:

Function #24: Set socket options

Option Number
(OPTNAME%)

Description Values for Option (OPTION%)
Initial

values

2 Keep-alive timer enable/disable 0 (disabled), 1 (enabled) 0

Option Number
(OPTNAME%)

Description Values for Option (OPTION)
Initial

values

8 Transmit buffer size (byte) 1 to 8192 8192

9 Receive buffer size (byte) 1 to 8192 8192

26 Retry count 0 to 32 12

30 Initial round trip time (ms*) 100 to 3000 3000

31 Minimum round trip time (ms*) 100 to 1000 100

32 Maximum round trip time (ms*) 100 to 60000 60000

Error code Meaning

201h Cannot set option after connection established.

209h Socket identifier is invalid.

216h A parameter is invalid.
445

Syntax: CALL "SOCKET.FN3" 25 SOCKFD%, HOWTO%

Description: This function shuts down socket transfers in the specified direction.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API shutdown() function.

Parameters: SOCKFD% Socket identifier

HOWTO% Direction specification

The direction specification (HOWTO%) must be one of the following values:

0 Receive
1 Transmit
2 Both

Return value: (None)

Run-time errors:

Function #25: Shut down socket

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.

22Ah This option is not recognized at the specification level.
446

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 26 FAMILY%, TYPE%, PROTOCOL%,
SOCKFD%

Description: This function creates a socket from the specified protocol family, socket
type, and protocol layer and assigns it to a socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API socket() function.

Parameters: FAMILY% Protocol family for the socket

TYPE%: Socket type
PROTOCOL% Protocol layer for the socket

The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

The socket type (TYPE%) must be one of the following values:

1 Stream socket
2 Datagram socket
3 Raw socket

The protocol layer (PROTOCOL%) must be one of the following values:

1 ICMP
6 TCP
17 UDP

Return value: SOCKFD% Socket identifier

Run-time errors:

Function #26: Create socket

Error code Meaning

218h Too many sockets.

22Bh This protocol family does not support the specified protocol type
and protocol.

237h There is insufficient system area memory.
447

Syntax: CALL "SOCKET.FN3" 28 SOCKFD%

Description: This function closes the specified socket identifier.

BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API close() function.

Parameters: SOCKFD% Socket identifier

Return value: (None)

Run-time errors:

Syntax: CALL "SOCKET.FN3" 40 IFTYPE%, LAYERMODE%, INTERFACE%

Description: This function specifies the TCP/IP communications pathway from the
specified communications device and link layer.

Parameters: IFTYPE% Communications device
LAYERMODE% Link layer

The communications device (IFTYPE%) must be 2, the value indicating a
COM3 (wireless) communications device.

The link layer (LAYERMODE%) must be 2, the value indicating an Ethernet
client.

Return value: INTERFACE% Communications pathway

Run-time errors:

Function #28: Close socket

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

225h The last close operation for the specified socket is not complete.

23Ah The specified TCP socket has been closed.

23Ch The connection attempt has timed out.

Function #40: Specify TCP/IP communications pathway

Error code Meaning

100h Cannot specify communications pathway.
448

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 41 INTERFACE%

Description: This function connects the TCP/IP communications pathway based on the
system settings.

Parameters: INTERFACE% Communications pathway

Return value: (None)

Run-time errors:

Syntax: CALL "SOCKET.FN3" 42 INTERFACE%, IPADDRESS$, SUBNET-
MASK$, GATEWAY$

Description: This function connects the TCP/IP communications pathway based on the
supplied user settings.

Parameters: INTERFACE% Communications pathway
IPADDRESS$ Internet address in dotted quad notation
SUBNETMASK$ Subnet mask in dotted quad notation
GATEWAY$ Default gateway in dotted quad notation

Return value: (None)

Run-time errors:

Function #41: Connect TCP/IP communications pathway with system set-
tings

Error code Meaning

34h Communications device file not open.

101h Cannot connect to communications pathway.

102h Communications pathway not specified.

103h Communications pathway already connected.

105h Power-off detected. (BHT-7500S only)

216h A parameter is invalid.

Function #42: Connect TCP/IP communications pathway with user settings

Error code Meaning

34h Communications device file not open.

101h Cannot connect to communications pathway.

102h Communications pathway not specified.

103h Communications pathway already connected.

105h Power-off detected. (BHT-7500S only)

216h A parameter is invalid.
449

Syntax: CALL "SOCKET.FN3" 43 INTERFACE%

Description: This function disconnects the specified TCP/IP communications pathway.

Parameters: INTERFACE% Communications pathway

Return value: (None)

Run-time errors:

Syntax: CALL "SOCKET.FN3" 44 PARA%, DATA$

Description: This function gets the current setting for the specified TCP/IP system set-
tings.

Parameters: PARA% Setting number

Return value: DATA$ Current setting for TCP/IP system settings

Correspondence tables:

Function #43: Disconnect TCP/IP communications pathway

Error code Meaning

104h Communications pathway already disconnected.

105h Power-off detected. (BHT-7500S only)

216h A parameter is invalid.

Function #44: Get TCP/IP system settings

Setting Number
(PARA%)

Description Values for Setting (DATA$)

1 IP address Character string in dotted quad
notation, maximum 15 bytes

2 Subnet mask Character string in dotted quad
notation, maximum 15 bytes

3 Default gateway Character string in dotted quad
notation, maximum 15 bytes
450

Chapter 18. TCP/IP
Syntax: CALL "SOCKET.FN3" 45 PARA%, DATA$

Description: This function sets the specified TCP/IP system settings to the new value.

Parameters: PARA% Setting number
DATA$ New setting for TCP/IP system settings

Return value: (None)

Correspondence tables:

See Table under function #44.

Syntax: CALL "SOCKET.FN3" 46 SOCKFD%, PATTERN%, TIMEOUT%,
RESULT%

Description: This function waits until the specified TCP socket is in the specified state
or the specified time elapsed.

Parameters: SOCKFD% Socket identifier

PATTERN% Desired socket state
TIMEOUT% Waiting period (in milliseconds, 100 ms resolution)

The socket state (PATTERN%) must be &h0020, the value indicating that
the opposite end has sent FIN to close the socket. Only TCP sockets sup-
port this function.

Note: Specifying an invalid state sometimes stops processing.

TIMEOUT% must be one of the following values:

-1 No timeout
0 Read current state
1 to 32767 Wait specified time (timer resolution: 100 ms)

Return value: RESULT% Current socket state

RESULT% contains the current socket state. After a timeout, RESULT%
contains 0.

Run-time errors:

Function #45: Set TCP/IP system settings

Function #46: Get TCP socket status

Error code Meaning

105h Power-off detected. (BHT-7500S only)

209h Socket identifier is invalid.

216h A parameter is invalid.
451

18.6 FTP Library (FTP.FN3)

18.6.1 Overview

■ String Variables
The following are the string variables used by this library together with their memory
requirements.

See also the run-time errors for the FTP.FN3 library.

Description Name Size in Bytes

Version information VERSION$ 7

Server IP address SERV.IP 15

Login user name USERNAME$ 0 to 16

Login password PASSWORD$ 0 to 16

Directory names CURDIR$ NEWDIR$ 0 to 255

File names SERV.FNAME$
CLNT.FNAME$
OLD.FNAME$
NEW.FNAME$

0 to 12
0 to 12
0 to 12
0 to 12

Field lengths FLD$ 1 to 64 (48)

FTP parameter FTP.PARA$

Function Number Description FTP
Commands

0 Get FN3 version information ---

1 Open FTP client session with system settings USER/PASS

2 Open FTP client session with user settings USER/PASS

3 Close FTP client session ---

4 Get current directory on FTP server PWD

5 Change current directory on FTP server CWD

6 Download file from FTP server RETR

7 Upload file to FTP server STOR/APPE

8 Get FTP system settings ---

9 Set FTP system settings ---

10 Change file name on FTP server RNFR/RNTO

11 Set port number for file transfer PORT

12 Delete file from FTP server DELE
452

Chapter 18. TCP/IP
■ Reply Codes
The messages that FTP servers send during and after FTP operations vary, but servers all
use the same reply codes. (See Table.) All function numbers therefore supply these as their
return value (REPLY%).

Reply Codes Description

110 Restart marker replay.

120 Service ready in nnn minutes.

125 Data connection already open; transfer starting.

150 File status okay; about to open data connection.

200 Command okay.

202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

212 Directory status.

213 File status.

214 Help message.
On how to use the server or the meaning of a particular non-standard
command. This reply is useful only to the human user.

215 NAME system type.
Where NAME is an official system name from the list in the Assigned
Numbers document.

220 Service ready for new users.

221 Service closing control connection.
Logged out if appropriate.

225 Data connection open; no transfer in progress.

226 Closing data connection.
Requested file action successful (for example, file transfer or file abort).

227 Entering Passive Mode (h1, h2, h3, h4, p1, p2).

230 User logged in, proceed.

250 Requested file action okay, completed.

257 “PATHNAME” created.

331 User name okay, need password.

332 Need account for login.

350 Requested file action pending further information.

421 Service not available, closing control connection.
This may be a reply to any command if the service knows it must shut
down.
453

18.6.2 Detailed Function Specifications

Syntax: CALL "FTP.FN3" 0 VERSION$

Description: This function returns the FTP.FN3 library version in VERSION$.

Parameters: (None)

Return value: VERSION$ Version information, 7 characters, fixed length

425 Can’t open data connection.

426 Connection closed; transfer aborted.

450 Requested file action not taken.
File unavailable (e.g., file busy).

451 Requested action aborted: local error in processing.

452 Requested action not taken.
Insufficient storage space in system.

500 Syntax error, command unrecognized.
This may include errors such as command line too long.

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command not implemented for that parameter.

530 Not logged in.

532 Need account for storing files.

550 Requested action not taken.
File unavailable (e.g., file not found, no access).

551 Requested action aborted: page type unknown.

552 Requested file action aborted.
Exceeded storage allocation (for current directory or dataset).

553 Requested action not taken.
File name not allowed.

Function #0: Get FTP.FN3 version information

Reply Codes Description
454

Chapter 18. TCP/IP
Syntax: CALL "FTP.FN3" 1 FTPHANDLE%, REPLY%

Description: This function opens an FTP client session using the system settings.

Parameters: (None)

Return value: FTPHANDLE% FTP client handle, for use by following functions
REPLY% Server response to FTP command

Run-time errors:

Syntax: CALL "FTP.FN3" 2 FTPHANDLE%, SERV.IP$, USERNAME$,
PASSWORD$, REPLY%

Description: This function opens an FTP client session based on the supplied user set-
tings.

Parameters: SERV.IP$ FTP server IP address in dotted quad notation
USERNAME$ User name for FTP authentication

PASSWORD$ Password for FTP authentication

Return value: FTPHANDLE% FTP client handle, for use by following functions

REPLY% Server response to FTP command

Run-time errors:

Function #1: Open FTP client session with system settings

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

20Dh Attempt to connect to different FTP server without disconnecting.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

23Ch The connection attempt has timed out.

Function #2: Open FTP client session with user settings

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

20Dh Attempt to connect to different FTP server without disconnecting.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

23Ch The connection attempt has timed out.
455

Syntax: CALL "FTP.FN3" 3 FTPHANDLE%, REPLY%

Description: This function closes the specified FTP client session.

Parameters: FTPHANDLE% FTP client handle

Return value: REPLY% Server response to FTP command

Run-time errors:

Syntax: CALL "FTP.FN3" 4 FTPHANDLE%, CURDIR$, REPLY%

Description: This function gets the current directory on the FTP server.

Parameters: FTPHANDLE% FTP client handle

Return value: CURDIR$ FTP server current directory

REPLY% Server response to FTP command

Run-time errors:

Note: The directory specification (CURDIR$) is limited to 255 bytes, so
do not use longer directory names on the server.

Function #3: Close FTP client session

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

Function #4: Get current directory on FTP server

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.
456

Chapter 18. TCP/IP
Syntax: CALL "FTP.FN3" 5 FTPHANDLE%, NEWDIR$, REPLY%

Description: This function changes the current directory on the FTP server.

Parameters: FTPHANDLE% FTP client handle
NEWDIR$ New directory

Return value: REPLY% Server response to FTP command

Run-time errors:

Syntax: CALL "FTP.FN3" 6 FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$,
CRLF.TYPE%, CRLF.MODE%, REPLY% [,FLD$] [,DISP.MODE%]

Description: This function downloads, from the current directory on the FTP server to
the handy terminal, the specified file using the specified parameters.

Parameters: FTPHANDLE% FTP client handle
SERV.FNAME$ Name of file to download from FTP server
CLNT.FNAME$ Name for file on handy terminal. Leaving this unspeci-

fied ("") uses the name in SERV.FNAME$ instead.

Note: SERV.FNAME$ and CLNT.FNAME$ must have the same type
(file extension): user program (.PD3), extension library (.FN3 or .EX3), or
data file (all other extensions). Otherwise, the run-time error 32h is the
result.

CRLF.TYPE% Line delimiter

Function #5: Change current directory on FTP server

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

Function #6: Download file from FTP server

0 CR-LF combination
(Treat CR-LF combinations as delimiters. Use this value when
the data file delimits records with CR-LF combinations.)

1 LF
(Treat LFs as delimiters. Use this value when the data file delim-
its records with LFs.)

2 CR
(Treat CRs as delimiters. Use this value when the data file delim-
its records with CRs.)

3 None
Use this value when the data file does not delimit records.
457

CRLF.MODE% Treatment of line delimiters inside records and trailing
spaces in fields

Note: CRLF.MODE% will be ignored for files except
data files.

FLD$ Field lengths in bytes. Delimit the field length specifi-
cations with commas (,) or semicolons (;). (This
parameter applies only to downloaded data files.)

"<field length 1> [,<field length 2>,... <field length n>]"
(n=1 to 16, field length = 1 to 254)

DISP.MODE% Flag controlling a progress display consisting of an 8-
digit number giving the number of bytes transferred

Return value: REPLY% Server response to FTP command

Example: Downloading a data file

SERV.FNAME$ = "MASTER.DAT" ’ File name on server
CLNT.FNAME$ = "" ’ Name for file on the handy terminal

’ Same as on server
CRLF.TYPE% = 1 ’ Server line delimiter: LF
CRLF.MODE% = 0 ’ Data composition

’ There are no line delimiters in the data.
FLD$ = "3, 2, 1" ’ Field lengths: 3, 2, 1
CALL "FTP.FN3" 6 FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _
CRLF.MODE%, REPLY%, FLD$

Example: Downloading a program file, with progress display

SERV.FNAME$ = "SAMPLE.PD3" ’ File name on server
CLNT.FNAME$ = "" ’ Name for file on the handy terminal

’ Same as on server
CRLF.TYPE% = 0 ’ Server line delimiter: CR-LF combination
CRLF.MODE% = 0 ’ Data composition: Will be ignored for

’ files except data files
DISP.MODE% = 1 ’ Enable progress display
CALL "FTP.FN3" 6 FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _
CRLF.MODE%, REPLY%, DISP.MODE%

0 Treat line delimiters inside records as SEPARATORS.
TRIM trailing spaces in fields.

1 Treat line delimiters inside records as DATA.
TRIM trailing spaces in fields.

10 Treat line delimiters inside records as SEPARATORS.
RETAIN trailing spaces in fields.

11 Treat line delimiters inside records as DATA.
RETAIN trailing spaces in fields.

0 Disable

1 Enable
458

Chapter 18. TCP/IP
Run-time errors:

Error code Meaning

02h Syntax error (Incorrect file name).

05h Number of field items or number of digits in a field out of the range.

07h Insufficient memory space.

32h Wrong file type.

33h Invalid text received.

37h File already open.

39h Too many files.

3Ch Record exceeds 255 bytes.

3Dh Field mismatch error.

41h File damaged.

47h User break with cancel (C) key.

49h Invalid program file received. (Invalid program size. Do not down-
load user programs that have been run through Kanji conversion
utilities.)

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

111h File not closed.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.
459

Syntax: CALL "FTP.FN3" 7 FTPHANDLE%, SERV.FNAME$,
CLNT.FNAME$, CRLF.TYPE%, UP.MODE%, REPLY%
[,DISP.MODE%]

Description: This function uploads, from the handy terminal to the current directory on
the FTP server, the specified file using the specified parameters.

Parameters: FTPHANDLE% FTP client handle

SERV.FNAME$ Name for file on FTP server. Leaving this unspecified
("") uses the name in CLNT.FNAME$ instead.

CLNT.FNAME$ Name of file to upload to FTP server.

CRLF.TYPE% Line delimiter (See description under function #6
above.)

UP.MODE% Flag controlling treatment of existing files

DISP.MODE% Flag controlling a progress display consisting of an 8-
digit number giving the number of bytes transferred

Return value: REPLY% Server response to FTP command

Example: Uploading data file

RCLNT.FNAME$ = "MASTER1.DAT" ’ Name of file on handy terminal

SERV.FNAME$ = "" ’ Name on server

’ Same as on handy terminal

CRLF.TYPE% = 0 ’ Server line delimiter: CR-LF combination

UP.MODE% = 1 ’ Upload mode: Append

CALL "FTP.FN3" 7 FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _

UP.MODE%, REPLY%

Example: Uploading program file, with progress display

CLNT.FNAME$ = "SAMPLE.PD3" ’ Name of file on handy terminal

SERV.FNAME$ = "" ’ Name on server

’ Same as on handy terminal

CRLF.TYPE% = 0 ’ Server line delimiter: CR-LF combination

UP.MODE% = 0 ’ Upload mode: Overwrite

DISP.MODE% = 1 ’ Enable progress display

CALL "FTP.FN3" 7 FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _

UP.MODE%, REPLY%, DISP.MODE%

Function #7: Upload file to FTP server

0 Overwrite existing file

1 Append to existing file. Create new file if necessary.

0 Disable

1 Enable
460

Chapter 18. TCP/IP
Run-time errors:

Syntax: CALL "FTP.FN3" 8 PARA%, ftp.para
where ftp.para is FTP.PARA% or FTP.PARA$

Description: This function gets the current setting for the specified FTP system settings.

Parameters: PARA% Setting number

Return value: ftp.para Current setting for FTP system settings of type integer/
string (FTP.PARA%/FTP.PARA$)

Correspondence tables:

Error code Meaning

35h File not found.

37h File already open.

47h User break with cancel (C) key.

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

111h File not closed.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

Function #8: Get FTP system settings

Setting Number
(PARA%)

Description Values for Setting (FTP.PARA%)

5 Line delimiter 0 (CR-LF), 1 (LF),
2 (CR), 3 (None)

6 Treatment of line delimiters inside
records

0 (separators), 1 (data)

7 Upload mode 0 (overwrite), 1 (append)

8 Progress display 0 (disabled), 1 (enabled)

Setting Number
(PARA%)

Description Values for Setting (FTP.PARA$)

1 IP address for FTP server Character string in dotted quad
notation, maximum 15 bytes

2 User name for FTP authentication Character string, maximum 16
bytes
461

Syntax: CALL "FTP.FN3" 9 PARA%, ftp.para
where ftp.para is FTP.PARA% or FTP.PARA$

Description: This function sets the specified FTP system settings to the new value.

Parameters: PARA% Setting number

ftp.para New setting for FTP system settings of type
integer/string (FTP.PARA%/FTP.PARA$)

Return value: (None)

Correspondence tables:

See Table under function #8.

Syntax: CALL "FTP.FN3" 10 FTPHANDLE%, OLD.FNAME$,
NEW.FNAME$, REPLY%

Description: This function changes the name of a file in the current directory on the FTP
server.

Parameters: FTPHANDLE% FTP client handle
OLD.FNAME$ Name before change

NEW.FNAME$ Name after change

Return value: REPLY% Server response to FTP command

Run-time errors:

3 Password for FTP authentication Character string, maximum 16
bytes

4 Initial directory on FTP server character string, a maximum of 63
bytes long

Function #9: Set FTP system settings

Function #10: Change file name on FTP server

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

Setting Number
(PARA%)

Description Values for Setting (FTP.PARA$)
462

Chapter 18. TCP/IP
Syntax: CALL "FTP.FN3" 11 FTPHANDLE%, PORT%

Description: This function sets a port number specified by PORT% for file transfer.

Parameters: FTPHANDLE% FTP client handle
PORT% Port number

Return value: (None)

Run-time errors:

Syntax: CALL "FTP.FN3" 12 FTPHANDLE%, SERV.FNAME$, REPLY%

Description: This function deletes a file specified by SERV.FNAME$ from the FTP
server.

Parameters: FTPHANDLE% FTP client handle
SERV.FNAME$ File name to be deleted

Return value: REPLY% Server response to FTP command

Run-time errors:

Function #11: Set port number for file transfer

Error code Meaning

105h Power-off detected. (BHT-7500S only)

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

Function #12: Delete file from FTP server

Error code Meaning

105h Power-off detected. (BHT-7500S only)

110h Response other than 2XX received.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.
463

Appendices

CONTENTS

Appendix A Error Codes and Error Messages... 465

A1. Run-time Errors.. 465
A2. Compilation Errors ... 468

Appendix B Reserved Words... 477

Appendix C Character Sets ... 478

C1. Character Set ... 478
C2. National Character Sets... 479
C3. Display Mode and Letter Size .. 480

Appendix D I/O Ports ... 483

D1. BHT-3000... 483
D2. BHT-4000... 485
D3. BHT-5000... 488
D4. BHT-6000/BHT-6500 ... 492
D5. BHT-7000/BHT-7500 ... 498

Appendix E Key Number Assignment on the Keyboard .. 505

E1. BHT-3000... 505
E2. BHT-4000... 506
E3. BHT-5000... 507

[1] 32-key pad .. 507
[2] 26-key pad .. 509

E4. BHT-6000... 510
E5. BHT-6500... 511
E6. BHT-7000/BHT-7500 ... 512

[1] 32-key pad .. 512
[2] 26-key pad (BHT-7000 only)... 514

Appendix F Memory Area .. 515

Appendix G Handling Space Characters in Downloading 519

Appendix H Programming Notes ... 523

[1] Flash ROM.. 523
[2] BHT-2000 compatible mode ... 524
[3] Program file named APLINT.PD3 ... 525

Appendix I Program Samples .. 526

Appendix J Quick Reference for Statements and Functions 529

Appendix K Unsupported Statements and Functions .. 537

Appendix L
464

Appendices
Appendix A
Error Codes and Error Messages

A1. Run-time Errors

Error code Meaning

00h Internal system error

01h NEXT without FOR

02h Syntax error

03h RETURN without GOSUB

04h Out of DATA
(No DATA values remain to be read by the READ statement.)

05h Parameter out of the range

06h The operation result is out of the allowable range.

07h Insufficient memory space
(Too deep nesting, etc.)

08h Array not defined

09h Subscript out of range
(An array subscript is out of the array. Or the array is referenced by
different dimensions.)

0Ah Duplicate definition
(An array is double defined.)

0Bh Division by zero

0Ch CASE and END SELECT without SELECT

0Dh END DEF or EXIT DEF statement executed outside the DEF FN
statement block

0Fh String length out of the range

10h Expression too long or complex

14h RESUME without error
(RESUME statement occurs before the start of an error-handling rou-
tine.)

1Fh Function number out of the range (in CALL statement)

32h File type mismatch

33h Received text format not correct

34h Bad file name or number
(A statement uses the file number of an unopened file.)

35h File not found
465

36h Improper file type
(The statement attempts an operation that conflicts with the file type-
-data file, communications device file, or bar code device file.)

37h File already open
(An OPEN statement executed for the already opened file.)

38h The file name is different from that in the receive header.

39h Too many files

3Ah File number out of the range

3Bh The number of the records is greater than the defined maximum
value.

3Ch FIELD overflow
(A FIELD statement specifies the record length exceeding 255
bytes.)

3Dh A FIELD statement specifies the field width which does not match
one that specified in file creation.

3Eh FIELD statement not executed yet
(A PUT or GET statement executed without a FIELD statement.)

3Fh Bad record number
(The record number is out of the range.)

40h Parameter not set
(ID not set)

41h File damaged

42h File write error
(You attempted to write onto a read-only file.)

43h Not allowed to access data in the flash ROM

44h No empty area of the specified size in the RAM

45h Device files prohibited from opening concurrently

46h Communications error

47h Abnormal end of communications or termination of communications
by the Clear key

48h Device timeout
(No CS signal has been responded within the specified time period.)

49h Received program file not correct

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Insufficient string variable storage area

100h Cannot specify communications pathway.

101h Cannot connect to communications pathway.

102h Communications pathway not specified.

Error code Meaning
466

Appendices
103h Communications pathway already connected.

104h Communications pathway already disconnected.

105h Power-off detected.

110h Response other than 2XX received.

111h File not closed.

201h Cannot connect to socket.

209h Socket identifier is invalid.

20Dh Attempt to connect to different FTP server without disconnecting.

216h A parameter is invalid.
The FTP client handle is invalid.
A parameter is invalid, or the socket is already bound.

218h Too many sockets.

224h The socket is being assigned an address.

225h The last close operation for the specified socket is not complete.

228h The maximum number of bytes to receive is too small.

229h The specified socket does not match the connection target socket.

22Ah This option is not recognized at the specification level.

22Bh This protocol family does not support the specified protocol type and
protocol.

22Fh The specified address family is invalid for this socket.

230h The specified address is already in use.

231h The specified address is invalid.

236h An RST from the opposite end has forced connection.

237h There is insufficient system area memory.

238h The specified socket is already connected.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

23Ch The connection attempt has timed out.

23Dh Failed to connect.

241h There is no connection pathway to the host for TCP socket.

295h There is no user for login request.

400h Failed to get the setting value. (Failed to set the value.)

401h Failed to open a wireless communications device file.

Error code Meaning
467

A2. Compilation Errors

■ Fatal Errors

Error code & Message

fatal error 1: Out of memory

fatal error 2: Work file I/O error

fatal error 3: Object file I/O error

fatal error 4: Token file I/O error

fatal error 5: Relocation information file I/O error

fatal error 6: Cross reference file I/O error

fatal error 7: Symbol file I/O error

fatal error 8: Compile list file I/O error

fatal error 9: Debug information file I/O error (source-address)

fatal error 10: Debug information file I/O error (label-address)

fatal error 11: Debug information file I/O error
(variable-intermediate code)

fatal error 12: Out of disk space for work file

fatal error 13: Out of disk space for object file

fatal error 14: Out of disk space for token file

fatal error 15: Out of disk space for relocation information file

fatal error 16: Out of disk space for cross reference file

fatal error 17: Out of disk space for symbol file

fatal error 18: Out of disk space for compile list file

fatal error 19: Out of disk space for debug information file
(source-address)

fatal error 20: Out of disk space for debug information file
(label-address)

fatal error 21: Out of disk space for debug information file
(variable-intermediate code)

fatal error 22: Source file I/O error

fatal error 23: Cannot find XXXX.SRC

fatal error 24: Error count exceeds 500

fatal error 25: Out of memory
(internal labels exceed 3000)

fatal error 26: Control structure nesting exceeds 30

fatal error 27: Expression type stack exceeds 50

fatal error 28: Program too large (Object area overflow)
468

Appendices
fatal error 29: Out of memory for cross reference

fatal error 30: Cannot find include file

fatal error 31: Cannot nest include file

fatal error 32: Internal memory allocation error (tag list buffer)
[function name]

fatal error 33: (Preprocess) Source file I/O error

fatal error 34: (Preprocess) Internal memory overflow

fatal error 35: (Preprocess) Macro work file I/O error

fatal error 36: (Preprocess) Macro double defined [Macro name]

fatal error 37: (Preprocess) Internal memory overflow
(unread buffer)

fatal error 38: (Preprocess) Memory allocation error

fatal error 39: (Preprocess) Macro circular reference [Macro name]

Error code & Message
469

■ Syntax Errors

Error code & Message

error 1: Improper label format

error 2: Improper label name
(redefinition, variable name, or reserved word used)

error 3: ’"’missing

error 4: Improper expression

error 5: Variable name redefinition
(common variable already defined as label name or vari-
able name)

error 6: Variable name redefinition
(register variable already defined as label name or vari-
able name)

error 7: Variable name redefinition
(variable already defined as label name, non-array string
work variable, register variable, or common variable)

error 8: Too many variables
(work integer non-array)

error 9: Too many variables
(work float non-array)

error 10: Too many variables
(work string non-array)

error 11: Too many variables
(register integer non-array)

error 12: Too many variables
(register float non-array)

error 13: Too many variables
(register string non-array)

error 14: Too many variables
(common integer non-array)

error 15: Too many variables
(common float non-array)

error 16: Too many variables
(common string non-array)

error 17: Too many variables
(work integer array)

error 18: Too many variables
(work float array)

error 19: Too many variables
(work string array)

error 20: Too many variables
(register integer array)
470

Appendices
error 21: Too many variables
(register float array)

error 22: Too many variables
(register string array)

error 23: Too many variables
(common integer array)

error 24: Too many variables
(common float array)

error 25: Too many variables
(common string array)

error 26: Too many variables
(work integer array, two-dimensional)

error 27: Too many variables
(work float array, two-dimensional)

error 28: Too many variables
(work string array, two-dimensional)

error 29: Too many variables
(register integer array, two-dimensional)

error 30: Too many variables
(register float array, two-dimensional)

error 31: Too many variables
(register string array, two-dimensional)

error 32: Too many variables
(common integer array, two-dimensional)

error 33: Too many variables
(common float array, two-dimensional)

error 34: Too many variables
(common string array, two-dimensional)

error 35: Source line too long

error 36:

error 37:

error 38:

error 39:

error 40:

error 41: Value out of range for integer constant

error 42: Value out of range for float constant

error 43: Value out of range for integer constant
(hexadecimal expression)

error 44: Improper hexadecimal expression

error 45: Symbol too long

Error code & Message
471

error 46:

error 47:

error 48:

error 49:

error 50: Incorrect use of IF...THEN...ELSE...ENDIF

error 51: Incomplete control structure
(IF...THEN...ELSE...ENDIF)

error 52: Incorrect use of FOR...NEXT

error 53: Incomplete control structure
(FOR...NEXT)

error 54: Incorrect FOR index variable

error 55: Incorrect use of SELECT...CASE...END SELECT

error 56: Incomplete control structure
(SELECT...CASE...END SELECT)

error 57: Incorrect use of WHILE...WEND

error 58: Incomplete control structure
(WHILE...WEND)

error 59: Incorrect use of DEF FN...EXIT DEF...END DEF

error 60: Incomplete control structure
(DEF FN...END DEF)

error 61: Cannot use DEF FN in control structure

error 62: Operator stack overflow

error 63: Inside function definition

error 64: Function redefinition

error 65: Function definitions exceed 200

error 66: Arguments exceed 50

error 67: Total arguments exceed 500

error 68: Mismatch argument type or number

error 69: Function undefined

error 70: Label redefinition

error 71: Syntax error

error 72: Variable name redefinition

error 73: Improper string length

error 74: Improper array elements number

error 75: Out of space for register variable area

error 76: Out of space for work, common variable area

Error code & Message
472

Appendices
error 77: Initial string too long

error 78: Array symbols exceed 30 for one DIM, GLOBAL, or PRIVATE
statement

error 79: Record number out of range (1 to 32767)

error 80: Label undefined

error 81: Must be DATA statement label
(in RESTORE statement)

error 82: ’(’ missing

error 83: ’)’ missing

error 84: ’]’ missing

error 85: ’,’ missing

error 86: ’;’ missing

error 87: ’DEF’ missing

error 88: ’TO’ missing

error 89: ’INPUT’ missing

error 90: ’{’ missing

error 91: Improper initial value for integer variable
(not integer or out of range)

error 92: Incorrect use of SUB, EXIT SUB, or END SUB

error 93: Incomplete control structure
(SUB...END SUB)

error 94: Cannot use SUB statement in control structure

error 95: Incorrect use of FUNCTION, EXIT FUNCTION, or END FUNCTION

error 96: Incomplete control structure
(FUNCTION...END FUNCTION)

error 97: Cannot use FUNCTION statement in control structure

error 98: Incorrect use of CONST

Error code & Message
473

■ Linking Errors

Error Message

PRC area size different

Out of space in REG area

Out of space in PRD area

Cannot open project file

Cannot open object file [object name]

Cannot open MAP file

Cannot open PD3 file [PD3 filename]

Cannot close PD3 file [PD3 filename]

Write error to PD3 file [PD3 filename]

Seek error: Cannot move to the filename position

Seek error: Cannot move to the head of the block

Filename area too large

Symbolname area too large

Too many records in symbol table

Too many modules

Too many libraries

Too many objects

Failed to allocate memory in TAG area

Failed to allocate memory in link TAG area

Undefined value set to variable type [Value at variable type]

Undefined value set to tag type [Value at tag type]

Module [modulename] not defined

Symbol [symbolname] not defined

Cannot register symbol

More than one symbol type [variable type*] existing

Defined [variable types*] over the maximum limit

More than one symbol [symbolname] defined

Number of descriptors over the limit

Common variable [variablename] defined out of main module

Common data area overflow

Work data area overflow

Symbol name area overflow
474

Appendices
* To the [Variable type], any of the following character strings applies:

• Non-array integer common variable

• Non-array float common variable

• Non-array string common variable

• Non-array integer work variable

• Non-array float work variable

• Non-array string work variable

• Non-array integer register variable

• Non-array float register variable

• Non-array string register variable

• One-dimensional array integer common variable

• One-dimensional array float common variable

• One-dimensional array string common variable

• One-dimensional array integer work variable

• One-dimensional array float work variable

• One-dimensional array string work variable

• One-dimensional array integer register variable

• One-dimensional array float register variable

• One-dimensional array string register variable

• Two-dimensional array integer common variable

• Two-dimensional array float common variable

• Two-dimensional array string common variable

• Two-dimensional array integer work variable

• Two-dimensional array float work variable

• Two-dimensional array string work variable

• Two-dimensional array integer register variable

• Two-dimensional array float register variable

• Two-dimensional array string register variable

Non-array integer register variable area overflow

Non-array float register variable area overflow

Register memory pool area overflow

Failed to set up initial setting of register data

Error Message
475

■ Library Errors

Error Message

Cannot find object to be deleted [objectname]

Designated object already existing [objectname]

Cannot find object to be updated [objectname]

Module already defined [modulename]

Filename area too large

Too many block information pieces

Cannot open library file

Seek error: Cannot move to the filename position

Seek error: Cannot move to the head of the block

NOTE No error code precedes any linking error or library error.
476

Appendices
Appendix B
Reserved Words

The following list shows reserved words (keywords) of BHT-BASIC. Any of these words must
not be used as a variable name or label name.

A ABS
AND
APLOAD
AS
ASC

B BCC$
BEEP

C CALL
CASE
CHAIN
CHKDGT
CHR
CLFILE
CLOSE
CLS
CODE
COMMON
CONT
COUNTRY
CSRLIN
CURSOR

D DATA
DATE$
DEF
DEFREG
DIM

E ELSE
END
EOF
ERASE
ERL
ERR
ERROR
ETB
ETX
EXIT

F FIELD
FN
FOR
FRE

G GET
GO
GOSUB
GOTO

H HEX
I IF

$INCLUDE
INKEY
INP
INPUT
INSTR
INT

K KEY
KILL
KPLOAD

L LEFT
LEN
LET
LINE
LOC
LOCATE
LOF

M MARK
MID
MOD

N NEXT
NOT

O OFF
ON
OPEN
OR
OUT

P POS
POWER
PRINT
PRINT#
PUT

R READ
RECORD
REM
RESTORE
RESUME
RETURN
RIGHT$

S SCREEN
SEARCH
SELECT
SEP
SOH
STEP
STR
STX

T THEN
TIME
TIMEA
TIMEB
TIMEC
TO

U USING
V VAL
W WAIT

WEND
WHILE

X XFILE
XOR
477

Appendix C
Character Sets

C1. Character Set
The table below lists the character set which the BHT can display on the LCD screen. It is
based on the ASCII codes.

NOTE 1: You can assign user-defined fonts to codes from 80h to 9Fh with APLOAD state-
ment. (Refer to APLOAD statement in Chapter 14.)

NOTE2: Characters assigned to codes 20h to 7Fh are default national characters when the
English message version is selected on the menu screen* in System Mode.
* Menu screen for selecting the message version

They can be switched to other national characters (see Appendix C2) by COUN-
TRY$ function. (Refer to COUNTRY$ function in Chapter 15.)

NOTE 3: BS is a backspace code.
NOTE 4: CR is a carriage return code.
NOTE 5: C is a cancel code.
NOTE 6: is a space code.

BHT Series Menu screen

BHT-3000 Set Resume menu

BHT-4000/BHT-5000/BHT-
6000/
BHT-6500/BHT-7000/BHT-7500

SET DISPLAY menu
478

Appendices
C2. National Character Sets

You may switch characters assigned to codes 20h to 7Fh of the character set table listed in
Appendix C1 to one of the national character sets by using the COUNTRY$ function.

The default national character set is America (code A) or Japan (code J) depending upon the
English or Japanese message version selected on the menu screen* in System Mode, respec-
tively.

* Menu screen for selecting the message version

Listed below are national characters which are different from the defaults.

** Refer to COUNTRY$ function in Chapter 15.

COUNTRY$="countrycode"

NOTE 1: is a space code.

NOTE 2: Empty boxes in the above table are assigned the same characters as default ones
listed in Appendix C1.

BHT Series Menu screen

BHT-3000 Set Resume menu

BHT-4000/BHT-5000/BHT-
6000/
BHT-6500/BHT-7000/BHT-7500

SET DISPLAY menu
479

C3. Display Mode and Letter Size

■ Character frame and letter size

■ Generating the condensed two-byte Kanji patterns (BHT-4000/BHT-5000)

To display condensed two-byte Kanji characters, the Interpreter generates their font patterns
by condensing the Kanji fonts stored in the Kanji ROM (in the BHT-4000) or by condensing the
JIS Level 1 and Level 2 Kanji fonts stored in the flash ROM (in the BHT-5000).

The Interpreter can condense also Kanji patterns loaded by the KPLOAD statement. If the
condensed two-byte Kanji mode is to be used, it is necessary to take into account the conden-
sation when defining Kanji patterns.

The condensing process is as follows: The Interpreter ORs adja-
cent vertical two rows--2nd and 3rd rows, 6th and 7th rows, 10th
and 11th rows, and 14th and 15th rows--to produce a single row
each. Other rows will be displayed as they are.

In the figure shown at right, rows marked with � will be displayed
as they are; adjacent two rows without � will be condensed into a
single row.

Screen mode Font size Character frame
 (W x H)

Letter size
 (W x H)

Single-byte
ANK mode

Standard-size 6 x 8 5 x 7

Small-size
(BHT-6000/BHT-6500/
BHT-7000/BHT-7500)

6 x 6 5 x 5

Two-byte
Kanji mode

Standard-size Full-width
Half-width

16 x 16
8 x 16

15 x 16
7 x 16

Small-size
(BHT-6000/BHT-6500/
BHT-7000/BHT-7500)

Full-width
Half-width

12 x 12
6 x 12

11 x 12
5 x 12

Condensed two-byte Kanji mode
(BHT-4000/BHT-5000)

Full-width
Half-width

12 x 16
6 x 16

11 x 16
5 x 16

1 5 10 15
480

Appendices
■ Generating the small-size font patterns

BHT-6000/BHT-6500

- Single-byte ANK characters

To display single-byte ANK characters in small size of fonts, their small-size font patterns
stored in the flash ROM will be used and no condensation will take place.

For the patterns loaded by the APLOAD statement, the Interpreter condenses them as follows:

The Interpreter ORs adjacent horizontal two rows--2nd and 3rd rows and 5th and 6th rows--to
produce a single row each. Other rows will be displayed as they are. In the figure shown
above, rows marked with � will be displayed as they are; adjacent two rows without � will be
condensed into a single row.

- Two-byte Kanji characters

To display two-byte Kanji characters (full-width and half-width) in small size of fonts, the Inter-
preter generates their font patterns by condensing the JIS Level 1 and Level 2 Kanji fonts
stored in the flash ROM. Also for Kanji patterns loaded by the KPLOAD statement, the Inter-
preter condenses them in the same way.

If Kanji patterns loaded by the KPLOAD statement are to be displayed in small size of fonts, it
is necessary to take into account the condensation when defining Kanji patterns.

The condensing process is as follows:

The Interpreter ORs adjacent vertical
two rows--2nd and 3rd rows, 6th and
7th rows, 10th and 11th rows, and
14th and 15th rows--to produce a
single row each. Other rows will be
displayed as they are. In the figure
shown at right, rows marked with �
will be displayed as they are; adja-
cent two rows without � will be con-
densed into a single row.

The Interpreter ORs adjacent hori-
zontal two rows--3rd and 4th rows,
7th and 8th rows, 11th and 12th
rows, and 15th and 16th rows--to
produce a single row each. Other
rows will be displayed as they are. In
the figure shown below, rows marked
with � will be displayed as they are;
adjacent two rows without � will be
condensed into a single row.

1
1
2
3
4
5
6
7
8

2 3 4 5 6

1 5 10 15

1

5

10

15
481

BHT-7000/BHT-7500

- Single-byte ANK characters

To display single-byte ANK characters in small size of fonts, their small-size font patterns
stored in the flash ROM will be used and no condensation will take place.

For the patterns loaded by the APLOAD statement, the Interpreter uses a total of 6 bits (bit 0 to
5) in each vertical row and ignores bits 6 and 7.

- Two-byte Kanji characters

To display two-byte Kanji characters (full-width and half-width) in small size of fonts, small-size
font patterns of the JIS Level 1 and Level 2 Kanji stored in the user area of the memory will be
used and no condensation will take place.

For the patterns loaded by the KPLOAD statement, the Interpreter uses a total of 12 bits (bit 0
to 11) each on the 1st to 11th elements and ignores the 12th to 15th elements and bits 12 to 15.

Bit 0

Bit 5

0 15 0 11
Bit 0

Bit 11
482

Appendices
Appendix D
I/O Ports

D1. BHT-3000

■ Input Ports

A user program can monitor the hardware status through the input ports by using the WAIT
statement or INP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 This status is produced by ORing the receive buffer of the optical interface and that of the
direct-connect interface. If either of these buffers has data, therefore, this bit goes ON (1).

*3 During the direct-connect interface operation, a user program can regard RD signal as CS
signal, provided that the returned value of CS should be specified by RS/CS control
parameter in the OPEN "COM:" statement as listed below.

If the communications device file is closed, the BHT-3000 returns the value 0.

Port No. Bit assignment *1 Monitors the following:

0 0
1
2
3
4
5
6
7

Keyboard buffer
Barcode buffer
Trigger switch
Receive buffer*2

Value of TIMEA function
Value of TIMEB function
Value of TIMEC function
CS (CTS) signal*3

0: No data
0: No data
0: OFF
0: No data
0: Nonzero
0: Nonzero
0: Nonzero
0: OFF or file closed

1: Data stored
1: Data stored
1: ON
1: Data stored
1: Zero
1: Zero
1: Zero
1: ON

3 2-0 LCD contrast level*4 *5 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version*5 *6 0: Japanese 1: English

5 0 Alphabet entry function 0: Disabled 1: Enabled

10h-18Fh 7-0 VRAM*5 *7 0: OFF 1: ON

OPEN "COM:" state-
ment

Returned value of CS (CTS)

OPEN "COM:,,,,0"
OPEN "COM:,,,,1"
OPEN "COM:,,,,2"
OPEN "COM:,,,,3"
OPEN "COM:,,,,4"

Always 1
Always 1
1 if RD signal is High.
1 if RD signal is Low.
Depends upon the RD signal state.
483

*4 Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to
111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

*5 The LCD contrast, message version (English/Japanese), and VRAM should not be moni-
tored by using a WAIT statement. These status may not change while a user program
monitors them by this statement. The WAIT statement used for this purpose may cause
the program to enter an infinite loop.

*6 In System Mode, the message version appears as Eng or Jpn on the LCD.
*7 An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 18Fh (which read VRAM) rep-

resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

■ Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

*3 Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111
in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest. Shown below are examples of OUT statements.

OUT 3,7 ’Contrast is highest
OUT 3,&h07 ’Contrast is highest

*4 The sleep timer feature automatically interrupts program execution if the BHT-3000
receives no input within the specified length of time preset by bits 7 to 0. Shown below are
examples of OUT statements. Setting 0 to this byte disables the sleep timer feature. (Refer
to Chapter 10.)

OUT 6,30 ’3 seconds
OUT 6,0 ’No sleep operation

*5 An 8-bit binary pattern (bits 7 to 0) on the output ports 10h to 18Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

Port No. Bit assignment *1 Controls the following:

1 0
1

Reading confirmation LED (red)*2

Reading confirmation LED (green)*2
0: OFF
0: OFF

1: ON
1: ON

3 2-0 LCD contrast level*3 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version 0: Japanese 1: English

5 0 Alphabet entry function 0: Disable 1: Enable

6 7-0 Sleep timer*4 0 to 255

10h-18Fh 7-0 VRAM*5 0: OFF 1: ON
484

Appendices
D2. BHT-4000

■ Input Ports

A user program can monitor the hardware status through the input ports by using the WAIT
statement or INP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 During the optical interface operation and direct-connect interface operation, a user pro-
gram can monitor CS (CTS) signal. If CS signal is received, bit 7 of this byte goes ON (1).

If the communications device file is closed, the BHT-4000 returns the value 0.
*3 Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to

111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

*4 The LCD contrast, message version (English/Japanese), ER signal, system status indica-
tion, and VRAM should not be monitored by using a WAIT statement. These status may
not change while a user program monitors them by this statement. The WAIT statement
used for this purpose may cause the program to enter an infinite loop.

*5 In System Mode, the message version appears as English or Japanese on the LCD.
*6 The ER and CD signals are supported on the direct-connect interface only. If the communi-

cations device file is closed, the BHT-4000 returns the value 0.
*7 The BHT-4000 can display the system status on the bottom line of the LCD. If the system

status is displayed, the BHT-4000 returns the value 1; if not, it returns the value 0. For the
system status indication, refer to Chapter 7, Subsection 7.1.7.

Port No. Bit assignment *1 Monitors the following:

0 0
1
2
3
4
5
6
7

Keyboard buffer
Barcode buffer
Trigger switch
Receive buffer
Value of TIMEA function
Value of TIMEB function
Value of TIMEC function
CS (CTS) signal*2

0: No data
0: No data
0: OFF
0: No data
0: Nonzero
0: Nonzero
0: Nonzero
0: OFF or file closed

1: Data stored
1: Data stored
1: ON
1: Data stored
1: Zero
1: Zero
1: Zero
1: ON

3 2-0 LCD contrast level*3 *4 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version*4 *5 0: Japanese 1: English

5 0 Alphabet entry function 0: Disabled 1: Enabled

Dh
Dh

0
4

ER signal*4*6

CD signal*6
0: OFF
0: OFF

1: ON
1: ON

Eh 0 System status indication*4*7 0: OFF 1: ON

Fh 7-0 Re-read prevention enabled
time*8

0 to 255

10h-64Fh 7-0 VRAM*4 *9 0: OFF 1: ON
485

*8 The BHT-4000 returns the re-read prevention enabled time length in units of 100 ms. If the
returned value is zero (0), it means that the re-read prevention is permanently enabled so
that the BHT-4000 does not read same bar codes in succession.

*9 An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 64Fh (which read VRAM) rep-
resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

■ Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

*3 The RS (RTS) signal is controllable when the communications device file is opened. If the
file is closed, this signal specification will be ignored.

*4 Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111
in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest. Shown below are examples of OUT statements.

OUT 3,7 ’Contrast is highest
OUT 3,&h07 ’Contrast is highest

*5 The sleep time feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting 0 to this byte disables the sleep timer feature. (Refer to Chapter 10.)

OUT 6,30 ’3 seconds
OUT 6,0 ’No sleep operation

*6 Available on the direct-connect interface. If the communications device file is closed, this
specification will be ignored.

Port No. Bit assignment *1 Controls the following:

1 0
1

Reading confirmation LED (red)*2

Reading confirmation LED (green)*2
0: OFF
0: OFF

1: ON
1: ON

2 0 RS (RTS) signal*3 0: OFF (Low) 1: ON (High)

3 2-0 LCD contrast level*4 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version 0: Japanese 1: English

5 0 Alphabet entry function 0: Disable 1: Enable

6 7-0 Sleep timer*5 0 to 255

Dh 0 ER signal*6 0: OFF 1: ON

Eh 0 System status indication*7 0: OFF 1: ON

Fh 7-0 Re-read prevention enabled time*8 0 to 255

10h-64Fh 7-0 VRAM*9 0: OFF 1: ON
486

Appendices
*7 The BHT-4000 may display the system status on the bottom line of the LCD. To display the
system status, set 1 to this port; to erase it, set 0. For the system status indication, refer to
Chapter 7, Subsection 7.1.7.

*8 This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-4000 does not read
same bar codes in succession.

*9 An 8-bit binary pattern (bits 7 to 0) on the output ports 10h to 64Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

If you send graphic data to the VRAM area (assigned to the bottom line of the LCD) by
using the OUT statement when the system status is displayed on the LCD, the sent data
will be written into that VRAM area but cannot be displayed on the bottom line of the LCD.
487

D3. BHT-5000

■ Input Ports

A user program can monitor the hardware status through the input ports by using the WAIT
statement or INP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 During the optical interface operation, a user program can monitor CS (CTS) signal. If CS
signal is received, bit 7 of this byte goes ON (1).

Port No. Bit assignment *1 Monitors the following:

0 0
1
2
3
4
5
6
7

Keyboard buffer
Barcode buffer
Trigger switch
Receive buffer
Value of TIMEA function
Value of TIMEB function
Value of TIMEC function
CS (CTS) signal*2

0: No data
0: No data
0: OFF
0: No data
0: Nonzero
0: Nonzero
0: Nonzero
0: OFF or file closed

1: Data stored
1: Data stored
1: ON
1: Data stored
1: Zero
1: Zero
1: Zero
1: ON

3 2-0 LCD contrast level*3 *4 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version*4 *5 0: Japanese 1: English

5 0 Alphabet entry function 0: Disabled 1: Enabled

8 0
1

2

3

Wakeup function
Initiation of BHT*6

TIME$ function

Wakeup time

0: Deactivated
0: Initiated by the

power key
0: System time

selected
0: Not set

1: Activated
1: Initiated by the

wakeup function
1: Wakeup time

selected
1: Set

Eh 0 System status indication*4*7 0: OFF 1: ON

Fh 7-0 Re-read prevention enabled time*8 0 to 255

10h-40Fh 7-0 VRAM*4 *9 0: OFF 1: ON

6010h
6011h

7-0
0

Battery voltage level*10

Battery type
0 to 255
0: Rechargeable

battery cartridge
1: Dry battery car-

tridge

6040h 0
1

Magic key 1
Magic key 2

0: Released
0: Released

1: Held down
1: Held down

6050h 0 Keyboard type 0: 26-key pad 1: 32-key pad

6060h 7-0 Communications protocol*11 0: BHT-protocol 1: Multilink protocol

6061h
6062h

7-0
7-0

ID (lower byte)*12

ID (upper byte)*12
0 to 255
0 to 255
488

Appendices
During the direct-connect interface operation, a user program can regard RD signal as CS
signal, provided that the returned value of CS should be specified by RS/CS control
parameter in the OPEN "COM:" statement as listed below.

If the communications device file is closed, the BHT-5000 returns the value 0.
*3 Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to

111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

*4 The LCD contrast, message version (English/Japanese), system status indication, and
VRAM should not be monitored by using a WAIT statement. These status may not change
while a user program monitors them by this statement. The WAIT statement used for this
purpose may cause the program to enter an infinite loop.

*5 In System Mode, the message version appears as English or Japanese on the LCD.
*6 If the BHT-5000 is initiated by the wakeup function, this bit goes ON (1).
*7 The BHT-5000 can display the system status on the bottom line of the LCD. If the system

status is displayed, the BHT-5000 returns the value 1; if not, it returns the value 0. For the
system status indication, refer to Chapter 7, Subsection 7.1.7.

*8 The BHT-5000 returns the re-read prevention enabled time length in units of 100 ms. If the
returned value is zero (0), it means that the re-read prevention is permanently enabled so
that the BHT-5000 does not read same bar codes in succession.

*9 An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 40Fh (which read VRAM) rep-
resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

*10 A user program returns the A/D converted value (0 to 255) of the battery voltage level (0 to
5V). The returned value is an instantaneous value when data on the input port is read. The
voltage level varies depending upon the BHT-5000 operation and it is not in proportion to
the battery capacity, so use this voltage level as a reference value.

*11 A user program returns the communications protocol type used for file transmission with
the XFILE statement.

*12 A user program returns the BHT’s ID number which is required for the use of the multilink
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper
byte on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number
is 1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

OPEN "COM:" state-
ment

Returned value of CS (CTS)

OPEN "COM:,,,,0"
OPEN "COM:,,,,1"
OPEN "COM:,,,,2"
OPEN "COM:,,,,3"
OPEN "COM:,,,,4"

Always 1
Always 1
1 if RD signal is High.
1 if RD signal is Low.
Depends upon the RD signal state.
489

■ Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

If you have set the confirmation LED to OFF in the OPEN "BAR:" statement, a user pro-
gram can control the reading confirmation LED although the bar code device file is opened.

*3 The RS (RTS) signal is controllable on the optical interface.
*4 Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111

in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest. Shown below are examples of OUT statements.

OUT 3,7 ’Contrast is highest
OUT 3,&h07 ’Contrast is highest

Port No. Bit assignment *1 Controls the following:

1 0
1

Reading confirmation LED (red)*2

Reading confirmation LED (green)*2
0: OFF
0: OFF

1: ON
1: ON

2 0 RS (RTS) signal*3 0: OFF (Low) 1: ON (High)

3 2-0 LCD contrast level*4 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version 0: Japanese 1: English

5 0 Alphabet entry function 0: Disable 1: Enable

6 7-0 Sleep timer*5 0 to 255

8 0
2

Wakeup function*6

TIME$ function*7
0: Deactivate
0: Select the sys-

tem time

1: Activate
1: Select the

wakeup time

Eh 0 System status indication*8 0: OFF 1: ON

Fh 7-0 Re-read prevention enabled time*9 0 to 255

10h-40Fh 7-0 VRAM*10 0: OFF 1: ON

6000h 0 Initiation of System Mode*11 0: Do not
initiate

1: Initiate

6020h
6021h

0
7-0

LCD backlight*12

LCD backlight ON-duration*12
0: Turns OFF
0 to 255

1: Turns ON

6030h 7-0 Effective held-down time of power
key*13

1 to 255

6060h 7-0 Communications protocol*14 0: BHT-protocol 1: Multilink proto-
col

6061h
6062h

7-0
7-0

ID (lower byte)*15

ID (upper byte)*15
0 to 255
0 to 255
490

Appendices
*5 The sleep timer feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting 0 to this byte disables the sleep timer feature. (Refer to Chapter 10.)

OUT 6,30 ’3 seconds
OUT 6,0 ’No sleep operation

*6 To activate the wakeup function, set 1 to this bit; to deactivate it, set 0.
*7 To make the TIME$ function return or set the system time, set 0 to this bit; to make the

TIME$ function return or set the wakeup time, set 1.

Execution of the TIME$ function after selection of the wakeup time will automatically reset
this bit to zero.

*8 The BHT-5000 may display the system status on the bottom line of the LCD. To display the
system status, set 1 to this port; to erase it, set 0. For the system status indication, refer to
Chapter 7, Subsection 7.1.7.

*9 This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-5000 does not read
same bar codes in succession. The default is 10 (1 second).

*10 An 8-bit binary pattern (bits 7 to 0) on the output ports 10h to 40Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

If you send graphic data to the VRAM area (assigned to the bottom line of the LCD) by
using the OUT statement when the system status is displayed on the LCD, the sent data
will be written into that VRAM area but cannot be displayed on the bottom line of the LCD.

*11 Refer to Appendix H, “[3] Program file named APLINT.PD3.”
*12 If the backlight function is activated with the OUT statement, the specification by the KEY

statement will be ignored. For details, refer to Chapter 13.

If you set 0 to the ON-duration (6021h), the backlight will not come on; if you set 255, it will
be kept on.

*13 You can set the held-down time of the power key required for powering off the BHT-5000.
The setting range is from 0.1 to 25.5 seconds in increments of 0.1 second. The default is 5
(0.5 second).

*14 You can set the communications protocol type for transmitting files with the XFILE state-
ment. To transmit files between the host computer and more than one BHT-5000 (placed
on the multilinked CU-5003s), set 1 (multilink protocol) to this port. The file transmission by
using the multilink protocol requires also Multilink Transfer Utility (MLTU3.EXE) to be run in
the host computer, Multilink Protocol System (MLTU3.EX3) to be run in the BHT-5000, and
the CU-5003(s).

If Multilink Protocol System (MLTU3.EX3) has not been downloaded to the BHT-5000, the
BHT-protocol will be used instead of the multilink protocol even if this port is set to 1 (multi-
link protocol).

*15 You may set the BHT's ID number to be used for the multilink protocol. The ID number is
expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h. The set-
ting range is from 1 to FFFFh. To set the ID number to 1234h, write as follows:

OUT &h6061h,&h34 ’Sets 34h to the lower byte of the ID
OUT &h6062h,&h12 ’Sets 12h to the upper byte of the ID
491

D4. BHT-6000/BHT-6500

■ Input Ports

A user program can monitor the hardware status through the input ports by using the WAIT
statement or INP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

Port No. Bit assignment *1 Monitors the following:

0 0
1
2
3
4
5
6
7

Keyboard buffer
Barcode buffer
Trigger switch*2

Receive buffer
Value of TIMEA function
Value of TIMEB function
Value of TIMEC function
CS (CTS) signal*3

0: No data
0: No data
0: OFF
0: No data
0: Nonzero
0: Nonzero
0: Nonzero
0: OFF or file closed

1: Data stored
1: Data stored
1: ON
1: Data stored
1: Zero
1: Zero
1: Zero
1: ON

3 3-0 LCD contrast level*4 *5 0 to 11 (0: Lowest, 11: Highest)

4 0 Message version*5 *6 0: Japanese 1: English

5 0 Alphabet entry function 0: Disabled 1: Enabled

8 0
1

2

3

Wakeup function
Initiation of BHT*7

TIME$ function

Wakeup time

0: Deactivated
0: Initiated by the

power key
0: System time

selected
0: Not set

1: Activated
1: Initiated by the

wakeup function
1: Wakeup time

selected
1: Set

Eh 0 System status indication*5*8 0: OFF 1: ON

Fh 7-0 Re-read prevention enabled time*9 0 to 255

10h-24Fh 7-0 VRAM*5 *10 0: OFF 1: ON

6010h
6011h

7-0
0

Battery voltage level*11

Battery type
0 to 255
0: Battery cartridge 1: Dry batteries

6040h 0
1
2*12

3*12

Magic key 1
Magic key 2
Magic key 3
Magic key 4

0: Released
0: Released
0: Released
0: Released

1: Held down
1: Held down
1: Held down
1: Held down

6060h 7-0 Communications protocol*13 0: BHT-protocol 2: BHT-Ir protocol

6061h
6062h

7-0
7-0

ID (lower byte)*14

ID (upper byte)*14
0 to 255
0 to 255

6070h 0 Output pulse width of IR beam 0: 1.63 µs 1: 3/16 bit time

6080h 0 Display font size*15 0: Standard-size 1: Small-size

6090h*12 0
1

Beeper
Vibrator

0: Deactivated
0: Deactivated

1: Activated
1: Activated
492

Appendices
*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 Only when the trigger switch function is assigned to any of the magic keys, a user program
returns the ON/OFF state of the switch.

*3 During the direct-connect interface operation, a user program can regard RD signal as CS
signal, provided that the returned value of CS should be specified by RS/CS control
parameter in the OPEN "COM:" statement as listed below.

If the direct-connect interface is closed, the BHT-6000/BHT-6500 returns the value 0.
*4 Lower four bits (bit 3 to bit 0) in this byte represent the contrast level of the LCD in 0000 to

1011 in binary notation or in 0 to 11 in decimal notation. 0 means the lowest contrast; 11
means the highest.

*5 The LCD contrast, message version (English/Japanese), system status indication, and
VRAM should not be monitored by using a WAIT statement. These status may not change
while a user program monitors them by this statement. The WAIT statement used for this
purpose may cause the program to enter an infinite loop.

*6 In System Mode, the message version appears as English or Japanese on the LCD.
*7 If the BHT-6000/BHT-6500 is initiated by the wakeup function, this bit goes ON (1).
*8 The BHT-6000/BHT-6500 can display the system status on the bottom line of the LCD. If

the system status is displayed, the BHT-6000/BHT-6500 returns the value 1; if not, it
returns the value 0. For the system status indication, refer to Chapter 7, Subsection 7.1.7.

*9 The BHT-6000/BHT-6500 returns the re-read prevention enabled time length in units of 100
ms. If the returned value is zero (0), it means that the re-read prevention is permanently
enabled so that the BHT-6000/BHT-6500 does not read same bar codes in succession.

*10 An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 24Fh (which read VRAM) rep-
resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

*11 A user program returns the A/D converted value (0 to 255) of the battery voltage level (0 to
5V in the BHT-6000 and 0 to 3.5V in the BHT-6500). The returned value is an instanta-
neous value when data on the input port is read. The voltage level varies depending upon
the BHT-6000/BHT-6500 operation and it is not in proportion to the battery capacity, so use
this voltage level as a reference value.

*12 Supported by the BHT-6500 only.
*13 A user program returns the communications protocol type used for file transmission with

the XFILE statement. For details about the communications protocol, refer to the "BHT-
6000 User’s Manual" or "BHT-6500 User’s Manual."

OPEN "COM:" state-
ment

Returned value of CS (CTS)

OPEN "COM:,,,,0"
OPEN "COM:,,,,1"
OPEN "COM:,,,,2"
OPEN "COM:,,,,3"
OPEN "COM:,,,,4"

Always 1
Always 1
1 if RD signal is High.
1 if RD signal is Low.
Depends upon the RD signal state.
493

*14 A user program returns the BHT’s ID number which is required for the use of the BHT-Ir
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper
byte on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number
is 1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

*15 If the value of this bit is 0 (standard-size), characters will be displayed as follows:

If the value of this bit is 1 (small-size), characters will be displayed as follows:

(W) x (H)

Single-byte ANK mode 6 dots x 8 dots

Two-byte Kanji mode Full-width
Half-width

16 dots x 16 dots
8 dots x 16 dots

(W) x (H)

Single-byte ANK mode 6 dots x 6 dots

Two-byte Kanji mode Full-width
Half-width

12 dots x 12 dots
6 dots x 12 dots
494

Appendices
■ Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

Port No. Bit assignment *1 Controls the following:

1 0
1

Reading confirmation LED (red)*2

Reading confirmation LED (green)*2
0: OFF
0: OFF

1: ON
1: ON

3 3-0 LCD contrast level*3 0 to 11 (0: Lowest, 11: Highest)

4 0 Message version 0: Japanese 1: English

5 0 Alphabet entry function 0: Disable 1: Enable

6 7-0 Sleep timer*4 0 to 255

8 0
2

Wakeup function*5

TIME$ function*6
0: Deactivate
0: Select the sys-

tem time

1: Activate
1: Select the

wakeup time

Eh 0 System status indication*7 0: OFF 1: ON

Fh 7-0 Re-read prevention enabled time*8 0 to 255

10h-24Fh 7-0 VRAM*9 0: OFF 1: ON

6000h 0 Initiation of System Mode*10 0: Do not
initiate

1: Initiate

6020h
6021h

0
7-0

LCD backlight*11

LCD backlight ON-duration*11
0: Turns OFF
0 to 255

1: Turns ON

6030h 7-0 Effective held-down time of power
key*12

1 to 255

6060h 7-0 Communications protocol*13 0: BHT-protocol 2: BHT-Ir protocol

6061h
6062h

7-0
7-0

ID (lower byte)*14

ID (upper byte)*14
0 to 255
0 to 255

6070h 0 Output pulse width of IR beam*15 0: 1.63 µs 1: 3/16 bit time

6080h 0 Display font size*16 0: Standard-size 1: Small-size

6090h*17 0
1

Beeper
Vibrator

0: Deactivate
0: Deactivate

1: Activate
1: Activate
495

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

If you have set the confirmation LED to OFF in the OPEN "BAR:" statement a user pro-
gram can control the reading confirmation LED although the bar code device file is opened.

*3 Lower four bits (bit 3 to bit 0) in this byte control the contrast level of the LCD in 0000 to
1011 in binary notation or in 0 to 11 in decimal notation. 0 means the lowest contrast; 11
means the highest. Shown below are examples of OUT statements.

OUT 3,11 ’Contrast is highest
OUT 3,&h0B ’Contrast is highest

*4 The sleep timer feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting 0 to this byte disables the sleep timer feature. (Refer to Chapter 10.)

OUT 6,30 ’3 seconds
OUT 6,0 ’No sleep operation

*5 To activate the wakeup function, set 1 to this bit; to deactivate it, set 0.
*6 To make the TIME$ function return or set the system time, set 0 to this bit; to make the

TIME$ function return or set the wakeup time, set 1.

Execution of the TIME$ function after selection of the wakeup time will automatically reset
this bit to zero.

*7 The BHT-6000/BHT6500 may display the system status on the bottom line of the LCD. To
display the system status, set 1 to this port; to erase it, set 0. For the system status indica-
tion, refer to Chapter 7, Subsection 7.1.7.

*8 This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-6000/BHT6500
does not read same bar codes in succession. The default is 10 (1 second).

*9 An 8-bit binary pattern (bits 7 to 0) on the output ports 10h to 24Fh (which are stored in the
VRAM) represents a basic dot pattern column of the LCD. Bit value 1 means a black dot.
The port number gives the dot column address.

If you send graphic data to the VRAM area (assigned to the bottom line of the LCD) by
using the OUT statement when the system status is displayed on the LCD, the sent data
will be written into that VRAM area but cannot be displayed on the bottom line of the LCD.

*10 Refer to Appendix H, "[3] Program file named APLINT.PD3."
*11 If the backlight function is activated with the OUT statement, the specification by the KEY

statement will be ignored. For details, refer to Chapter 13.

If you set 0 to the ON-duration (6021h), the backlight will not come on; if you set 255, it will
be kept on.

*12 You can set the held-down time of the power key required for powering off the BHT-6000/
BHT6500. The setting range is from 0.1 to 25.5 seconds in increments of 0.1 second. The
default is 5 (0.5 second).
496

Appendices
*13 You can set the communications protocol type for transmitting files with the XFILE state-
ment.

*14 You may set the BHT’s ID number to be used for the BHT-Ir protocol. The ID number is
expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h. The set-
ting range is from 1 to FFFFh. To set the ID number to 1234h, write as follows:

OUT &h6061h,&h34 ’Sets 34h to the lower byte of the ID
OUT &h6062h,&h12 ’Sets 12h to the upper byte of the ID

*15 For data transmission via the optical interface, this bit sets the output pulse width of IR
beam in accordance with the IrDA physical layer (IrDA-SIR 1.0). The default width is 1.63
µs.

*16 If you set 0 (standard-size) to this bit, characters will be displayed as follows:

If you set 1 (small-size) to this bit, characters will be displayed as follows:

*17 Supported by the BHT-6500 only. If you set 0 (Deactivates) to both bits 0 and 1, only the
beeper will work.

(W) x (H)

Single-byte ANK mode 6 dots x 8 dots

Two-byte Kanji mode Full-width
Half-width

16 dots x 16 dots
8 dots x 16 dots

(W) x (H)

Single-byte ANK mode 6 dots x 6 dots

Two-byte Kanji mode Full-width
Half-width

12 dots x 12 dots
6 dots x 12 dots
497

D5. BHT-7000/BHT-7500

■ Input Ports

A user program can monitor the hardware status through the input ports by using the WAIT
statement or INP function. BHT-BASIC defines each of these ports as a byte. The table
below lists the input ports and their monitoring function in the BHT.

Port No. Bit assignment *1 Monitors the following:

0 0
1
2
3
4
5
6
7

Keyboard buffer
Barcode buffer
Trigger switch*2

Receive buffer
Value of TIMEA function
Value of TIMEB function
Value of TIMEC function
CS (CTS) signal*3

0: No data
0: No data
0: OFF
0: No data
0: Nonzero
0: Nonzero
0: Nonzero
0: OFF or file closed

1: Data stored
1: Data stored
1: ON
1: Data stored
1: Zero
1: Zero
1: Zero
1: ON

3 2-0 LCD contrast level*4 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version*5 0: Japanese 1: English

5 0 Alphabet entry function 0: Disabled 1: Enabled

8 0
1

2

3

Wakeup function
Initiation of BHT*6

TIME$ function

Wakeup time

0: Deactivated
0: Initiated by the

power key
0: System time

selected
0: Not set

1: Activated
1: Initiated by the

wakeup function
1: Wakeup time

selected
1: Set

Fh 7-0 Re-read prevention enabled time*7 0 to 255

10h-40Fh
10h-C8Fh

7-0
7-0

BHT-7000 VRAM*8

BHT-7500 VRAM*8
0: OFF
0: OFF

1: ON
1: ON

6010h
6011h

7-0
0

Battery voltage level*9

Battery type
0 to 255
0: Rechargeable

battery cartridge
1: Dry battery car-

tridge

6012h 0 BHT on/off the CU*10 0: Off the CU
1: On the CU
2: Loaded with dry battery cartridge

6040h 0
1
2
3

Magic key 1
Magic key 2
Magic key 3
Magic key 4

0: Released
0: Released
0: Released
0: Released

1: Held down
1: Held down
1: Held down
1: Held down

6060h 7-0 Communications protocol*11 0: BHT-protocol 2: BHT-Ir protocol

6061h
6062h

7-0
7-0

ID (lower byte)*12

ID (upper byte)*12
0 to 255
0 to 255

6070h 0 Output pulse width of IR beam*13 1: 3/16 bit time

6080h 0 Display font size*14 0: Standard-size 1: Small-size
498

Appendices
*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 Only when the trigger switch function is assigned to either of the magic keys, a user pro-
gram returns the ON/OFF state of the switch.

*3 During the direct-connect interface operation, a user program can regard RD signal as CS
signal, provided that the returned value of CS should be specified by RS/CS control
parameter in the OPEN "COM:" statement as listed below.

If the direct-connect interface is closed, the BHT-7000/BHT-7500 returns the value 0.
*4 Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to

111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

*5 In System Mode, the message version appears as English or Japanese on the LCD.
*6 If the BHT-7000/BHT-7500 is initiated by the wakeup function, this bit goes ON (1).
*7 The BHT-7000/BHT-7500 returns the re-read prevention enabled time length in units of 100

ms. If the returned value is zero (0), it means that the re-read prevention is permanently
enabled so that the BHT-7000/BHT-7500 does not read same bar codes in succession.

6090h 0
1

Beeper
Vibrator

0: Deactivated
0: Deactivated

1: Activated
1: Activated

60B0h*15

60B1h*15

7-0

7-0

Key entry system

Key entry mode

0: Numeric entry

0: Numeric

1: Alphanumeric
entry

1: Alphabet

60C0h 7-0 Beeper volume*16 0 to 3

60E0h

60E1h

7-0

7-0

Drive size to be defragmented
(lower byte)*17

Drive size to be defragmented
(upper byte)*17

0 to 255

0 to 255

60F0h
60F1h

60F2h

60F3h

7-0
7-0

0

1
7-0

Remote wakeup function*18 0: Deactivated 1: Activated
Transmission speed for remote 1: 9600 bps 2: 19200 bps
wakeup*19 3: 38400 bps 4: 57600 bps

5: 115200 bps
Execution record of remote 1: Woke up remotely
wakeup*20

Termination of remote wakeup*21 1: Terminated normally
Timeout for remote wakeup*22 1 to 255 (seconds)

OPEN "COM:" state-
ment

Returned value of CS (CTS)

OPEN "COM:,,,,0"
OPEN "COM:,,,,1"
OPEN "COM:,,,,2"
OPEN "COM:,,,,3"
OPEN "COM:,,,,4"

Always 1
Always 1
1 if RD signal is High.
1 if RD signal is Low.
Depends upon the RD signal state.

Port No. Bit assignment *1 Monitors the following:
499

*8 An 8-bit binary pattern (bits 7 to 0) on the input ports (which read VRAM) 10h to 40Fh in the
BHT-7000 or 10h to C8Fh in the BHT-7500 represents a basic dot pattern column of the
LCD. Bit value 1 means a black dot. The port number gives the dot column address.

On input ports BE0h to C8Fh, which represents the bottom line of the LCD, is a 7-bit binary
pattern (bits 6 to 0) only. If "1" is set to bit 7 for output, bit 7 returns "1"; if "0," bit 7 returns
"0."

*9 A user program returns the A/D converted value (0 to 255) of the battery voltage level (0 to
7V). The returned value is an instantaneous value when data on the input port is read. The
voltage level varies depending upon the BHT-7000/BHT-7500 operation and it is not in pro-
portion to the battery capacity, so use this voltage level as a reference value.

*10 If the BHT is placed on the CU and is ready to be charged (or being charged), "1" will be
returned. In this condition, the indicator LED on the BHT is lit in red or green showing the
charging state.

In either of the following cases, "0" will be returned even if the BHT is placed on the CU:

- No power is supplied to the CU.

- The BHT cannot be recognized as being placed on the CU due to contact failure of charg-
ing terminals.

*11 A user program returns the communications protocol type used for file transmission with
the XFILE statement. For details about the communications protocol, refer to the "BHT-
7000 User’s Manual" or "BHT-7500 User’s Manual."

*12 A user program returns the BHT’s ID number which is required for the use of the BHT-Ir
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper
byte on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number
is 1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

*13 Fixed to 3/16 bit time.
*14 If the value of this bit is 0 (standard-size), characters will be displayed as follows:

If the value of this bit is 1 (small-size), characters will be displayed as follows:

*15 Valid only in the BHT-7000 with 26-key pad.
*16 A user program returns the beeper volume level--1 (Low), 2 (Medium), or 3 (High). 0

means no beeping.

(W) x (H)

Single-byte ANK mode 6 dots x 8 dots

Two-byte Kanji mode Full-width
Half-width

16 dots x 16 dots
8 dots x 16 dots

(W) x (H)

Single-byte ANK mode 6 dots x 6 dots

Two-byte Kanji mode Full-width
Half-width

12 dots x 12 dots
6 dots x 12 dots
500

Appendices
*17 A user program returns the currently specified size of the empty area to be defragmented in
units of 4 kilobytes. The size is expressed by two bytes: lower byte on port 60E0h and
upper byte on port 60E1h. The range of the returned value is from 1 to FFFFh. (The actu-
ally allowable maximum value is the size of the empty user area. If a value exceeding the
size is returned, it means that the whole empty area is specified to be defragmented.)

If the size is 2048 kilobytes, for example, the value on 60E0h is 00h and that on 60E1h is
02h (2048 kilobytes/4 kilobytes = 512 or 200h). 0 means the whole empty area to be
defragmented.

*18 If "0" is returned, the remote wakeup function is deactivated; if "1," the function is activated.
*19 The transmission speed to be applied when activating the remote wakeup will be returned.
*20 If the BHT was woke up remotely at the last powering on, "1" will be returned; if the BHT is

initiated from any other means, "0" will be returned.
*21 If a user program executed by the remote wakeup has been terminated with END, POWER

OFF, or POWER 0 statement, then "1" will be returned; in any other cases, "0" will be
returned.

*22 A user program returns the timeout length during which the BHT will wait for proper data
(specified remote wakeup character string) after receiving any data via the CU from the
host.

■ Output Ports

A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

Port No. Bit assignment *1 Controls the following:

1 0
1

Reading confirmation LED (red)*2

Reading confirmation LED (green)*2
0: OFF
0: OFF

1: ON
1: ON

3 2-0 LCD contrast level*3 0 to 7 (0: Lowest, 7: Highest)

4 0 Message version 0: Japanese 1: English

5 0 Alphabet entry function 0: Disable 1: Enable

6 7-0 Sleep timer*4 0 to 255

8 0
2

Wakeup function*5

TIME$ function*6
0: Deactivate
0: Select the sys-

tem time

1: Activate
1: Select the

wakeup time

Fh 7-0 Re-read prevention enabled time*7 0 to 255

10h-40Fh
10h-C8Fh

7-0
7-0

BHT-7000 VRAM*8

BHT-7500 VRAM*8
0: OFF
0: OFF

1: ON
1: ON

6000h 0 Initiation of System Mode*9 0: Do not
initiate

1: Initiate

6020h
6021h

0
7-0

LCD backlight*10

LCD backlight ON-duration*10
0: Turn OFF
0 to 255

1: Turn ON

6030h 7-0 Effective held-down time of power key*11 1 to 255
501

*1 BHT-BASIC represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

*2 The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is opened, the OUT statement will be ignored.

If you have set the confirmation LED to OFF in the OPEN "BAR:" statement, a user pro-
gram can control the reading confirmation LED although the bar code device file is opened.

*3 Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000 to 111
in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7 means the
highest.

OUT 3,7 ’Contrast is highest
OUT 3,&h07 ’Contrast is highest

*4 The sleep timer feature automatically interrupts program execution if no event takes place
within the specified length of time preset by bit 7 to 0. Shown below are examples of OUT
statements. Setting 0 to this byte disables the sleep timer feature. (Refer to Chapter 10.)

OUT 6,30 ’3 seconds
OUT 6,0 ’No sleep operation

*5 To activate the wakeup function, set 1 to this bit; to deactivate it, set 0.

6060h 7-0 Communications protocol*12 0: BHT-protocol 2: BHT-Ir protocol

6061h
6062h

7-0
7-0

ID (lower byte)*13

ID (upper byte)*13
0 to 255
0 to 255

6080h 7-0 Display font size*14 0: Standard-size 1: Small-size

6090h 0
1

Beeper*15

Vibrator*15
0: Deactivates
0: Deactivates

1: Activates
1: Activates

60B0h*16

60B1h*16

7-0

7-0

Key entry system

Key entry mode

0: Numeric entry

0: Numeric

1: Alphanumeric
entry

1: Alphabet

60C0h 7-0 Beeper volume*17 0 to 3

60D0h 7-0 System modification*18 0: Power off after modification
1: Software-reset after modification

60E0h

60E1h

60E2h

7-0

7-0

7-0

Drive size to be defragmented 0 to 255
(lower byte)*19

Drive size to be defragmented 0 to 255
(upper byte)*19

Execution of defragmentation*20 0: Defragments w/o bar graph
1: Defragments w/ absolute bar graph
2: Defragments w/ relative bar graph

60F0h
60F1h

60F2h

60F3h

7-0
7-0

0
1

7-0

Remote wakeup function*21 0: Deactivated 1: Activated
Transmission speed for remote 1: 9600 bps 2: 19200 bps
wakeup*22 3: 38400 bps 4: 57600 bps

5: 115200 bps
Execution record of remote wakeup 1: Woke up remotely
Termination of remote wakeup 1: Terminated normally
Timeout for remote wakeup*23 1 to 255 (seconds)

Port No. Bit assignment *1 Controls the following:
502

Appendices
*6 To make the TIME$ function return or set the system time, set 0 to this bit; to make the
TIME$ function return or set the wakeup time, set 1.

Execution of the TIME$ function after selection of the wakeup time will automatically reset
this bit to zero.

*7 This byte sets the re-read prevention enabled time length in units of 100 ms. Specification
of zero (0) permanently enables the re-read prevention so that the BHT-7000/BHT7500
does not read same bar codes in succession. The default is 10 (1 second).

*8 An 8-bit binary pattern (bits 7 to 0) on the output ports (which are stored in the VRAM) 10h
to 40Fh in the BHT-7000 or 10h to C8Fh in the BHT-7500 represents a basic dot pattern
column of the LCD. Bit value 1 means a black dot. The port number gives the dot column
address.

On input ports BE0h to C8Fh, which represents the bottom line of the LCD, is a 7-bit binary
pattern (bits 6 to 0) only. If you set "1" to bit 7, it will be displayed as 1; if "0," it will be as 0.

*9 Refer to Appendix H, "[3] Program file named APLINT.PD3."
*10 If the backlight function is activated with the OUT statement, the specification by the KEY

statement will be ignored. For details, refer to Chapter 13.

If you set 0 to the ON-duration (6021h), the backlight will not come on; if you set 255, it will
be kept on.

*11 You can set the held-down time of the power key required for powering off the BHT-7000/
BHT7500. The setting range is from 0.1 to 25.5 seconds in increments of 0.1 second. The
default is 5 (0.5 second).

*12 You can set the communications protocol type for transmitting files with the XFILE state-
ment.

*13 You may set the BHT’s ID number to be used for the BHT-Ir protocol. The ID number is
expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h. The set-
ting range is from 1 to FFFFh. To set the ID number to 1234h, write as follows:

OUT &h6061h,&h34 ’Sets 34h to the lower byte of the ID
OUT &h6062h,&h12 ’Sets 12h to the upper byte of the ID

*14 If you set 0 (standard-size) to this bit, characters will be displayed as follows:

If you set 1 (small-size) to this bit, characters will be displayed as follows:

*15 If you set 0 (Deactivates) to both bits 0 and 1, only the beeper will work.
*16 Valid only in the BHT-7000 with 26-key pad.
*17 The beeper volume level may be adjusted to four levels--1 (Low), 2 (Medium), 3 (High), and

0 (OFF).

(W) x (H)

Single-byte ANK mode 6 dots x 8 dots

Two-byte Kanji mode Full-width
Half-width

16 dots x 16 dots
8 dots x 16 dots

(W) x (H)

Single-byte ANK mode 6 dots x 6 dots

Two-byte Kanji mode Full-width
Half-width

12 dots x 12 dots
6 dots x 12 dots
503

*18 To update the BHT system by using an application program, download an update file to the
BHT and then execute an OUT statement. Updating the system will take approx. 30 sec-
onds. During updating, the BHT power should be kept on. If an execution program has
been set, execution of OUT &H60D0, 1 may cold-start the application.

*19 You may specify the size of the empty user area to be defragmented in units of 4 kilobytes.
The size is expressed by two bytes: lower byte on port 60E0h and upper byte on port
60E1h. The setting range is from 1 to FFFFh. (The actually allowable maximum value is
the size of the empty user area. If you specify a value exceeding the size, the whole empty
area will be defragmented.)

To defragment 2048 kilobytes of area, write as follows:

2048 kilobytes/4 kilobytes = 512 (200h), so

OUT &h60E0,0 ’Sets 00h to the lower byte
OUT &h60E1,2 ’Sets 02h to the upper byte

If "0" is set, the whole empty user area will be defragmented.
*20 To defragment the drive, set "0," "1," or "2." Setting "1" or "2" will display an absolute bar

graph or relative bar graph indicating the defragmentation progress during drive defrag-
mentation, respectively. The bar graph will disappear after completion of defragmentation
and the previous screen will come back.

To defragment the drive while showing a relative bar graph, write as follows:

OUT &h60E2,1 ’Defragment the drive showing relative bar
graph

*21 To activate the remote wakeup, set "1"; to deactivate, set "0."
*22 Set the transmission speed to be applied for remote wakeup.
*23 You may set the timeout length during which the BHT will wait for proper data (specified

remote wakeup character string) after receiving any data via the CU from the host.
504

Appendices
Appendix E
Key Number Assignment on the Keyboard

E1. BHT-3000

■ Key Number Assignment

The keys on the BHT-3000 keyboard are assigned numbers as shown below.

■ Default Data Assignment

The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

Non-shift mode Shift mode

Non-shift mode Shift mode
505

E2. BHT-4000

■ Key Number Assignment

The keys on the BHT-4000 keyboard are assigned numbers as shown below.

■ Default Data Assignment

The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

Non-shift mode Shift mode

Non-shift mode Shift mode
506

Appendices
E3. BHT-5000

[1] 32-key pad
■ Key Number Assignment

The keys on the BHT-5000 keyboard are assigned numbers as shown below.

■ Default Data Assignment
The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

Non-shift mode Shift mode

Non-shift mode Shift mode
507

■ Alphabet Letter Assignment

Shown below are the alphabet letter assignments which are available when the alpha-
bet input function is activated.

*1 BS, CR, C, and SPC are a backspace (08h), carriage return (0Dh), cancel
(18h), and space (20h) code, respectively.

Non-shift mode Shift mode
508

Appendices
[2] 26-key pad

■ Key Number Assignment

The keys on the BHT-5000 keyboard are assigned numbers as shown below.

■ Default Data Assignment

The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

Non-shift mode Shift mode

Non-shift mode Shift mode
509

E4. BHT-6000

■ Key Number Assignment

The keys on the BHT-6000 keyboard are assigned numbers as shown below.

■ Default Data Assignment

The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

1 2 3 4

5 6 7 8

30

Non-shift mode

31

9 10 11 12

13 14 15

24 20

16

33

17 18 19

21 22 23

25 26 27

28 29

Shift mode

34

Non-shift mode Shift mode
510

Appendices
E5. BHT-6500

■ Key Number Assignment

The keys on the BHT-6500 keyboard are assigned numbers as shown below.

■ Default Data Assignment

The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

Non-shift mode Shift mode

Non-shift mode Shift mode
511

E6. BHT-7000/BHT-7500
[1] 32-key pad

■ Key Number Assignment
The keys on the BHT-7000/BHT-7500 keyboard are assigned numbers as shown
below.

■ Default Data Assignment
The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

Non-shift mode Shift mode

Non-shift mode Shift mode
512

Appendices
■ Alphabet Letter Assignment

Shown below are the alphabet letter assignments which are available when the alpha-
bet input function is activated.

*1 BS, CR, C, and SPC are a backspace (08h), carriage return (0Dh), cancel
(18h), and space (20h) code, respectively.

Non-shift mode Shift mode
513

[2] 26-key pad (BHT-7000 only)

■ Key Number Assignment

The keys on the BHT-7000 keyboard are assigned numbers as shown below.

■ Default Data Assignment

The default data assignment is shown below.

*1 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h)
code, respectively.

Non-shift mode Shift mode

Non-shift mode Shift mode
514

Appendices
Appendix F
Memory Area

■ Memory Map

The memory maps are shown below.

JIS Kanji font area
(256 KB)

ROM

RAMUser area
(104 or 488 KB)

System program area
(128 KB)

System work area
(24 KB)

BHT-3000

ROM

RAM

User area
(100,612 or 1872 KB)

System program area (16 KB)

System program area
(128 KB)

System work area
(28 or 48 KB)

BHT-4000

ROM

RAMUser area
(464 KB)

System program area
(192 or 200 KB)

JIS Level 1 Kanji font area
(128 KB)

JIS Level 2 Kanji font area
(128 KB)

User area (64 or 568 KB)

System work area
(48 KB)

BHT-6000

ROM

RAMUser area
(92, 464, 964 or 1976 KB)

System program area
(132 KB)

JIS Level 1 Kanji font area
(128 KB)

JIS Level 2 Kanji font area
(128 KB)

User area (124 KB)

System work area
(36, 48, 60 or 72 KB)

BHT-5000
515

ROM

RAM
User area

(464 or 1976 KB)

System program area
(196 KB)

JIS Level 1 Kanji font area
(128 KB)

JIS Level 2 Kanji font area
(128 KB)

User area (60 KB)

System work area
(48 or 72 KB)

BHT-6500

BHT-7500

User area
(2156 KB)

System work area
(512 KB)

System program area
(1536 KB)

Font area
 JIS Level 1 font, 16-dot (120 KB)
 JIS Level 2 font, 16-dot (112 KB)
 JIS Level 1 font, 12-dot (88 KB)
 JIS Level 2 font, 12-dot (84 KB)

BHT-7000

This area may be used
as a user area if you
delete these fonts.

User area
(6060 KB)

System work area
(512 or 1024 KB)

System program area
(1728 KB)

Font area
 JIS Level 1 font, 16-dot (120 KB)
 JIS Level 2 font, 16-dot (112 KB)
 JIS Level 1 font, 12-dot (88 KB)
 JIS Level 2 font, 12-dot (84 KB)

This area may be used
as a user area if you
delete these fonts.
516

Appendices
The size and area allocation of the memory incorporated in the BHT differ depending upon the
models as listed below.

*1The cluster size is 8 KB.
*2468 KB in System version 2.00 or newer
*3Plus a maximum of 404 KB if you delete fonts
*4Plus a maximum of 256 KB if you delete fonts

■ Memory Management

The BHT manages the user area of the memory for user programs and data files by a unit
of segment called "cluster." The cluster size is usually 4 kilobytes. In some models or
drives, the cluster size is 8 kilobytes as listed above.

The maximum allowable size for a single user program is 64 kilobytes excluding register
variables.

■ Battery Backup of Memory

The BHT-3000 backs up user programs and data files stored in the memory with alkaline
manganese batteries. The BHT-4000 backs up them with a rechargeable battery cartridge.
The BHT-5000/BHT-7000/BHT-7500 backs up them with a rechargeable battery cartridge
or dry battery cartridge. The BHT-6000/BHT-6500 backs up them with dry batteries or
rechargeable battery cartridge. Therefore, those data will not be lost if the BHT power is
turned off.

BHT series Models User area User area in drive B (B:)

BHT-3000 BHT-3041
BHT-3045

104
488

BHT-4000 BHT-4082
BHT-4086
BHT-4089

100
612

1872 *1

BHT-5000 BHT-5071
BHT-5075
BHT-5077
BHT-5079

92
464
964

1976 *1

124 *4

124 *4

124 *4

124 *4

BHT-6000 BHT-6045
BHT-6047
BHT-6049

464 *2

464 *2

464 *2

64 *4

568 *4

1584 *1*4

BHT-6500 BHT-6505
BHT-6509

464
1976 *1

60 *4

60 *4

BHT-7000 BHT-7064 2156 *3

BHT-7500 BHT-7508 6060 *3
517

■ Memory Space Available for Variables

Listed below are the maximum memory spaces available for work, common, and register
variables.

* 32 KB in the BHT-7000/BHT-7500

Each variable occupies the memory space as listed below.

An array variable occupies the memory space by (number of bytes per array element x
number of array elements).

Variables Max. memory space

Work and common variable area 6 KB*

Register variable area 64 KB

Variables Max. memory space

An integer variable 2 bytes

A real variable 6 bytes

A string variable 2 to 256 bytes
(Including a single character count byte)
518

Appendices
Appendix G
Handling Space Characters

in Downloading
■ Space characters used as padding characters

A data file can be downloaded with System Mode or an XFILE statement according to the
communications protocol which is designed to eliminate space characters padded in the tail of
each data field. That is, such space characters in a data file will not be handled as data in the
BHT-3000/BHT-4000 since the BHT-3000/BHT-4000 has no feature for regenerating those
eliminated ones automatically.

The BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 has a new feature which can handle
space characters placed in the tail of a data field as data.

The figure below shows the process in which the space characters used as padding characters
are eliminated. (Note that space characters between a and b and between b and c in field 3
are not padding characters.)

1

4 1 2 3 4 4 A B C D

1 2 3 4 A B C D

5 a b c

2 3 4 A B C D a b c

a b c

Host computer

BHT

Field 1

Field 1 Field 2 Field 3

Field 2 Field 3

(denotes a space character.)

Downloading a data file

is the count byte of a
significant data length
in a field.
519

■ To handle space characters as data

To handle space characters in the tail of a data field as data (not as padding characters), you
must take special considerations in programming.

If you want to search for a field data containing space characters in its tail by using a SEARCH
function, for instance, use any of the following methods:

[Example 1] After downloading a data file, fill the unused spaces in each field with space
characters and then search for the target field data.

[Example 2] Before downloading a data file, substitute any of the characters which will not
be used as effective data, e.g., an asterisk (*), for the space characters in the
host computer.

A B C Send data

A B C Receive data

A B C Filling with space characters

A B C Search data to be specified

(denotes a space character.)

A B C * *

* *

* *

Send data

A B C Receive data

A B C Data to be searched

A B C Search data to be specified

(denotes a space character.)
520

Appendices
[Example 3] When specifying a field data to be searched, do not include space characters
in the tail of the data field.

A B C Send data

A B C Receive data

A B C Data to be searched

A B C Search data to be specified

(denotes a space character.)
521

■ To make the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500 handle space
characters as data

You can specify the handling of space characters in the tail of a data field with System Mode or
an XFILE statement.

System Mode: To handle space characters as data, select "Data" on the field space
setting screen on the communications parameter setting menu called
up from the SET SYSTEM menu.

XFILE statement: To handle space characters as data, specify T to "protocolspec"
in the XFILE statement.

XFILE "d2.dat","T"

The figure below shows the process in which the space characters in the tail of a data field are
handled as data in the BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500.

1

4 1 2 3 4 6 A B C D

1 2 3 4 A B C D

8 a b c

2 3 4 A B C D a b c

a b c

Host computer

BHT-5000

Field 1

Field 1 Field 2 Field 3

Field 2 Field 3

(denotes a space character.)

Downloading a data file

is the count byte of a significant
data length in a field.
522

Appendices
Appendix H
Programming Notes

[1] Flash ROM

■ BHT-5000/BHT-6000/BHT-6500

You can store user program files and data files in the flash ROM as well as in the RAM.
The following tips help you use the flash ROM correctly.

(1) Memory areas required for user programs

If you store a user program into the flash ROM, the area for its register variables is also
reserved in the flash ROM. When starting the user program for the first time, the Inter-
preter copies the register variables stored in the flash ROM into the RAM (so that both the
flash ROM and RAM store the register variables). The user program uses the register vari-
ables stored in the RAM.

That is, a user program even stored in the flash ROM requires the RAM area for storing its
register variables. If the RAM has no sufficient area for storing the register variables, a run-
time error will occur.

When uploading a program file stored in the flash ROM, the BHT-5000/BHT-6000/BHT-
6500 combines the program (except for the register variables in the flash ROM) with the
register variables stored in the RAM.

(2) Retained contents of the flash ROM

Files stored in the RAM are backed up by the built-in rechargeable lithium battery. It means
that those files may be damaged if the BHT-5000/BHT-6000/BHT-6500 is left unused for a
long time so that the battery voltage drops below the specified level.

Unlike files stored in the RAM, files stored in the flash ROM are retained independently of
the voltage level of the lithium battery. Once data is written onto the flash ROM, it will be
retained until you delete it.
523

[2] BHT-2000 compatible mode

■ BHT-5000

You can run user programs written for the BHT-2000 on the BHT-5000 without any program
modification if you select the BHT-2000 compatible mode on the OTHERS menu of the
SET SYSTEM menu in System Mode.

When those user program are running, they appear only in the middle section of the LCD
as shown below. This is because the BHT-5000 is larger than the BHT-2000 in the num-
bers of columns and lines.

The following items are not compatible in the BHT-2000 compatible mode:

(1) Frequencies of the beeper when 0, 1, or 2 is set to the frequency option in the BEEP
statement

(2) Auto-repeat of keys

BHT-2000 BHT-2000 compatible mode

Frequency 0
1
2

1046 Hz
2092 Hz
3922 Hz

1015 Hz
2142 Hz
4200 Hz

Keys Auto-repeat Not auto-repeat

NOTE Some user programs written for the BHT-2000 may not work correctly in the
BHT-2000 compatible mode.

Before the practical use of user programs written for the BHT-2000 in this mode,
check the program operation sufficiently.

128

16

16

32

16

96 16 64

(Unit: dots)
524

Appendices
[3] Program file named APLINT.PD3

■ BHT-5000/BHT-6000/BHT-6500/BHT-7000/BHT-7500

If a program file named APLINT.PD3 is stored in the BHT-5000/BHT-6000/BHT-6500/BHT-
7000/BHT-7500, the System Mode initiation sequence (by pressing the PW key with the SF
and 1 keys held down) will not start System Mode but execute that user program.

Making a program file named APLINT.PD3 allows you to:

- enter an ID number at the start of System Mode and

- set the condensed System Mode which is used for maintenance of user programs.

To terminate the APLINT.PD3 file, you use the END or POWER OFF statement. When ter-
minating the file with the END statement, you may start System Mode by setting the port
6000h as listed below.

Port No. Bit assignment Controls the following:

6000h 0 0: Does not start System Mode (default)
1: Starts System Mode
525

Appendix I
Program Samples

Writing the function for receiving both bar code entry and key entry

Feature: This function receives earlier one of either bar code entry or key entry. If bar
code reading is completed, the function returns the scanned bar code data; if
key entry comes first, the function inhibits bar code reading and echoes back
the key entry data, then returns the key entry data when the ENT key is
pressed.

If pressing the Backspace key or Clear key makes the input string empty,
then the function becomes ready to receive the subsequent bar code entry or
key entry.

Returned value: The function returns bar code data or key entry data which has come in until
the ENT key is pressed, as a string.

Arguments: f.no% Specifies the file number which opens the bar code device file.
(Invariant allowed)

bar$ Specifies bar code reading. (Invariant allowed)
Ex. "M:10-20"

max% Specifies the maximum length of a returned string

esc$ If a key(s) contained in this string is entered, the function returns
the key entry only.

Work: .kb$ and .rt$

If you use an invariant for f.no% or bar$, it is not necessary to pass the value as an argu-
ment.

The bar$ can pass a single type of bar code. If two or more types are required, directly
describe necessary invariants.

def fnbarkey$(f. no%, bar$, max%, esc$)
while 1

open "BAR:" as #f. no% code bar$
wait 0, 3 ’ Wait for completion of bar code reading or key press.
if loc(#f. no%) then

beep ’ Beep when bar code reading is completed.
fnbarkey$ = input$(max%, #f. no%)

’ For displaying:
’ rt$ = input$(max%, #f. no%) : print .rt$;
’ fnbarkey$ = .rt$

close #f. no%
exit def

else
close #f. no% ’ Receive only key entry.
.rt$ = ""
.kb$ = input$(1)
while .kb$<>""

if instr(esc$, .kb$) then ’ Key designated in esc$?
526

Appendices
fnbarkey$ = .kb$ ’ Then, return the character.
exit def

endif
select .kb$
case chr$(13)

fnbarkey$ = .rt$
exit def

case chr$(8) ’ BS key.
if len(.rt$) then

print chr$(8); ’ Erase one character.
.rt$ = left$(.rt$, len(.rt$)-1)

endif
case chr$(24) ’ Clear key.

while len(.rt$) ’ Erase all characters entered.
print chr$(8);
.rt$ = left$(.rt$, len(.rt$)-1)

wend
case else

if len(.rt$)<max% then
’ Check if only numeric data should be
’ received.

print .kb$; ’ Echo back.
.rt$ = .rt$ + .kb$

else
beep ’ Exceeded number of characters error.

endif
end select
if .rt$="" then ’ If input string is empty, go back to the

’ initial state.
.kb$ = ""

else
.kb$ = input$(1) ’ Subsequent key entry.

end if
wend

endif
wend

end def
527

Testing the written function

while 1 ’Infinite loop
a$ = fnbarkey$ (1, "A", 15, "DL") ’F4 and SFT/F4 as escape characters.
print
if a$<>"D" and a$<>"L" then

print "Data="; a$
else

print "ESC(";a$;") key push"
endif

wend
end
528

Appendices
Appendix J
Quick Reference

for Statements and Functions

Controlling program flow

Statements

CALL Calls an FN3 or SUB function.

CHAIN Transfers control to another program.

END Terminates program execution.

FOR…NEXT Defines a loop containing statements to be exe-
cuted a specified number of times.

GOSUB Branches to a subroutine.

GOTO Branches to a specified label.

IF…THEN…ELSE…END IF Conditionally executes specified statement blocks
depending upon the evaluation of a conditional
expression.

ON...GOSUB Branches to one of specified labels according to
the value of an expression.

ON...GOTO Branches to one of specified labels according to
the value of an expression.

RETURN Returns control from a subroutine or an event-han-
dling routine (for keystroke interrupt).

SELECT...CASE...END SELECT Conditionally executes one of statement blocks
depending upon the value of an expression.

WHILE...WEND Continues to execute a statement block as long as
the conditional expression is true.
529

Handling errors

Statements

ON ERROR GOTO Enables error trapping.

RESUME Causes program execution to resume at a speci-
fied location after control is transferred to an error-
handling routine.

Functions

ERL Returns the current statement location of the pro-
gram where a run-time error occurred.

ERR Returns the error code of the most recent run-time
error.

Defining and allocating variables

Statements

COMMON Declares common variables for sharing between
user programs.

CONST Defines symbolic constants to be replaced with
labels.

DATA Stores numeric and string literals for READ state-
ments.

DECLARE Declares user-created function FUNCTION or SUB
externally defined.

DEFREG Defines register variables.

DIM Declares and dimensions arrays; also declares the
string length for a string variable.

ERASE Erases array variables.

GLOBAL Declares one or more work variables or register
variables defined in a file, to be global.

LET Assigns a value to a given variable.

PRIVATE Declares one or more work variables or register
variables defined in a file, to be private.

READ Reads data defined by DATA statement(s) and
assigns them to variables.

RESTORE Specifies a DATA statement location where the
READ statement should start reading data.
530

Appendices
Controlling the LCD screen

Statements

APLOAD Loads a user-defined font in the single-byte ANK
mode.

CLS Clears the LCD screen.

CURSOR Turns the cursor on or off.

KEY Assigns a string or a control code to a function key;
also defines a function key as the LCD backlight
function on/off key. This statement also defines a
magic key as the trigger switch, shift key, or battery
voltage display key.

KPLOAD Loads a user-defined Kanji font in the two-byte
Kanji mode. This statement also loads a user-
defined cursor for the BHT-7000/BHT-7500.

LOCATE Moves the cursor to a specified position and
changes the cursor shape.

PRINT Displays data on the LCD screen.

PRINT USING Displays data on the LCD screen under formatting
control.

SCREEN Sets the screen mode and the character attribute.

Functions

COUNTRY$ Sets a national character set or returns a current
country code.

CSRLIN Returns the current row number of the cursor.

POS Returns the current column number of the cursor.
531

Controlling the keyboard input

Statements

INPUT Reads input from the keyboard into a variable.

KEY Assigns a string or a control code to a function key;
also defines a function key as the LCD backlight
function on/off key. This statement also defines a
magic key as the trigger switch, shift key, or battery
voltage display key.

KEY ON Enables keystroke trapping for a specified function
key.

KEY OFF Disables keystroke trapping for a specified function
key.

LINE INPUT Reads input from the keyboard into a string vari-
able.

ON KEY...GOSUB Specifies an event-handling routine for keystroke
interrupt.

Functions

INKEY$ Returns a character read from the keyboard.

INPUT$ Returns a specified number of characters read
from the keyboard or from a device file.

Beeping

Statements

BEEP Drives the beeper or vibrator. (The vibrator is pro-
vided in the BHT-6500/BHT-7000/BHT-7500.)

Manipulating the system date, the current time, or the timers

Functions

DATE$ Returns the current system date or sets a specified
system date.

TIME$ Returns the current system time or wakeup time, or
sets a specified system time or wakeup time.

TIMEA Returns the current value of timer A or sets timer A.

TIMEB Returns the current value of timer B or sets timer B.

TIMEC Returns the current value of timer C or sets timer C.
532

Appendices
Communicating with I/Os

Statements

OUT Sends a data byte to an output port.

POWER Controls the automatic power-off facility.

WAIT Pauses program execution until a designated input
port presents a given bit pattern.

Functions

FRE Returns the number of bytes available in a speci-
fied area of the memory.

INP Returns a byte read from a specified input port.

Communicating with the barcode device

Statements

CLOSE Closes file(s).

INPUT# Reads data from a device I/O file into specified
variables.

OPEN "BAR:" Opens the bar code device file. In the BHT-5000/
BHT-6000/BHT-6500/BHT-7000/BHT-7500, this
statement also activates or deactivates the reading
confirmation LED and the beeper (vibrator) individ-
ually. (Vibrator control valid only in the BHT-6500/
BHT-7000/BHT-7500)

Functions

CHKDGT$ Returns a check digit of bar code data.

EOF Tests whether the end of a device I/O file has been
reached.

INPUT$ Returns a specified number of characters read
from the keyboard or from a device file.

LOC Returns the current position within a specified file.

MARK$ Returns a bar code type and the number of digits of
the bar code.
533

Manipulating data files and user program files

Statements

CLFILE Erases the data stored in a data file.

CLOSE Closes file(s).

FIELD Allocates string variables as field variables.

GET Reads a record from a data file.

KILL Deletes a specified file from the memory.

OPEN Opens a file for I/O activities.

PUT Writes a record from a field variable to a data file.

Functions

LOC Returns the current position within a specified file.

LOF Returns the length of a specified file.

SEARCH Searches a specified data file for specified data,
and then returns the record number where the
search data is found.

Communicating with communications devices

Statements

CLOSE Closes file(s).

INPUT# Reads data from a device I/O file into specified
variables.

LINE INPUT# Reads data from a device I/O file into a string vari-
able.

OPEN "COM:" Opens a communications device file.

PRINT# Outputs data to a communications device file.

XFILE Transmits a designated file according to the speci-
fied communications protocol.
534

Appendices
Functions

BCC$ Returns a block check character (BCC) of a data
block.

EOF Tests whether the end of a device I/O file has been
reached.

ETX$ Modifies the value of a terminator (ETX) for the
BHT-protocol; also returns the current value of a
terminator.

INPUT$ Returns a specified number of characters read
from the keyboard or from a device file.

LOC Returns the current position within a specified file.

LOF Returns the length of a specified file.

SOH$ Modifies the value of a header (SOH) for the BHT-
protocol; also returns the current value of a header.

STX$ Modifies the value of a header (STX) for the BHT-
protocol; also returns the current value of a header.

Commenting a program

Statements

REM Declares the rest of a program line to be remarks
or comments.

Manipulating numeric data

Functions

ABS Returns the absolute value of a numeric expres-
sion.

INT Returns the largest whole number less than or
equal to the value of a given numeric expression.
535

Manipulating string data

Functions

ASC Returns the ASCII code value of a given character.

CHR$ Returns the character corresponding to a given
ASCII code.

HEX$ Converts a decimal number into the equivalent
hexadecimal string.

INSTR Searches a specified target string for a specified
search string, and then returns the position where
the search string is found.

LEFT$ Returns the specified number of leftmost charac-
ters from a given string expression.

LEN Returns the length (number of bytes) of a given
string.

MID$ Returns a portion of a given string expression from
anywhere in the string.

RIGHT$ Returns the specified number of rightmost charac-
ters from a given string expression.

STR$ Converts a numeric expression into a string.

VAL Converts a string into a numeric value.

Defining user-created functions

Statements

DEF FN Names and defines a user-created function.

DEF FN...END DEF Names and defines a user-created function.

FUNCTION...END FUNCTION Names and defines user-created function FUNC-
TION.

SUB...END SUB Names and defines user-created function SUB.

Specifying included files

Statements

$INCLUDE Specifies an included file.

REM $INCLUDE Specifies an included file.
536

Appendices
Appendix K
Unsupported Statements and Functions

BHT-BASIC does not support the following MS-BASIC statements and functions:

- For handling sequential data files

CVD MKD$ PRINT# USING
CVI MKI$ RSET
CVS MKS$ WRITE#
LSET PRINT#

- For RS-232C interface operation

PRINT# USING
WRITE#

- For interrupt handling

COM OFF ON STOP GOSUB
COM ON STOP OFF
COM STOP STOP ON
ON STCOM GOSUB

- For graphics and color control

CIRCLE DRAW WIDTH
COLOR LINE WINDOW
CONSOLE POINT
CSRLIN PSET

- For I/O control

DEFUSR POKE
PEEK VARPTR

- For mathematical functions and trigonometric functions

ATN LOG SQR
COS SCNG TAN
EXP SIN
537

- For others

CDBL FIX SGN
CINT IF GOTO STRING$
CLEAR LPOS SWAP
COPY OCT$ TAB
DEF DBL OPTION BASE WRITE
DEF SNG RANDOMIZE
DEFINT RND
538

Index

Symbols

_ (underline, underscore) 18, 36, 61,
62, 64, 79, 273, 299, 300, 301,
302, 458, 460

’ (single quotation, single quote,
apostrophe) 19, 60, 63, 313, 335

$INCLUDE 57, 313, 335, 477, 536

, (comma) 18, 36, 61, 64, 69, 70, 128,
214, 215, 239, 241, 260, 261,
262, 297, 298, 299, 300, 301,
302, 305

12-dot font 100, 104

16-dot font 100, 104

A

ACK 170, 171, 347

address-source list 33, 35, 36, 40, 43,
46, 356

alternate switching mode 144, 163,
276, 277, 278

AND iv, 61, 75, 76, 79, 83, 84, 132, 144,
326, 477

APLOAD 110, 113, 119, 180, 181, 183,
184, 192, 193, 201, 257, 477,
478, 481, 482, 531

application program i, ii, iii, vi, 4, 6, 7, 8,
9, 165, 219, 388, 406, 417, 426,
436, 439, 504

arithmetic operation 78, 79

arithmetic operator 75, 76, 78, 79, 81,
82

array integer type, array integer vari-
able 37, 72, 180, 181, 182, 198,
253, 254, 255

array real type, array real variable 37,

72, 198

array register variable 214

array string type, array string variable,
arraystringvariable 19,
37, 71, 183, 198, 213, 214, 218,
220, 256, 306

ASCII code 284, 340, 347, 403, 478,
536

auto-off mode 144, 163, 276, 277, 278

auto-repeat 130, 524

B

backlight ii, iii, 121, 163, 168, 176, 177,
178, 246, 247, 389, 490, 491,
495, 496, 501, 503

backlight function on/off key 121, 177,
244, 246, 247, 249, 531, 532

backlightkeynumber 244, 245, 246, 248

bar code device file 145, 163, 242, 263,
273, 274, 275, 276, 277, 278,
286, 289, 292, 363, 370, 372,
398, 466, 484, 486, 490, 496,
502, 526, 533

bar code device, barcode device 132,
133, 135, 142, 143, 354, 533

BCC vii, 330, 331, 341, 477, 535

BEEP 131, 156, 185, 187, 477, 524, 532

beeper ii, 131, 140, 145, 163, 167, 168,
185, 186, 187, 219, 275, 276,
278, 284, 492, 495, 497, 499,
500, 502, 503, 524, 532, 533

BHT-2000 compatible mode 524

BHT-BASIC i, ii, iii, iv, v, vii, 6, 7, 8, 9,
10, 11, 16, 17, 18, 19, 20, 56, 60,
71, 73, 75, 78, 79, 80, 85, 131,
135, 150, 151, 155, 238, 328,
333, 347, 375, 388, 399, 406,
539

412, 425, 427, 477, 483, 484,
485, 486, 488, 490, 492, 493,
495, 496, 498, 499, 501, 502,
537

BHT-BASIC 3.0 9, 21, 22

BHT-BASIC Compiler vi, 9, 11, 15, 16,
18, 20, 21, 22, 32, 35, 36, 41, 42,
43, 44, 45, 47, 419

BHT-BASIC Extension Library 6, 189,
190

BHT-BASIC Interpreter vi, 3, 4, 6, 415

BHT-Ir protocol 137, 148, 149, 150,
152, 330, 332, 333, 391, 492,
494, 495, 497, 498, 500, 502,
503

BHT-protocol 137, 149, 150, 151, 152,
330, 332, 358, 380, 382, 488,
490, 491, 492, 495, 498, 502,
535

block check character vii, 331, 341, 535

block-format user-defined function 55

block-structured statement 19, 53, 54,
55, 204, 206, 207, 210, 211, 224,
226, 228, 234, 237, 269, 272,
321, 323, 324, 328

build 9, 11, 17, 20, 21, 22, 23, 26, 27,
29, 39, 40, 42

C

CALL 9, 188, 189, 190, 322, 323, 325,
388, 389, 391, 392, 393, 399,
400, 401, 402, 403, 404, 431,
432, 433, 434, 435, 439, 441,
442, 443, 444, 445, 446, 447,
448, 449, 450, 451, 454, 455,
456, 457, 460, 461, 462, 463,
465, 477, 529

CHAIN 56, 174, 180, 181, 192, 198,
199, 254, 350, 477, 529

chain, chaining, chained ii, 56, 73, 174,
180, 181, 192, 198, 254, 350

character attribute, charaattribute
197, 201, 318, 319, 531

character code 86, 120, 152, 180, 181,
245, 253, 340, 341, 347, 361

check digit 7, 142, 143, 144, 276, 280,
281, 282, 283, 285, 343, 533

CLFILE 64, 139, 141, 194, 195, 222,
252, 477, 534

CLOSE 135, 139, 141, 195, 196, 222,
243, 252, 264, 274, 334, 398,
412, 477, 533, 534

close 8, 20, 135, 139, 141, 192, 196,
219, 251, 276, 277, 278, 295,
333, 396, 398, 402, 412, 415,
416, 417, 418, 427, 429, 436,
443, 448, 451, 452, 454, 456,
459, 461, 467, 474, 483, 484,
485, 486, 488, 489, 490, 492,
493, 496, 498, 499, 502, 526,
533, 534

CLS 19, 112, 113, 117, 118, 197, 297,
298, 383, 477, 531

cluster 359, 391, 517

code mark 143, 373

comment 19, 59, 60, 63, 313, 335, 535

COMMON 56, 60, 71, 73, 181, 182, 184,
189, 192, 193, 198, 199, 220,
254, 255, 257, 337, 477, 530

common variable 33, 37, 38, 39, 43, 56,
73, 198, 220, 221, 337, 470, 472,
474, 475, 518, 530

communications device iii, 135, 146,
396, 398, 401, 402, 403, 407,
409, 410, 412, 415, 416, 448,
534

communications device file 163, 242,
263, 273, 274, 276, 286, 287,
288, 289, 291, 292, 295, 300,
301, 333, 347, 354, 363, 370,
372, 398, 402, 403, 449, 466,
467, 483, 485, 486, 489, 534

communications parameter 49, 50,
147, 148, 522
540

communications protocol 149, 330,
334, 391, 417, 488, 489, 490,
491, 492, 493, 495, 497, 498,
500, 502, 503, 519, 534

compilation error 57, 335, 468

compiler vi, 8, 9, 11, 15, 16, 17, 18, 20,
21, 22, 32, 34, 35, 36, 38, 40, 41,
42, 43, 44, 45, 47, 57, 62, 158,
192, 214, 218, 419

compiling option 33

concatenate ii, 78, 85

condensed two-byte Kanji mode 88, 89,
91, 93, 94, 96, 97, 108, 110, 113,
197, 201, 240, 254, 261, 266,
297, 318, 319, 351, 376, 480

CONST 9, 200, 473, 530

constant ii, 9, 10, 63, 69, 70, 78, 188,
200, 202, 203, 204, 205, 207,
211, 215, 217, 218, 225, 227,
232, 233, 239, 241, 471, 530

continuous reading mode 144, 163,
276, 278

control code 62, 63, 69, 120, 121, 244,
245, 298, 301, 347, 363, 531,
532

count 73, 187, 385

counter 295, 296

countrycode, country code 349, 350,
479, 531

CRC-16 341

cross reference 8, 33, 35, 38, 43, 46,
57, 335, 468, 469

CU vi, vii, 14, 152, 170, 173, 498, 500,
501, 504

CURSOR iv, 201, 240, 261, 361, 364,
477, 531

cursor 89, 110, 111, 117, 119, 123,
180, 181, 182, 183, 197, 201,
240, 253, 254, 255, 256, 261,
265, 266, 267, 297, 298, 299,
305, 331, 351, 361, 376, 531

cursor shape 110, 119, 201, 239, 261,
265, 266, 363, 531

cursorswitch 181, 254, 265, 266

D

DATA 60, 131, 189, 202, 311, 312, 314,
389, 390, 391, 392, 400, 401,
402, 403, 450, 451, 458, 465,
473, 477, 530

data file ii, 48, 67, 135, 136, 137, 138,
139, 140, 149, 150, 151, 152,
153, 163, 194, 196, 221, 222,
230, 231, 251, 273, 274, 276,
309, 310, 330, 332, 333, 334,
354, 355, 358, 359, 364, 370,
372, 378, 379, 380, 381, 382,
419, 422, 457, 458, 460, 466,
517, 519, 520, 523, 534, 537

debug information 17, 33, 34, 43, 45,
468

declarative statement 60, 198, 200,
202, 203, 213, 232, 306, 313

DECLARE 9, 10, 54, 190, 191, 203,
204, 227, 229, 324, 325, 530

DEF FN 53, 54, 63, 66, 74, 85, 205, 206,
207, 208, 209, 210, 211, 212,
236, 465, 472, 536

DEF FN...END DEF 53, 54, 85, 204, 206,
209, 210, 211, 224, 226, 234,
237, 238, 269, 272, 321, 323,
328, 472, 536

defragmentation 140, 502, 504

DEFREG 19, 60, 71, 73, 181, 182, 184,
189, 213, 214, 215, 216, 218,
220, 233, 254, 255, 257, 306,
307, 308, 337, 477, 530

delimiter 60, 108, 419, 421, 422, 424,
426, 457, 458, 460, 461

device I/O file 135, 196, 242, 243, 263,
264, 354, 533, 534, 535

DIM 19, 71, 73, 181, 182, 184, 189,
216, 217, 218, 220, 233, 254,
541

255, 257, 307, 308, 473, 477,
530

direct-connect interface 14, 146, 147,
148, 276, 287, 288, 289, 290,
291, 292, 390, 483, 485, 486,
489, 493, 499

directory, directories 30, 41, 45, 46, 47,
137, 139, 194, 251, 419, 427,
452, 453, 454, 456, 457, 460,
462

display font size 97, 101, 105, 201, 240,
261, 298, 492, 495, 498, 502

double-touch reading 142

double-width 88, 89, 100, 101, 102,
103, 104, 105, 106, 107, 108,
110, 113, 119, 261, 267, 318,
376

drivers 3, 4, 6

dummy argument 37, 38, 74

dummy character 344, 345, 346

dummy parameter 190, 212, 228

dummy parameter, dummyparameter
190, 207, 212, 228, 322, 323,
325, 376

E

Easy Pack vi, 6, 49, 136, 149, 150, 165

END 51, 159, 160, 165, 174, 196, 219,
234, 320, 321, 322, 323, 324,
325, 465, 473, 477, 501, 525,
529

ENQ 332, 347

environmental variable 44

ER 147, 287, 288, 291, 485, 486

ERASE 73, 181, 218, 220, 254, 477, 530

error trapping 81, 155, 158, 268, 530

error-/event-handling routine 53, 55,
155, 160, 204, 206, 210, 226,
249, 271, 272, 317, 323, 529,
532

error-handling routine 53, 155, 158,
159, 268, 315, 316, 323, 357,
465, 530

ERRORLEVEL 32, 44

event polling ii, 154, 155, 156, 157

event trapping ii, 155, 160

event-handling routine 161

executable statement 313, 320

execution program 51, 56, 219, 392,
504

expression, generalexpression ii,
63, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 86, 205, 206, 207, 209,
211, 225, 227, 237, 258, 259,
269, 270, 302, 303, 304, 305,
320, 321, 328, 376, 465, 468,
470, 471, 529

extended function iii, 5, 6, 189, 190,
387, 388

extension library, extension libraries 4,
5, 6, 188, 189, 190, 407, 408,
410, 411, 412, 419, 421, 426,
457

extension program 6, 48, 190

F

FIELD 61, 64, 137, 138, 139, 195, 221,
222, 230, 231, 309, 310, 334,
371, 378, 379, 466, 477, 534

field 137, 139, 221, 242, 304, 330, 331,
333, 378, 390, 422, 427, 458,
459, 519, 520, 521, 522

field length, field width, fieldwidth
137, 139, 149, 221, 222, 309,
422, 427, 452, 458, 466

field variable, fieldvariable 221,
230, 309, 378, 534

file number, filenumber 64, 75, 76,
135, 194, 196, 221, 222, 230,
231, 242, 243, 263, 264, 273,
274, 275, 286, 287, 288, 292,
542

300, 301, 309, 310, 354, 355,
363, 364, 370, 371, 372, 378,
379, 398, 409, 412, 465, 466,
526

file type 34, 135, 194, 222, 231, 243,
264, 274, 301, 310, 334, 354,
355, 364, 370, 372, 379, 459,
465, 466

flash ROM vi, 4, 5, 50, 73, 141, 466,
480, 481, 482, 523

font size 88, 89, 97, 100, 101, 104, 105,
201, 240, 255, 261, 298, 393,
480, 492, 495, 498, 502

FOR...NEXT 53, 54, 55, 204, 206, 210,
223, 224, 226, 328, 472

frequency 4, 131, 185, 186, 378, 524

FTP client iii, 388, 406, 419, 420, 421,
422, 423, 424, 425, 426, 427,
452, 455, 456, 457, 459, 460,
461, 462, 463, 467

FTP library 397, 452

FTP server 388, 406, 419, 427, 452,
453, 455, 456, 457, 460, 461,
462, 463, 467

function operation 79

function operator 78, 85

FUNCTION...END FUNCTION 53, 54, 85,
204, 206, 210, 224, 226, 227,
328

G

generative polynomial 341

GET 140, 141, 222, 230, 231, 310, 370,
371, 372, 379, 466, 477, 534

GLOBAL 9, 10, 226, 232, 233, 307,
308, 323, 473, 530

global variable 9, 10, 36, 190, 206, 210,
211, 227, 323

GOSUB iv, 53, 54, 156, 160, 234, 235,
269, 270, 271, 272, 313, 317,
465, 477, 529

GOTO 19, 53, 55, 59, 124, 156, 234,
236, 269, 270, 313, 477, 529

H

header 35, 36, 149, 150, 151, 152, 279,
331, 334, 380, 382, 466, 535

heading text 380

highlighting characters 119

I

I/O ports iii, 116, 118, 140, 173, 175,
186, 278, 293, 483

icon v, 20, 116, 126, 130

identifier 66, 67, 71, 72, 200, 428, 429,
431, 432, 433, 435, 436, 439,
440, 441, 442, 443, 444, 445,
446, 447, 448, 451, 467

IF...THEN...ELSE...END IF 53, 204,
206, 210, 224, 226, 328

illumination LED ii, 163, 168, 275, 276,
277, 278

include file 336, 469

indicator LED 276, 284, 500

INPUT v, 64, 124, 161, 201, 239, 240,
245, 250, 260, 262, 264, 364,
372, 473, 477

INPUT # 140, 143, 242, 243, 263, 264,
355, 533, 534

input port 117, 118, 290, 326, 362, 483,
484, 485, 486, 488, 489, 492,
493, 498, 500, 503, 533

integer constant, integerconstant
69, 188, 203, 204, 205, 207, 211,
213, 214, 215, 217, 218, 225,
227, 232, 233, 273, 274, 307,
324, 471

interpreter vi, 3, 4, 6, 8, 11, 17, 39, 40,
51, 56, 60, 73, 74, 75, 76, 137,
138, 144, 155, 158, 181, 223,
234, 249, 254, 268, 272, 280,
543

281, 282, 285, 293, 359, 385,
415, 480, 481, 482, 523

interrupt 53, 155, 158, 160, 161, 163,
174, 175, 271, 317, 415, 416,
484, 486, 491, 496, 502, 529,
532, 537

IR interface port 14

Ir-Transfer Utility C vii, 15, 16, 17, 48,
152

K

KEY 120, 121, 123, 124, 144, 160, 161,
177, 178, 192, 244, 245, 246,
247, 248, 249, 250, 272, 477,
491, 496, 503, 531, 532

KEY OFF 121, 248, 249, 250, 272, 361,
532

KEY ON 121, 160, 161, 248, 249, 250,
271, 272, 361, 532

keyboard buffer 132, 133, 245, 483,
485, 488, 492, 498

keystroke trapping, event (of keystroke)
trapping ii, 53, 121, 124, 155,
160, 161, 249, 250, 271, 272,
361, 363, 532

KILL 139, 141, 251, 252, 477, 534

KPLOAD 99, 110, 113, 119, 184, 192,
193, 201, 253, 254, 257, 477,
480, 481, 482, 531

L

label ii, iv, 8, 9, 18, 34, 37, 38, 45, 59,
65, 66, 67, 124, 158, 159, 160,
200, 234, 236, 268, 269, 270,
271, 272, 313, 314, 315, 317,
337, 356, 389, 468, 470, 472,
473, 477, 529, 530

LET 258, 477, 530

LINE INPUT 161, 201, 241, 245, 250,
260, 261, 262, 364, 372, 532

LINE INPUT # 140, 143, 156, 243, 263,
264, 355, 534

local variable 9, 10, 36, 206, 210, 226,
323

LOCATE 89, 90, 91, 94, 97, 101, 105,
110, 112, 113, 117, 119, 181,
201, 239, 241, 254, 261, 262,
265, 266, 267, 297, 299, 334,
351, 361, 363, 364, 376, 477,
531

logical operation 76, 83

logical operator 78, 83

LSB 115, 184, 483, 484, 485, 486, 488,
490, 493, 496, 499, 502

M

M1 key 121, 246, 247, 389

M2 key 121, 122, 144, 247, 389

magic key 121, 128, 129, 132, 133,
144, 244, 247, 275, 276, 277,
278, 488, 492, 493, 498, 499,
531, 532

main routine 53, 54, 55, 158, 159, 160

mantissa 70

mapfile 34, 39, 40, 43, 46

master station 151

maximum length of a record 137

maximum number of registrable
records 137, 138, 274, 309

memory area iii, 8, 74, 137, 138, 194,
214, 359, 515, 523

memory space 72, 136, 191, 192, 193,
199, 208, 212, 218, 224, 228,
233, 235, 270, 272, 274, 308,
310, 325, 334, 459, 465, 518

MOD-10 280, 285, 343

MOD-16 281, 343

MOD-43 282, 343

modulo arithmetic 79, 81, 343
544

momentary switching mode 144, 163,
276, 278

MSB 115, 184, 483, 484, 485, 486, 488,
490, 493, 496, 499, 502

multilink protocol, Multilink Protocol
System 149, 151, 153, 330, 333,
488, 489, 490, 491

Multilink Transfer Utility vii, 151, 153,
491

multiple code reading 143

multi-statement 60

N

national character 119, 349, 350, 478,
479, 531

non-array integer type, non-array inte-
ger variable 37, 72, 198, 203,
205, 225, 322

non-array real type, non-array real vari-
able 37, 72, 198, 203, 205, 225,
322

non-array register variable 73

non-array string type, non-array string
variable, non-arraystring-
variable 19, 37, 71, 72, 198,
203, 205, 213, 214, 218, 220,
221, 225, 306, 322, 378

normal display 318, 319

NOT 75, 76, 79, 83, 156, 477

null character, null character string 73,
120

number of written records 137, 139,
230, 372

numeric constant, numericconstant
69, 213, 214, 306

numeric expression 78, 139, 180, 185,
188, 194, 196, 217, 221, 223,
230, 232, 237, 242, 244, 245,
248, 249, 253, 263, 265, 269,
271, 273, 275, 288, 293, 295,
300, 307, 309, 318, 326, 339,

341, 347, 354, 359, 360, 362,
363, 365, 367, 368, 370, 372,
374, 377, 378, 381, 385, 535,
536

O

object program vi, 6, 8, 9, 16, 17, 21,
34, 36, 45, 56, 192

offduration 185, 186

ON ERROR GOTO 65, 159, 192, 268, 316,
356, 357, 415, 530

ON KEY...GOSUB 65, 121, 160, 248, 249,
250, 271, 272, 317, 532

ON...GOSUB, ON...GOTO 238, 269, 529

onduration iv, 185, 186, 244, 245,
246

OPEN 64, 67, 135, 138, 139, 141, 195,
196, 221, 222, 230, 231, 273,
274, 277, 278, 284, 287, 289,
291, 301, 309, 310, 334, 371,
372, 379, 397, 466, 477, 534

open 20, 22, 24, 25, 27, 32, 44, 135,
140, 141, 142, 252, 273, 274,
275, 276, 286, 287, 288, 289,
291, 292, 334, 396, 398, 402,
403, 409, 415, 416, 427, 449,
452, 453, 454, 455, 459, 461,
466, 467, 474, 476, 526, 533,
534

OPEN "BAR" 133, 142, 143, 144, 145,
156, 163, 242, 243, 263, 264,
274, 275, 276, 278, 279, 280,
281, 282, 283, 285, 346, 355,
364, 490, 496, 502, 533

OPEN "COM" 147, 163, 243, 264, 274,
287, 288, 291, 333, 334, 355,
358, 364, 372, 380, 382, 397,
398, 401, 402, 403, 404, 409,
416, 483, 489, 493, 499, 534

optical interface 147, 276, 286, 287,
288, 289, 290, 291, 292, 390,
398, 403, 483, 485, 488, 490,
497
545

optimizing drive 427

OR 19, 61, 75, 76, 79, 83, 84, 477

OUT 89, 112, 113, 114, 115, 116, 117,
118, 122, 124, 130, 132, 140,
145, 150, 151, 163, 173, 178,
186, 278, 291, 293, 294, 327,
362, 384, 425, 427, 477, 484,
486, 487, 490, 491, 495, 496,
497, 501, 502, 503, 504, 533

output port 145, 293, 484, 486, 487,
490, 491, 495, 496, 501, 503,
533

P

parity 147, 148, 287, 288, 289, 290,
330, 331, 334, 390

port number, port No., portnumber
114, 133, 150, 151, 173, 175,
293, 294, 326, 327, 362, 435,
439, 443, 444, 452, 463, 483,
484, 485, 486, 487, 488, 489,
490, 491, 492, 493, 495, 496,
498, 500, 501, 503, 525

POWER 51, 165, 174, 295, 296, 477,
501, 525, 533

primary station 149, 150, 151

PRINT iv, 18, 54, 60, 61, 62, 74, 85, 86,
112, 113, 131, 156, 159, 180,
184, 208, 212, 229, 238, 253,
257, 297, 298, 299, 305, 311,
312, 321, 325, 334, 344, 345,
346, 347, 348, 367, 369, 374,
381, 383, 386, 477, 531

PRINT USING 18, 61, 63, 64, 299, 302,
303, 304, 305, 531, 537

PRINT# 18, 61, 140, 300, 301, 347,
477, 534, 537

PRIVATE 10, 226, 233, 306, 307, 323,
473, 530

program file 21, 30, 35, 47, 73, 135,
152, 153, 194, 204, 214, 251,
334, 359, 419, 420, 421, 426,

458, 459, 460, 466, 523, 534

program file name, programfilena-
me 46, 192, 193, 525

protocol function 149, 150, 151, 152,
358, 380, 382

PUT 137, 138, 140, 141, 222, 231, 274,
309, 310, 371, 379, 466, 477,
534

R

RAM area 523

READ iv, 131, 202, 311, 312, 314, 465,
477, 530

real argument, realparameter 74,
188, 190, 205, 206, 207, 209,
211, 212, 225, 226, 227, 228,
322, 323, 325

real constant 69, 70

receive buffer 132, 133, 354, 370, 372,
428, 433, 435, 436, 437, 438,
439, 445, 483, 485, 488, 492,
498

record 47, 137, 138, 139, 175, 194,
221, 222, 230, 231, 274, 309,
334, 370, 372, 378, 419, 420,
421, 422, 423, 424, 427, 457,
458, 459, 461, 466, 473, 474,
499, 502, 534

register variable 9, 10, 33, 37, 38, 39,
40, 43, 63, 73, 163, 165, 213,
214, 215, 220, 221, 232, 306,
337, 470, 472, 475, 517, 518,
523, 530

relational operation 79

relational operator 63, 78, 82, 83, 86

REM 19, 57, 60, 202, 313, 335, 477,
535, 536

remote wakeup ii, 170, 171, 172, 173,
174, 175, 499, 501, 502, 504

re-read prevention, re-read prevention
enabled time 485, 486, 487, 488,
546

489, 490, 491, 492, 493, 495,
496, 498, 499, 501, 503

reserved word iii, iv, 65, 66, 67, 313,
470, 477

RESTORE 202, 312, 314, 473, 477, 530

RESUME 53, 65, 158, 159, 268, 315,
316, 356, 357, 415, 416, 465,
477, 530

resume function ii, 51, 164, 165, 174,
296, 391, 415

RETURN 53, 54, 156, 160, 161, 234,
235, 272, 317, 465, 477, 529

roaming 396, 410

ROM system 3, 6

RS 147, 287, 288, 291, 486, 490

RS/CS 147, 287, 288, 290, 291, 483,
489, 493, 499

RS-232C vii, 14, 147, 537

S

SCREEN 89, 112, 113, 119, 184, 257,
297, 299, 318, 319, 348, 351,
376, 477, 531

screen mode 88, 89, 90, 91, 94, 97,
100, 101, 104, 105, 110, 116,
119, 181, 183, 197, 201, 240,
261, 297, 318, 319, 351, 376,
480, 531

secondary station 149, 150, 151

SELECT...CASE...END SELECT 53, 54,
204, 206, 210, 224, 226, 234,
237, 238, 269, 270, 272, 320,
321, 323, 328, 472, 529

shift JIS code 253, 348

single-byte ANK mode 89, 90, 91, 94,
97, 100, 101, 104, 105, 108, 110,
113, 116, 119, 180, 181, 197,
201, 240, 261, 265, 267, 297,
318, 319, 480, 494, 497, 500,
503, 531

sizes of variables 33, 46

slave station 151

sleep timer 132, 163, 484, 486, 490,
491, 495, 496, 501, 502

small-size font, small-size 88, 89, 97,
98, 99, 100, 101, 103, 104, 105,
107, 108, 109, 110, 111, 112,
113, 181, 182, 183, 201, 240,
254, 255, 256, 261, 265, 266,
319, 351, 376, 480, 481, 482,
492, 494, 497, 498, 500, 502,
503

socket API 413, 417, 429, 430, 431,
432, 433, 434, 435, 439, 441,
442, 443, 444, 445, 446, 447,
448

socket application program interface iii,
388, 406, 417

socket library 397, 409, 428

source program vi, 8, 9, 11, 16, 17, 18,
21, 30, 34, 35, 36, 45, 46, 56, 57,
190, 198, 200, 202, 204, 206,
210, 214, 217, 219, 227, 234,
324, 335

special character 119, 283

spread spectrum iii, 388, 394, 395, 396,
397, 399, 406, 407, 412

standard-size font, standard-size 97,
98, 99, 100, 101, 102, 104, 105,
106, 108, 109, 110, 111, 112,
113, 183, 201, 240, 256, 261,
265, 266, 351, 376

start character, start/stop character,
stop character 142, 143, 283,
284

statement ii, iii, iv, v, 8, 9, 10, 11, 18, 19,
34, 36, 47, 51, 53, 54, 55, 56, 57,
59, 60, 61, 62, 63, 64, 65, 66, 67,
71, 73, 85, 89, 90, 91, 94, 97, 99,
101, 105, 110, 113, 114, 115,
116, 117, 118, 119, 120, 121,
122, 123, 124, 127, 130, 131,
132, 133, 135, 137, 138, 139,
140, 141, 142, 143, 144, 145,
547

147, 149, 150, 151, 152, 153,
158, 159, 160, 161, 163, 173,
174, 177, 178, 180, 181, 182,
184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 196,
197, 198, 199, 200, 201, 202,
203, 204, 205, 206, 207, 208,
209, 210, 211, 212, 213, 214,
216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233,
234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245,
246, 247, 248, 249, 250, 251,
252, 253, 254, 255, 257, 258,
260, 261, 262, 263, 264, 265,
268, 269, 270, 271, 272, 273,
274, 275, 278, 284, 287, 291,
293, 294, 295, 297, 298, 299,
300, 301, 302, 303, 304, 305,
306, 307, 308, 309, 310, 311,
312, 313, 314, 315, 316, 317,
318, 319, 320, 321, 322, 323,
324, 325, 326, 327, 328, 329,
330, 331, 333, 334, 335, 337,
346, 347, 348, 350, 351, 355,
356, 357, 358, 361, 362, 363,
364, 370, 371, 372, 376, 378,
379, 380, 382, 384, 388, 397,
398, 399, 401, 402, 403, 404,
409, 412, 415, 416, 425, 427,
465, 466, 473, 478, 480, 481,
482, 483, 484, 485, 486, 487,
488, 489, 490, 491, 492, 493,
495, 496, 497, 498, 499, 500,
501, 502, 503, 504, 519, 522,
524, 525, 529, 530, 531, 532,
533, 534, 535, 536, 537

statement block 53, 54, 55, 59, 210,
211, 226, 228, 236, 237, 238,
269, 320, 321, 323, 324, 328,
329, 465, 529

stop bit 147, 148, 288, 290, 390

string 189

string constant, stringconstant 63,
69, 200, 202, 213, 214, 239, 241,
260, 262, 264, 306

string expression 78, 188, 192, 200,
205, 225, 244, 245, 251, 273,
275, 297, 300, 320, 322, 330,
341, 343, 349, 352, 358, 365,
368, 374, 377, 378, 380, 382,
383, 386, 536

string operation 63, 79, 359

string operator 78, 85

string variable 19, 64, 71, 72, 73, 143,
183, 188, 189, 191, 198, 199,
203, 205, 214, 215, 217, 218,
220, 221, 225, 239, 242, 256,
259, 260, 263, 311, 322, 375,
378, 400, 401, 428, 435, 439,
452, 466, 518, 530, 532, 534

SUB...END SUB 9, 10, 53, 54, 85, 190,
191, 204, 206, 210, 224, 226,
234, 237, 269, 272, 321, 322,
323, 324, 328, 473, 536

subroutine 53, 54, 55, 57, 158, 204,
206, 210, 226, 234, 236, 317,
323, 335, 529

subscript 63, 71, 72, 180, 183, 198,
213, 215, 217, 218, 220, 232,
253, 256, 306, 307, 465

SUM 341

supplemental code 143, 279

symbol table 17, 33, 35, 36, 37, 43, 46,
474

synchronization 396, 399, 404, 410

System Mode 3, 4, 6, 49, 50, 51, 56, 73,
116, 118, 126, 130, 149, 150,
151, 152, 153, 165, 174, 175,
219, 280, 281, 285, 289, 319,
333, 350, 388, 389, 390, 391,
392, 407, 408, 478, 479, 484,
485, 489, 490, 493, 495, 499,
501, 519, 522, 524, 525

system program 3, 5, 6, 51, 254

system status 110, 111, 116, 117, 118,
126, 130, 197, 265, 266, 267,
351, 485, 487, 489, 491, 493,
496
548

T

tag-jump function, tag jump 30

terminator 149, 150, 151, 152, 331,
358, 535

text control character 331, 358, 380,
382

timeout 131, 173, 287, 288, 291, 332,
333, 390, 404, 410, 441, 451,
466, 501, 504

timer ii, 131, 132, 157, 163, 385, 433,
445, 451, 484, 486, 490, 491,
495, 496, 501, 502, 532

Transfer Utility vii, 15, 16, 17, 48, 147,
149, 152

transmission speed, baud 147, 173,
174, 287, 289, 501, 504

trap ii, 53, 81, 121, 159, 160, 192, 249,
268, 272, 317

trigger switch 51, 121, 122, 123, 124,
125, 126, 132, 133, 144, 163,
177, 244, 245, 246, 247, 249,
275, 276, 277, 278, 295, 389,
483, 485, 488, 492, 493, 498,
499, 531, 532

two-byte Kanji mode 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 100, 102,
104, 106, 108, 109, 110, 111,
113, 116, 119, 197, 201, 240,
253, 254, 261, 266, 297, 318,
319, 351, 480, 494, 497, 500,
503, 531

type conversion 75, 76, 83, 258

U

UDP 413, 417, 418, 428, 429, 439, 443,
444, 447

unoccupied area 372

user datagram protocol 413, 417, 418

user program vi, 2, 3, 4, 5, 6, 8, 9, 11,

14, 15, 16, 17, 20, 21, 22, 23, 26,
27, 29, 39, 40, 41, 42, 45, 47, 48,
49, 50, 51, 56, 57, 73, 94, 97,
116, 118, 122, 123, 124, 127,
136, 140, 145, 155, 158, 163,
165, 169, 170, 174, 175, 180,
181, 192, 194, 198, 201, 214,
219, 245, 254, 314, 326, 327,
390, 391, 395, 396, 407, 408,
413, 415, 419, 426, 457, 459,
483, 484, 485, 486, 488, 489,
490, 492, 493, 494, 495, 496,
498, 499, 500, 501, 502, 517,
523, 524, 525, 530

user-defined font 53, 54, 63, 74, 85, 99,
113, 180, 181, 192, 203, 225,
254, 322, 478, 531

user-defined function 10, 34, 36, 37, 38,
40, 54, 55, 57, 63, 64, 74, 78,
158, 190, 191, 204, 206, 207,
210, 211, 212, 226, 227, 228,
323, 325, 335, 359

V

variable iv, 8, 10, 33, 34, 36, 37, 39, 40,
43, 45, 46, 47, 56, 57, 59, 60, 63,
66, 67, 71, 72, 73, 75, 76, 78,
163, 165, 180, 181, 182, 188,
189, 190, 192, 193, 198, 199,
202, 203, 205, 206, 207, 210,
211, 212, 214, 215, 217, 218,
220, 221, 223, 224, 225, 226,
228, 232, 233, 239, 240, 241,
242, 243, 253, 254, 255, 258,
259, 260, 262, 263, 307, 308,
309, 311, 312, 313, 322, 323,
325, 335, 428, 435, 436, 439,
443, 444, 452, 466, 468, 470,
471, 472, 473, 474, 475, 477,
518, 530, 532, 533, 534

VRAM vii, 114, 115, 117, 118, 197, 483,
484, 485, 486, 487, 488, 489,
490, 491, 492, 493, 495, 496,
498, 500, 501, 503
549

W

WAIT 131, 133, 143, 144, 156, 173,
291, 294, 326, 327, 477, 483,
484, 485, 488, 489, 492, 493,
498, 533

wakeup ii, 169, 170, 171, 172, 173,
174, 175, 383, 384, 488, 489,
490, 491, 492, 493, 495, 496,
498, 499, 501, 502, 503, 504,
532

WHILE...WEND 53, 54, 204, 206, 210,
224, 226, 234, 237, 238, 269,
272, 321, 323, 328, 329, 472,
529

wireless block 399, 400, 401, 402, 403,
404, 409, 410, 412

wireless communication library 399

wireless communications device iii,
396, 398, 401, 402, 403, 407,
409, 410, 412, 415, 416, 467

work variable 9, 10, 33, 37, 38, 39, 43,
73, 198, 232, 306, 337, 359, 470,
475, 530

X

XFILE 73, 138, 141, 149, 150, 151,
152, 153, 330, 331, 332, 333,
334, 358, 380, 382, 477, 489,
491, 493, 497, 500, 503, 519,
522, 534

XOR 75, 76, 79, 83, 84, 341, 477
550

BHT-BASIC

The purpose of this manual is to provide accurate information in the development of application
programs in BHT-BASIC. Please feel free to send your comments regarding any errors or
omissions you may have found, or any suggestions you may have for generally improving the
manual.

In no event will DENSO be liable for any direct or indirect damages resulting from the applica-
tion of the information in this manual.

Programmer’s Manual

First Edition, May 1993

Fifth Edition, October 2000

DENSO CORPORATION

Industrial Systems Product Division

	Preface
	How this book is organized

	Chapter 1 Software Overview for the BHT
	1.1 Software Overview
	1.1.1 Software Structure of the BHT
	1.1.2 Overview of BHT-BASIC

	1.2 BHT-BASIC
	1.2.1 Features
	1.2.2 What's New in BHT-BASIC 3.5 Upgraded from BHT-BASIC 3.0?
	[1] Compiler
	[2] Statements

	1.3 Program Development and Execution
	1.3.1 Compiler
	1.3.2 Interpreter

	Chapter 2 Development Environment and Procedures
	2.1 Overview of Development Environment
	2.1.1 Required Hardware
	2.1.2 Required Software

	2.2 Overview of Developing Procedures
	2.2.1 Developing Procedures
	2.2.2 Functions of BHT-BASIC 3.5

	2.3 Writing a Source Program
	2.3.1 Writing a Source Program by an Editor
	2.3.2 Rules for Writing a Source Program

	2.4 Producing a User Program
	2.4.1 Starting the BHT-BASIC 3.5 Compiler
	2.4.2 Outline of User Program or Library Production Procedure
	[1] Building a user program out of a single source program file
	[2] Building a library out of a single source file, or building a user program or library out o...

	2.4.3 Designating a Single Source File or a Project File
	2.4.3.1 Designating a single source file
	[1] Select a source file

	2.4.3.2 Designating a project file
	[1] Create a new project
	[2] Select an existing project file
	[3] Add files to a project file
	[4] Select files in the active project

	2.4.4 Compiling and Building
	[1] Specifying the compiling and linking options
	[2] Compiling
	[3] Building

	2.4.5 Setting the Editor for Displaying Files
	2.4.6 Error Messages and Their Indication onto the Main Window
	[1] Selecting either an editor or main window as an error message output device
	[2] How error messages are displayed on the editor or main window

	2.4.7 Options
	[1] Compiling options
	[2] Linking options
	[3] Outputting debug information files
	[4] Outputting list files
	[5] Outputting a mapfile
	[6] Calculating the address for a statement causing a run-time error

	2.4.8 Starting the BHT-BASIC Compiler from the Command Line
	[1] Syntax
	[2] Options
	[3] Error Level Indication by ERRORLEVEL

	2.4.9 Output from the BHT-BASIC 3.5 Compiler
	2.4.10 Structure of User Programs and Libraries

	2.5 Downloading
	2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/ Ir-Transfer Utility E
	2.5.2 Setting up the BHT

	2.6 Executing a User Program
	2.6.1 Starting
	2.6.2 Execution
	2.6.3 Termination

	Chapter 3 Program Structure
	3.1 Program Overview
	3.1.1 Statement Blocks
	[1] Subroutines
	[2] Error-/Event-handling Routines
	[3] User-defined Functions
	[4] Block-structured Statements

	3.1.2 Notes for Jumping into/out of Statement Blocks

	3.2 Handling User Programs
	3.2.1 User Programs in the Memory
	3.2.2 Program Chaining
	3.2.3 Included Files

	Chapter 4 Basic Program Elements
	4.1 Structure of a Program Line
	4.1.1 Format of a Program Line
	[1] Labels
	[2] Statements
	[3] Comments

	4.1.2 Program Line Length

	4.2 Usable Characters
	4.2.1 Usable Characters
	4.2.2 Special Symbols and Control Codes

	4.3 Labels
	4.4 Identifiers
	4.5 Reserved Words

	Chapter 5 Data Types
	5.1 Constants
	5.1.1 Types of Constants
	[1] String Constants
	[2] Numeric Constants

	5.2 Variables
	5.2.1 Types of Variables according to Format
	[1] String Variables
	[2] Numeric Variables

	5.2.2 Classification of Variables

	5.3 User-defined Functions
	5.4 Type Conversion
	5.4.1 Type Conversion
	5.4.2 Type Conversion Examples

	Chapter 6 Expressions and Operators
	6.1 Overview
	6.2 Operator Precedence
	6.3 Operators
	6.3.1 Arithmetic Operators
	6.3.2 Relational Operators
	6.3.3 Logical Operators
	[1] The NOT operator
	[2] The AND operator
	[3] The OR operator
	[4] The XOR operator

	6.3.4 Function Operators
	6.3.5 String Operators

	Chapter 7 I/O Facilities
	7.1 Output to the LCD Screen
	7.1.1 Display Fonts
	[1] Fonts available on each BHT
	[2] Switching the fonts

	7.1.2 Number of Characters and Coordinates on the LCD
	[1] BHT-3000
	[2] BHT-4000
	[3] BHT-5000
	[4] BHT-6000/BHT-6500
	[5] BHT-7000
	[6] BHT-7500

	7.1.3 Dot Patterns of Fonts
	7.1.4 Mixed Display of Different Character Types or Different-size Fonts
	[1] Displaying ANK, Kanji, and Condensed Kanji in One Line
	[2] Displaying Standard- and Small-size Fonts on the Same Screen
	[3] Displaying Normal- and Double-width Characters on the Same Screen

	7.1.5 Displaying User-defined Characters
	7.1.6 VRAM
	7.1.7 Displaying the System Status (BHT-4000/BHT- 5000/BHT-6000/BHT-6500)
	[1] BHT-4000
	[2] BHT-5000/BHT-6000/BHT-6500

	7.1.8 Other Facilities for the LCD

	7.2 Input from the Keyboard
	7.2.1 Function Keys
	7.2.2 Keystroke Trapping
	7.2.3 Alphabet Entry Function
	[1] BHT-3000/BHT-4000/BHT-6000/BHT-6500
	[2] BHT-5000/BHT-7000/BHT-7500 (32-key pad models)
	[3] BHT-7000 (26-key pad model)

	7.2.4 Other Facilities for the Keyboard
	[1] Auto-repeat
	[2] Shift key

	7.3 Timer and Beeper
	7.3.1 Timer Functions
	7.3.2 BEEP Statement

	7.4 Controlling and Monitoring the I/Os
	7.4.1 Controlling by the OUT Statement
	7.4.2 Monitoring by the INP Function
	7.4.3 Monitoring by the WAIT Statement

	Chapter 8 Files
	8.1 File Overview
	8.1.1 Data Files and Device I/O Files
	8.1.2 Access Methods

	8.2 Data Files
	8.2.1 Overview
	8.2.2 Naming Files
	8.2.3 Structure of Data Files
	8.2.4 Data File Management by Directory Information
	8.2.5 Programming for Data Files
	8.2.6 About Drives

	8.3 Bar Code Device
	8.3.1 Overview
	8.3.2 Programming for Bar Code Device

	8.4 Communications Device
	8.4.1 Hardware Required for Data Communications
	[1] BHT-3000/BHT-4000/BHT-5000
	[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

	8.4.2 Programming for Data Communications
	[1] BHT-3000/BHT-4000/BHT-5000
	[2] BHT-6000/BHT-6500/BHT-7000/BHT-7500

	8.4.3 Overview of Communications Protocols
	[1] BHT-protocol
	[2] BHT-Ir protocol (BHT-6000/BHT-6500/BHT-7000/BHT- 7500)
	[3] Multilink protocol (BHT-5000 only)

	8.4.4 File Transfer Tools
	[1] Transfer Utility
	[2] Ir-Transfer Utility C
	[3] Ir-Transfer Utility E
	[4] Multilink Transfer Utility (BHT-5000 only)

	Chapter 9 Event Polling and Error/Event Trapping
	9.1 Overview
	9.2 Event Polling
	[1] Programming sample
	[2] I/O devices capable of being monitored by the event polling

	9.3 Error Trapping
	[1] Overview
	[2] Programming for trapping errors

	9.4 Event (of Keystroke) Trapping
	[1] Overview
	[2] Programming for trapping keystrokes

	Chapter 10 Sleep Function
	10.1 Sleep Function

	Chapter 11 Resume Function
	11.1 Resume Function

	Chapter 12 Power-related Functions
	12.1 Low Battery Warning
	12.2 Prohibited Simultaneous Operation of the Beeper*, Illumination LED (Laser Source**), and LCD...
	12.3 Wakeup Function
	12.4 Remote Wakeup Function (BHT-7000/BHT-7500)
	[1] Outline
	[2] Remote wakeup operation
	[3] Remote wakeup program

	Chapter 13 LCD Backlight Function
	13.1 LCD Backlight Function

	Chapter 14 Statement Reference
	APLOAD
	BEEP
	CALL
	CHAIN
	CLFILE
	CLOSE
	CLS
	COMMON
	CONST
	CURSOR
	DATA
	DECLARE
	DEF FN (Single-line form)
	DEF FN...END DEF (Block form)
	DEFREG
	DIM
	END
	ERASE
	FIELD
	FOR...NEXT
	FUNCTION…END FUNCTION
	GET
	GLOBAL
	GOSUB
	GOTO
	IF...THEN...ELSE...END IF
	INPUT
	INPUT #
	KEY
	KEY ON and KEY OFF
	KILL
	KPLOAD
	LET
	LINE INPUT
	LINE INPUT #
	LOCATE
	ON ERROR GOTO
	ON...GOSUB and ON...GOTO
	ON KEY...GOSUB
	OPEN
	OPEN "BAR:"
	OPEN "COM:"
	OUT
	POWER
	PRINT
	PRINT #
	PRINT USING
	PRIVATE
	PUT
	READ
	REM
	RESTORE
	RESUME
	RETURN
	SCREEN
	SELECT...CASE...END SELECT
	SUB...END SUB
	WAIT
	WHILE...WEND
	XFILE
	$INCLUDE
	Additional Explanation for Statements

	Chapter 15 Function Reference
	ABS
	ASC
	BCC$
	CHKDGT$
	CHR$
	COUNTRY$
	CSRLIN
	DATE$
	EOF
	ERL
	ERR
	ETX$
	FRE
	HEX$
	INKEY$
	INP
	INPUT$
	INSTR
	INT
	LEFT$
	LEN
	LOC
	LOF
	MARK$
	MID$
	POS
	RIGHT$
	SEARCH
	SOH$
	STR$
	STX$
	TIME$
	TIMEA/TIMEB/TIMEC
	VAL

	Chapter 16 Extended Functions
	16.1 Overview
	16.2 Reading or writing system settings from/to the memory (SYSTEM.FN3)
	16.2.1 Function Number List of SYSTEM.FN3
	16.2.2 Detailed Function Specifications

	Chapter 17 Spread Spectrum Communication (BHT-7500S only)
	17.1 Overview
	17.2 Programming for Wireless Communication
	17.3 Wireless Communications- related Statement
	17.4 Wireless Communication Library (SS.FN3)
	17.4.1 Overview
	17.4.2 Detailed Function Specifications

	Chapter 18 TCP/IP
	18.1 Two Sides
	18.1.1 BHT-7500S
	18.1.2 Hosts

	18.2 TCP/IP over Spread Spectrum System
	18.2.1 General Procedure
	[1] Configure Wireless Communications Device
	[2] Configure TCP/IP System
	[3] Declare TCP/IP Communications Pathway
	[4] Open Wireless Communications Device
	[5] Check Wireless Communications Device Synchronization with Master
	[6] Connect to TCP/IP Communications Pathway
	[7] Transfer Data or File via Socket Interface
	[8] Disconnect TCP/IP Communications Pathway
	[9] Close Spread Spectrum Wireless Device

	18.2.2 Programming Notes for Socket API According to UDP
	18.2.3 Programming Notes for Resume Function

	18.3 Socket API
	18.3.1 Overview

	18.4 FTP Client
	18.4.1 Overview
	18.4.2 File Formats
	[1] User Programs (*.PD3)
	[2] Extension Libraries (*.FN3 and *.EX3)
	[3] Data Files

	18.4.3 Using FTP Client
	[1] Basic Procedure
	[2] Configuring FTP Client
	[3] Calculating Memory Requirements
	[4] Optimizing Drive (Recommended)
	[5] FTP Transfers

	18.5 Socket Library (SOCKET.FN3)
	18.5.1 Overview
	18.5.2 Detailed Function Specifications

	18.6 FTP Library (FTP.FN3)
	18.6.1 Overview
	18.6.2 Detailed Function Specifications

	Appendices
	Appendix A
	A1. Run-time Errors
	A2. Compilation Errors

	Appendix B
	Appendix C
	C1. Character Set
	C2. National Character Sets
	C3. Display Mode and Letter Size

	Appendix D
	D1. BHT-3000
	D2. BHT-4000
	D3. BHT-5000
	D4. BHT-6000/BHT-6500
	D5. BHT-7000/BHT-7500

	Appendix E
	E1. BHT-3000
	E2. BHT-4000
	E3. BHT-5000
	[1] 32-key pad
	[2] 26-key pad

	E4. BHT-6000
	E5. BHT-6500
	E6. BHT-7000/BHT-7500
	[1] 32-key pad
	[2] 26-key pad (BHT-7000 only)

	Appendix F
	Appendix G
	Appendix H
	[1] Flash ROM
	[2] BHT-2000 compatible mode
	[3] Program file named APLINT.PD3

	Appendix I
	Appendix J
	Appendix K

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

