

Copyright © 2003 DENSO WAVE INCORPORATED
All rights reserved. No part of this publication may be reproduced in any form or by any
means without permission in writing from the publisher.
Specifications are subject to change without prior notice.

Microsoft, MS-DOS, Windows, and WindowsNT are registered trademarks of Microsoft
Corporation.
BluetoothTM is a trademark owned by its proprietor and used by DENSO WAVE under license.
BHT is a trademark of DENSO CORPORATION.
All other products and company names mentioned in this manual are trademarks or
registered trade-marks of their respective holders.

i

Preface

This manual describes the syntax and development procedure of BHT-BASIC 3.5 which is a
programming language for developing application programs of the BHT-8000.
It is intended for programmers who already have some experience in BASIC programming.
For the basic description about the BASIC language, refer to documentations concerning
Microsoft BASIC ® or QuickBASIC ® . For the details about Windows™, refer to the Microsoft
Windows documentations.

ii

How this book is organized
This manual is made up of 16 chapters and appendices.

Chapter 1. Software Overview for the BHTChapter 1. Software Overview for the BHTChapter 1. Software Overview for the BHTChapter 1. Software Overview for the BHT

Surveys the software structure of the BHT and introduces the programs integrated in the
ROM and the language features of BHT-BASIC.

Chapter 2. Development Environment and ProceduresChapter 2. Development Environment and ProceduresChapter 2. Development Environment and ProceduresChapter 2. Development Environment and Procedures
Describes hardware and software required for developing application programs and the
developing procedure.

Chapter 3. Program StructureChapter 3. Program StructureChapter 3. Program StructureChapter 3. Program Structure
Summarizes the basic structure of programs and programming techniques, e.g., program
chaining and included files.

Chapter 4. Basic Program EChapter 4. Basic Program EChapter 4. Basic Program EChapter 4. Basic Program Elementslementslementslements
Describes the format of a program line, usable characters, and labels.

Chapter 5. Data TypesChapter 5. Data TypesChapter 5. Data TypesChapter 5. Data Types
Covers data which the programs can handle, by classifying them into data types
constants and variables.

Chapter 6. Expressions and OperatorsChapter 6. Expressions and OperatorsChapter 6. Expressions and OperatorsChapter 6. Expressions and Operators
Surveys the expressions and operators to be used for calculation and for handling concate
nated character strings. The operators connect, manipulate, and compare the expressions.

Chapter 7. I/O FacilitiesChapter 7. I/O FacilitiesChapter 7. I/O FacilitiesChapter 7. I/O Facilities
Defines I/O facilities and describes output to the LCD, input from the keyboard, and control for
the timer, beeper, and other I/Os by the statements and functions.

Chapter 8. FilesChapter 8. FilesChapter 8. FilesChapter 8. Files
Describes data files and device files.

Chapter 9. Event Polling and Error/Chapter 9. Event Polling and Error/Chapter 9. Event Polling and Error/Chapter 9. Event Polling and Error/Event TrappingEvent TrappingEvent TrappingEvent Trapping
Describes the event polling and two types of traps: error traps and event (of keystroke) traps
supported by BHT-BASIC.

Chapter 10. Sleep FunctionChapter 10. Sleep FunctionChapter 10. Sleep FunctionChapter 10. Sleep Function
Describes the sleep function.

Chapter 11. Resume FunctiChapter 11. Resume FunctiChapter 11. Resume FunctiChapter 11. Resume Functionononon
Describes the resume function.

iii

Chapter 12. PowerChapter 12. PowerChapter 12. PowerChapter 12. Power----related Functionsrelated Functionsrelated Functionsrelated Functions
Describes low battery warning, the prohibited simultaneous operation of the beeper /
illumination LED, the wakeup, and remote wakeup.

Chapter 13. Backlight FunctionChapter 13. Backlight FunctionChapter 13. Backlight FunctionChapter 13. Backlight Function
Describes the backlight function

Chapter 14. Statement ReferenceChapter 14. Statement ReferenceChapter 14. Statement ReferenceChapter 14. Statement Reference
Describes the statements available in BHT-BASIC, including the error codes and messages.

Chapter 15. Function ReferenceChapter 15. Function ReferenceChapter 15. Function ReferenceChapter 15. Function Reference
Describes the functions available in BHT-BASIC, including the error codes and messages.

Chapter 16. Extended FunctionsChapter 16. Extended FunctionsChapter 16. Extended FunctionsChapter 16. Extended Functions
Describes the extended functions available in BHT-BASIC, including the error codes and
messages.

Chapter 1Chapter 1Chapter 1Chapter 17777. TCP/IP. TCP/IP. TCP/IP. TCP/IP
(BHTs with Bluetooth communications(BHTs with Bluetooth communications(BHTs with Bluetooth communications(BHTs with Bluetooth communications device) device) device) device)

Surveys the socket application program interface (API) and FTP client. This chapter also
describes the two function libraries--SOCKET.FN3 and FTP.FN3, which provide BHT-BASIC
programs with access to a subset of the TCP/IP family of protocols.

Chapter 1Chapter 1Chapter 1Chapter 18888. . . . BluetoothBluetoothBluetoothBluetooth
(BHTs with Bluetooth communications(BHTs with Bluetooth communications(BHTs with Bluetooth communications(BHTs with Bluetooth communications device) device) device) device)

Describes the Bluetooth communication system and communications programming.

AppendixAppendixAppendixAppendix A: Error Codes and Error MessagesA: Error Codes and Error MessagesA: Error Codes and Error MessagesA: Error Codes and Error Messages
BBBB: Reserved Words: Reserved Words: Reserved Words: Reserved Words
C: Character SetsC: Character SetsC: Character SetsC: Character Sets
D: I/O PortsD: I/O PortsD: I/O PortsD: I/O Ports
E: Key Number Assignment on the KeyboardE: Key Number Assignment on the KeyboardE: Key Number Assignment on the KeyboardE: Key Number Assignment on the Keyboard
F: Memory AreaF: Memory AreaF: Memory AreaF: Memory Area
G: Handling Space Characters in DownloadingG: Handling Space Characters in DownloadingG: Handling Space Characters in DownloadingG: Handling Space Characters in Downloading
H: Programming NotesH: Programming NotesH: Programming NotesH: Programming Notes
I: Program SamplesI: Program SamplesI: Program SamplesI: Program Samples
J: Quick Reference for Statements and FunctionsJ: Quick Reference for Statements and FunctionsJ: Quick Reference for Statements and FunctionsJ: Quick Reference for Statements and Functions
K: Unsupported StateK: Unsupported StateK: Unsupported StateK: Unsupported Statements and Functionsments and Functionsments and Functionsments and Functions

iv

����Notational Conventions Used in This BookNotational Conventions Used in This BookNotational Conventions Used in This BookNotational Conventions Used in This Book
Several notational conventions are used in this book for the sake of clarity.

1. Reserved words are printed in UPPERCASE. These are BHT-BASIC’s keywords. You
should not use them as label names or variable names.

 Example: CHAIN, GOSUB, and ABS

2. Parameters or arguments which should be specified in the statements or functions are
expressed in italics.

 Example: characode and onduration

3. Items enclosed in square brackets [] are optional, which can be omitted.

 Example: [commonvariable]

4. Items enclosed in braces { } and separated by vertical bars | represent alternative items.
You should choose either item.

 Example: CURSOR {ON|OFF}

5. An ellipsis . . . indicates that you can code the previous item described in one line two or
more times in succession.

 Example: READ variable[,variable...]

6. Hexadecimal values are followed by h. In many cases, hexadecimal values are enclosed
with parentheses and preceded by decimal values.

 Example: 65 (41h) and 255 (FFh)
 In program description, hexadecimal values are preceded by &H.

 Example: &H41 and &HFF

7. Programs make no distinction between uppercase and lowercase letters, except for
character string data.

 The uppercase-lowercase distinction used in this manual is intended to increase the
legibility of the statements. For example, reserved words are expressed in uppercase;
label names and variable names in lowercase. In practical programming, it is not
necessary to observe the distinction rules used in this manual.

 The examples below are regarded as the same.

 Example 1: &HFFFF, &hffff, and &hFFFF
Example 2: A AND B, a and b, and a AND b
Example 3: PRINT STR$(12), Print Str$(12), and print str$(12)

v

����Icons Used in This BookIcons Used in This BookIcons Used in This BookIcons Used in This Book
Statements and functions unique to BHT-BASIC.

����Syntax for the Statement Reference and Function ReferenceSyntax for the Statement Reference and Function ReferenceSyntax for the Statement Reference and Function ReferenceSyntax for the Statement Reference and Function Reference
The syntax in programming is expressed as shown in the example below.

For the INPUT statement
Syntax: INPUT [;]["prompt"{,|;}]variable

According to the above syntax, all of the following samples are correct:
INPUT;keydata
INPUT keydata
INPUT "input =",keydata
INPUT;"input =";keydata

����Technical Terms Used in This ManualTechnical Terms Used in This ManualTechnical Terms Used in This ManualTechnical Terms Used in This Manual

Compiler and InterpreterCompiler and InterpreterCompiler and InterpreterCompiler and Interpreter
The BHT-BASIC Compiler, which is a development tool, is expressed as Compiler.
The BHT-BASIC Interpreter, which runs in the BHT, is expressed as Interpreter.

Source Program and Object Program (User Program)Source Program and Object Program (User Program)Source Program and Object Program (User Program)Source Program and Object Program (User Program)
Generally, a source program is translated into an object program by a compiler. This
manual calls an object program a user program.

BHT and CUBHT and CUBHT and CUBHT and CU
This manual expresses BHT-8000 series as "BHT."
The CU-8000 series is expressed as "CU."

vi

����AbbreviationsAbbreviationsAbbreviationsAbbreviations
ANK Alpha-Numeric and Katakana

BASIC Beginners All purpose Symbolic Instruction Code

BCC Block Check Character

BHT Bar code Handy Terminal

CTS(CS) Clear To Send （RS-232C signal control line）

CU Communication Unit

I/F Interface

I/O Input/Output

LCD Liquid Crystal Display

LED Light-Emitting Diode

MOD Modulo

MS-DOS Microsoft-Disk Operating System

RAM Random Access Memory

ROM Read Only Memory
RTS(RS) Request To Send （RS-232C signal control line）

VRAM Video RAM

����Related PublicationsRelated PublicationsRelated PublicationsRelated Publications
BHT-8000 Series User’s Manuals
Transfer Utility Guide
Ir-Transfer Utility C Guide
Ir-Transfer Utility E Guide

����Screen IndicationScreen IndicationScreen IndicationScreen Indication
The lettering in the screens of the BHT and host computer in this manual is a little
different from that in the actual screens. File names used are only for description
purpose, so they will not appear if you have not downloaded files having those
names to the BHT.

1

Chapter 1
Software Overview for the BHT

CONTENTSCONTENTSCONTENTSCONTENTS

1.1 Software Overview..2
1.1.1 Software Structure of the BHT...2
1.1.2 Overview of BHT-BASIC ...4

1.2 BHT-BASIC ...5
1.2.1 Features ..5
1.2.2 What’s New in BHT-BASIC 3.5 Upgraded from BHT-BASIC 3.0?.................6

[1] Compiler ...6
[2] Statements..6

1.3 Program Development and Execution ..8
1.3.1 Compiler..8
1.3.2 Interpreter..8

2

1.1 Software Overview
1.1.1 Software Structure of the BHT

 The structure of software for the BHT is shown below.

The BHT has a flash memory and RAM. All of the system programs, user programs,
extension libraries, and extended functions are stored in the flash memory. The RAM is used
to run those programs efficiently.

User programs User data

BHT-BASIC Interpreter

System Mode

Extension libraries
and extended functions

Flash memory

Drivers Font files

Hardware

Application
programs

System
programs

Chapter 1. Software Overview for the BHT

3

□□□□System Programs

DriversDriversDriversDrivers
A set of programs which is called by the BHT-BASIC Interpreter or System Mode and
directly controls the hardware. The drivers include the Decoder Software used for bar
code reading.

BHTBHTBHTBHT----BASICBASICBASICBASIC Interpreter Interpreter Interpreter Interpreter
Interprets and executes user programs.

System ModeSystem ModeSystem ModeSystem Mode
Sets up the execution environment for user programs.

Extension LibraryExtension LibraryExtension LibraryExtension Library
A set of programs which extends the function of the BHT-BASIC to enable the following:
These extension programs are stored in files having an FN3 extension, in each file per
function. You should download a xxxx.FN3 file containing the necessary function from the
BHT-BASIC Extension Library (sold separately) to the user area.

Extended FuExtended FuExtended FuExtended Functionsnctionsnctionsnctions
A set of functions integrated in system programs, which extends the function of the
BHT-BASIC. No downloading is required for those functions since they are integrated in
System. For details, refer to Chapter 16, "Extended Functions."

NOTE

Use extension libraries suited for BHT-8000.

□□□□Application Programs

User ProgramsUser ProgramsUser ProgramsUser Programs
User-written object programs which are ready to be executed.

4

1.1.2 Overview of BHT-BASIC

With BHT-BASIC, you can customize application programs for meeting your specific needs as
given below.

- Retrieving products names, price information, etc. in a master file.

- Making a checking procedure more reliable with check digits in bar code reading.

- Improving the checking procedure by checking the number of digits entered from the
keyboard.

- Calculating (e.g., subtotals and totals).

- Supporting file transmission protocols (or transmission procedures) suitable for host
computers and connected modems.

- Downloading master files.

- Supporting a program capable of transferring control to several job programs depending
upon conditions.

Chapter 1. Software Overview for the BHT

5

1.2 BHT-BASIC
1.2.1 Features

BHT-BASIC is designed as an optimal programming language in making application programs
for the bar code handy terminal BHT, and to enable efficient program development, with the
following features:

����Syntax Similar to Microsoft™ BASICSyntax Similar to Microsoft™ BASICSyntax Similar to Microsoft™ BASICSyntax Similar to Microsoft™ BASIC

BHT-BASIC uses the BASIC language which is the most widely used one among the
high-level languages. The syntax of BHT-BASIC is as close as possible to that used in
Microsoft BASIC(MS-BASIC).

����No Line Numbers RequiredNo Line Numbers RequiredNo Line Numbers RequiredNo Line Numbers Required
BHT-BASIC requires no line number notation. You can write a branch statement with a label
instead of a line number so that it is possible to use cut and paste functions with an editor in
developing source programs, thus facilitating the use of program modules for development of
other programs.

����Program Development in Program Development in Program Development in Program Development in Windows95/98/NT/2000/XPWindows95/98/NT/2000/XPWindows95/98/NT/2000/XPWindows95/98/NT/2000/XP
You may develop programs with BHT-BASIC on those computers operating on
Windows95/98/NT/2000/XP.

����Advantages of the Dedicated CompilerAdvantages of the Dedicated CompilerAdvantages of the Dedicated CompilerAdvantages of the Dedicated Compiler
The dedicated compiler outputs debugging information including cross reference lists of
variables and labels, enabling the efficient debugging in program development.
The Compiler assigns variables to fixed addresses so that it is not necessary for the
Interpreter to allocate or release memories when executing user programs, making the
execution time shorter.

����Program Compression by the Dedicated CompilerProgram Compression by the Dedicated CompilerProgram Compression by the Dedicated CompilerProgram Compression by the Dedicated Compiler
The Compiler compresses a source program into the intermediate language to produce an
object program (a user program).
(When a compiled user program is downloaded to the BHT, the BHT packs a pair of ASCII
bytes into a single byte by converting each byte into a 4-bit hexadecimal number for more
efficient use of the memory area in the BHT.)

6

1.2.2 What’s New in BHT-BASIC 3.5 Upgraded from
BHT-BASIC 3.0?

Based on BHT-BASIC 3.0, BHT-BASIC 3.5 newly supports the following functions:

[1] Compiler

����Object linkage editor, LinkerObject linkage editor, LinkerObject linkage editor, LinkerObject linkage editor, Linker
While BHT-BASIC 3.0 Compiler compiles a single source program into a single user program,
BHT-BASIC 3.5 Compiler can convert more than one source program into individual object
programs (intermediate code files for a user program) and then combine them together
through Linker to build a user program. With Linker, you may use existing object programs for
development of user programs.

����LibrariesLibrariesLibrariesLibraries
The Librarian allows you to build libraries out of object files resulting from compiling, which
makes it easier to use existing application programs. This facilitates the use of existing
application programs for development of other programs.

����ProjectsProjectsProjectsProjects
BHT-BASIC 3.5 has added a concept of Project that makes it easier to use multiple source
pro-grams for producing a user program.

[2] Statements

����Added statementsAdded statementsAdded statementsAdded statements
Based on BHT-BASIC 3.0, BHT-BASIC 3.5 newly supports several statements for making
distinction between global variables and local variables, and for defining functions and
constants.
Newly added statements
CALL
CONST
DECLARE

FUNCTION...END FUNCTION
GLOBAL

PRIVATE

SUB...END SUB

Calls a SUB function in addition to an FN3 function.
Defines symbolic constants to be replaced with labels.
Declares user-defined function FUNCTION or SUB
externally defined.
Names and defines user-defined function FUNCTION.
Declares one or more work variables or register variables
defined in a file, as global variables.
Declares one or more work variables or register variables
defined in a file, as local variables.
Names and defines user-defined function SUB.

BHT-BASIC 3.5 provides the constants definition file "BHTDEF.INC." Reading the "BHT-DEF.
INC" as an included file allows you to use constant names defined in that file.
Example ’$INCLUDE:’BHTDEF.INC’

OUT .pnLEDCtrl,.pvLEDGrn 'Turn LED (green) ON

Chapter 1. Software Overview for the BHT

7

����Defining and declaring userDefining and declaring userDefining and declaring userDefining and declaring user----defined functiondefined functiondefined functiondefined functions more easilys more easilys more easilys more easily
BHT-BASIC 3.5 has added FUNCTION…END FUNCTION, SUB...END SUB, and DECLARE
statements. With the former two, you may easily define your own functions—FUNCTION and
SUB. With the latter one, you may declare FUNCTION and SUB functions which are defined
in any other source files.

����Scoping variables to be local or globalScoping variables to be local or globalScoping variables to be local or globalScoping variables to be local or global
 (with PRIVATE(with PRIVATE(with PRIVATE(with PRIVATE or GLOB or GLOB or GLOB or GLOBALALALAL statement) statement) statement) statement)
In BHT-BASIC 3.5, work variables and register variables may have "scope" to restrict the
access to them.
With the PRIVATE statement, you may declare a variable to be local. A local variable can only
be accessed by any routine in a file where it is defined. With the GLOBAL statement, you may
declare a variable to be global. A global variable can be accessed by any routine in a
program.
However, a variable used inside the FUNCTION or SUB function without declaration is
available only within a function where it is defined.
Since local variables are restricted in access, you can define them with a same name in
different files.
For details about the scope of variables, refer to Chapter 5, Section 5.5.

����Defining constantsDefining constantsDefining constantsDefining constants
BHT-BASIC 3.5 can define constants.

8

1.3 Program Development and
Execution

BHT-BASIC consists of Compiler and Interpreter.

1.3.1 Compiler
BHT-BASIC 3.5 Compiler consists of the following Compiler, Linker and Librarian:

����CompilerCompilerCompilerCompiler
Compiler, which is one of the development tools, compiles source programs written on a PC
into the resulting "object files."
It checks syntax of source programs during compilation and makes an error file if any syntax
error is found.

����LinkerLinkerLinkerLinker
Linker, which is one of the development tools, combines object files (translated by Compiler)
together to build a "user program" in the intermediate language.
If linking does not end normally, Linker makes an error file.

����LibrarianLibrarianLibrarianLibrarian
Librarian, which is one of the development tools, builds "library files" out of object files
translated by Compiler.
If Librarian does not end normally, it makes an error file.

1.3.2 Interpreter
Interpreter interprets and executes a user program downloaded to the BHT, statement by
statement.

9

Chapter 2
Development Environment and Procedures

CONTENTSCONTENTSCONTENTSCONTENTS

2.1 Overview of Development Environment.. 11
2.1.1 Required Hardware ... 11
2.1.2 Required Software...12

2.2 Overview of Developing Procedures...13
2.2.1 Developing Procedures ...13
2.2.2 Functions of BHT-BASIC 3.5...14

2.3 Writing a Source Program...15
2.3.1 Writing a Source Program by an Editor ...15
2.3.2 Rules for Writing a Source Program..15

2.4 Producing a User Program..17
2.4.1 Starting the BHT-BASIC 3.5 Compiler ...17
2.4.2 Outline of User Program or Library Production Procedure18

[1] Building a user program out of a single source program file...............18
[2] Building a library out of a single source file, or building a user

program or library out of multiple source files18
2.4.3 Designating a Single Source File or a Project File19

2.4.3.1 Designating a single source file...19
[1] Select a source file ...19

2.4.3.2 Designating a project file ..20
[1] Create a new project ..20
[2] Select an existing project file ..21
[3] Add files to a project file ...22
[4] Select files in the active project ..23

2.4.4 Compiling and Building..25
[1] Specifying the compiling and linking options25
[2] Compiling..26
[3] Building...26

2.4.5 Setting the Editor for Displaying Files..27
2.4.6 Error Messages and Their Indication onto the Main Window28

[1] Selecting either an editor or main window as an error message
output device ..28

[2] How error messages are displayed on the editor or main window......29

10

2.4.7 Options..30

[1] Compiling options ...30
[2] Linking options..31
[3] Outputting debug information files ..31
[4] Outputting list files ..32
[5] Outputting a mapfile ...35
[6] Calculating the address for a statement causing a run-time error36

2.4.8 Starting the BHT-BASIC Compiler from the Command Line........................37
[1] Syntax...37
[2] Options ...38
[3] Error Level Indication by ERRORLEVEL..40

2.4.9 Output from the BHT-BASIC 3.5 Compiler ..41
2.4.10 Structure of User Programs and Libraries ...43

2.5 Downloading ...44
2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/ Ir-Transfer Utility E44
2.5.2 Setting up the BHT..44

2.6 Executing a User Program..45
2.6.1 Starting ..45
2.6.2 Execution ..45
2.6.3 Termination..45

Chapter 2. Development Environment and Procedures

11

2.1 Overview of Development
Environment

The following hardware and software are required for developing user programs:

2.1.1 Required Hardware

����Personal computerPersonal computerPersonal computerPersonal computer
Use a computer operating with Windows95/98/NT/2000/XP.

����BHT (Bar code handy terminal)BHT (Bar code handy terminal)BHT (Bar code handy terminal)BHT (Bar code handy terminal)

- BHT-8000 series

����CUCUCUCU (Optical communications unit) (Optical communications unit) (Optical communications unit) (Optical communications unit)
For IrDA communication, the following CU is required. Note that no CU is required if the BHT
is directly connected with the host computer via the direct-connect interface.

- CU-8000 (Option. Required if the host computer has no IR interface port.)

����RSRSRSRS----232C232C232C232C interface cable interface cable interface cable interface cable
This cable connects the CU with the personal computer.

NOTE

The RS-232C interface cable should have the connector and pin assignment
required by the personal computer.
(For information about the connector configuration and pin assignments of the
CU, refer to the BHT User’s Manual.)

12

2.1.2 Required Software
• OS
• Editor

Windows95/98/NT/2000/XP

• BHT-BASIC 3.5 Compiler

• Transfer Utility (option)

• Ir-Transfer Utility C (option)

• Ir-Transfer Utility E (option)

BHTC35W.EXE

BHT35CPL.DLL
BHT35LNK.DLL
BHT35LIB.DLL
BHTC35W.MSG
TU3.EXE
TU3W.EXE
TU3W32.EXE
IT3C.EXE
IT3CW32.EXE
IT3EW32.EXE

(Integrated
environment
manager)
(Compiler)
(Linker)
(Librarian)
(Error message file)
(MS-DOS-based)
(16-bit
Windows-based)
(Windows-based)
(MS-DOS-based)
(Windows-based)
(Windows-based)

Transfer Utility, Ir-Transfer Utility C, or Ir-Transfer Utility E is an essential tool for downloading
user programs to the BHT.
Each of the BHT-BASIC Compiler, Transfer Utility, Ir-Transfer Utility C, Ir-Transfer Utility E is
optionally provided in a CD or floppy disk.

NOTE

Prepare editor versions which are operable with the personal computer on
which user programs are to be developed.
For the manufacturers and models of computers to which Transfer Utility,
Ir-Transfer Utility C, or Ir-Transfer Utility E is applicable, refer to the
“Transfer Utility Guide,” “Ir-Transfer Utility C Guide,” or “Ir-Transfer Utility
E Guide,” respectively.

Chapter 2. Development Environment and Procedures

13

2.2 Overview of Developing
Procedures

2.2.1 Developing Procedures
The program developing procedures using BHT-BASIC 3.5 are outlined below.

- Making source programs
Make source programs with an editor according to the syntax of BHT-BASIC.

- Producing a user program (compiling and linking)
Compile the source programs into object programs by BHT-BASIC Compiler. Then
combine those object programs or libraries (made up by Librarian) together through
Linker to produce a user program in the intermediate language format.

- Downloading the user program
Download the user program to the BHT by using Transfer Utility/Ir-Transfer Utility
C/Ir-Transfer Utility E.

- Executing the user program
Execute the user program on the BHT.

14

2.2.2 Functions of BHT-BASIC 3.5
BHT-BASIC 3.5 contains Compiler, Linker, and Librarian whose functions are listed below.

Functions of Compiler Description

Syntax check

Output of object files

Output of debug information

Detects syntax errors in source programs.

Translates source programs into object files and outputs
them.

Outputs list files and debug information files required for
debugging.

Functions of Linker Description

Output of a link map file

Output of a user program

Outputs a symbol table along with its memory address.

Integrates more than one object program or library to
produce a user program in the intermediate language
format. When downloaded to the BHT by Transfer
Utility/Ir-Transfer Utility C/Ir-Transfer Utility E, the user
program will be com-pressed into programs that the
Interpreter can translate.

Functions of Librarian Description

Output of a library Builds a library out of multiple object files. The library is
a collection of object files that Linker will use.

Chapter 2. Development Environment and Procedures

15

2.3 Writing a Source Program
2.3.1 Writing a Source Program by an Editor
To write a source program, use an editor designed for operating environments where the
BHT-BASIC 3.5 Compiler will execute. The default editor is Windows Notepad.

TIP

To write a source program efficiently, use of a commercially available editor is
recommended. For the operation of such an editor, refer to the instruction
manual for the editor.

2.3.2 Rules for Writing a Source Program
When writing a source program according to the syntax of BHT-BASIC 3.5, observe the
following rules:

• A label name should begin in the 1st column.

ABC

2000

• A statement should begin in the 2nd or the following columns.

PRINT
FOR I=1 TO 100 :NEXT I

• One program line should be basically limited to 512 characters (excluding a CR code)
and should be ended with a CR code (by pressing the carriage return key).

If you use an underline (_) preceding a CR code, however, one program line can be
extended up to 8192 characters. For statements other than the PRINT, PRINT#, and
PRINT USING statements, you may use also a comma (,) preceding a CR code,
instead of an underline.

16

• Comment lines starting with a single quotation mark (') and those with a REM should
have the following description rules each.

A single quotation mark (') can be put starting from the 1st or the following columns, or
immediately following any other statement.
A REM should be put starting from the 2nd column or the following columns. To put a
REM following any other statement, a colon (:) should precede the REM.

’Comment
 CLS ’Comment

 REM Comment
 CLS ：REM Comment

• It is necessary to end the IF statement with an END IF or END IF, since the IF
statement will be treated as a block-structured statement.

 IF a$="Y"OR a$="y"THEN
 GOTO SUB12
 END IF

• The default number of characters for a non-array string variable is 40; that for an array
string variable is 20.

Specifying the DIM or DEFREG statement allows a single string variable to treat 1
through 255 characters.

 DIM b$[255]
 DIM c$(2,3)[255]
 DEFREG d$[255]
 DEFREG e$(2,3)[255]

NOTE

BHT-BASIC does not support some of the statements and functions used in
Microsoft BASIC or QuickBASIC. For details, refer to Appendix K,
“Unsupported Statements and Functions.”

Chapter 2. Development Environment and Procedures

17

2.4 Producing a User Program
2.4.1 Starting the BHT-BASIC 3.5 Compiler
Start the Compiler, e.g., by choosing the "BHTC35W.EXE" from the Windows Explorer or the
"BHT-BASIC 3.5" registered to the Start menu.

The BHT-BASIC 3.5 Compiler supports the following menus and icons which provide quick
ways to do tasks:

Menus Commands Icons Functions
File

New
Open
Close
Open Project
Close Project
Exit

Creates a new project.
Opens an existing file.
Closes the active file.
Opens an existing project.
Closes the active project.
Quits the BHT-BASIC 3.5 Compiler.

View Toolbar
Status Bar
Clear Screen

 Shows or hides the toolbar.
Shows or hides the status bar.
Clears the screen.

Project Select File

Add File

Selects or deletes a file in the active project.

Adds one or more files to the active project.

Build Compile

Build

Compiles one or more active files (or active
project) to produce an object file(s).

Compiles one or more active files (or active
project) and then links them to produce a
user program.

Tools Options
Run Editor
Set Editor

Sets compiling options and linking options.
Runs the editor.
Selects the editor you want to run.

Help About BHT-BASIC
3.5

 Displays the program information, version
number and the copyright.

(Yellow)

(Red)

Main window

Tool bar

Menu bar

18

2.4.2 Outline of User Program or Library
Production Procedure

Unlike the BHT-BASIC 3.0 Compiler that converts a single source program into a user
program (file named XXX.PD3), the BHT-BASIC 3.5 Compiler converts source programs into
object pro-grams (files named XXX.OBJ) and then links those object programs to produce a
user program (XXX.PD3). A sequence of the compiling and linking processes is called "Build."
The BHT-BASIC 3.5 Compiler can also build a library (XXX.LIB). You may select whether you
build a user program or library on the Project Configuration Files dialog box.
You may build a user program or library out of either multiple files or a single file (as in the
BHT-BASIC 3.0 Compiler).
Note that to build a library out of a single source file, you need to create a project file for a
single source file.

[1] Building a user program out of a single source program file
What follows is a general procedure for building a user program out of a single source
program file.

(1) Designate a file that you want to use. (For details, refer to Subsection 2.4.3.1,
"Designating a single source file.")

(2) Build a user program out of the designated file. (For details, refer to Subsection 2.4.4,
[3], "Building.")

[2] Building a library out of a single source file, or building a
user program or library out of multiple source files

What follows is a general procedure for building a library out of a single source file or for
building a user program or library out of multiple source files.

(1) Designate a project that you want to use. (For details, refer to Subsection 2.4.3.2,
"Designating a project file.")

(2) Build a user program or library out of the designated project. (For details, refer to
Subsection 2.4.4, [3], "Building.")

Chapter 2. Development Environment and Procedures

19

2.4.3 Designating a Single Source File or a Project
File

2.4.3.1 Designating a single source file
Just as in the conventional BHT-BASIC 3.0 Compiler, you may designate a single source file
to build a user program or library.

[1] Select a source file
(1) In any of the following methods, display the Open File dialog box shown below:

�From the File menu, choose the Open command.

�Click the open file button in the toolbar.
�While holding down the Ctrl key, press the O key.

(2) Select a source file you want to use and then click the Open button.

Then the source file opens.

(3) Proceed to Section 2.4.4, "Compiling and Building."

20

2.4.3.2 Designating a project file
To build a library out of a single source file or to build a user program or library out of multiple
source files, you need to create a project file (described in [1] later) or select an existing
project file (in [2]).
You may add files or delete existing files to/from the designated project file (described in [3]
and [4], respectively).

[1] Create a new project
(1) In any of the following methods, display the Create File dialog box shown below:

�From the File menu, choose the New command.

�Click the new file button in the toolbar.
�While holding down the Ctrl key, press the N key.

(2) Designate a project file you want to create (Projtest.bhp in this example), and then click

the Save button.
If you create a project file having the same name as one already used, the warning
message dialog box will appear. If you want to overwrite, click the OK button; if you do
not, click the Cancel button to quit the project creating procedure.

(3) The Add File(s) dialog box appears. Into the newly created project, you need to put files
which should configure the project, according to the instructions given in [3], "Add files to
a project file."

Chapter 2. Development Environment and Procedures

21

[2] Select an existing project file
You may select an existing project file in the Select Project File dialog box or in the Open File
dialog box.

Selecting in the Select Project File dialog box
(1) In any of the following methods, display the Select Project File dialog box shown below:

�From the File menu, choose the Open Project command.

�Click the open project button (yellow) in the toolbar.
�While holding down the Ctrl key, press the P key.

(2) Select an existing project file you want to use (Projtest.bhp in this example), and then

click the Open button.

(3) Proceed to Section 2.4.4, "Compiling and Building."

Selecting in the Open File dialog box

(1) Display the Open File dialog box, referring to Subsection 2.4.3.1, [1].

(2) Select an existing project file you want to use (Projtest.bhp in this example), and then
click the Open button.

(3) Proceed to Section 2.4.4, "Compiling and Building."

22

[3] Add files to a project file
You may add one or more source files and libraries to a project file at a time.

(1) Create a new project (Refer to [1] in this subsection) or select an existing project file to
which you want to add files (Refer to [2] in this subsection).

(2) In either of the following methods, display the Add File(s) dialog box shown below:
�From the Project menu, choose the Add File command.

�Click the add file button in the toolbar.

(3) Select files you want to add to the active project file and then click the Open button.

(4) The Project Configuration Files dialog box will appear which lists files in the project. For
details about the Project Configuration Files dialog box, refer to [4], "Select files in the
active project" given later.

Chapter 2. Development Environment and Procedures

23

[4] Select files in the active project
From files existing in the active project, you may select files that you want to compile or build.

(1) In either of the following methods, display the Project Configuration Files dialog box
shown below:
�From the Project menu, choose the Select File command.

�Click the select file button (red) in the toolbar.

TIP

The Project Configuration Files dialog box will appear also following the new
project creation process (see [1] earlier) or the file addition process to an
existing project (see [3] earlier).

(2) Select files you want to compile or build.

(3) In the Project Configuration Files dialog box are the following display areas and buttons

from which you may also select a user program or library to be built, may start compiling
or building, and may run the editor, as well as adding or deleting files to/from the active
project.

• List of Files in a Project
This display area shows a list of files which configures the active project. The filenames
are displayed as a relative path.

Project configuration
files display area

Main object display area Selection buttons for user
program or library to be created

Drive buttons

24

• Main Object display area
This area shows the name of a main object in a user program if you have selected "User
program (PD3)" with the "Type of File to be Created" selection button. If you have selected
"Create library (LIB)," nothing will appear on this area.

• Type of File to be Created
Lets you select whether you create a user program (PD3) or library (LIB).

• Add File button
Adds the currently selected files to the active project. (Refer to “[3] Add files to a project
file.”)

• Delete File button
Deletes the currently selected file(s) from the active project.

• Main Object button
Specifies the currently selected file as a main object if you have selected "User program
(PD3)" with the “Type of File to be Created” selection button. A library cannot be specified
as a main object.
This button will be disabled if more than one file is selected or “Create library (LIB)” is
selected with the “Type of File to be Created” selection button.

• Run Editor button
Opens a file currently selected by the editor.

• Compile button
Compiles currently selected source files into object files.

• Build button
Builds a user program out of the active project.

Chapter 2. Development Environment and Procedures

25

2.4.4 Compiling and Building
First specify the options and then proceed to the compiling or building process.

[1] Specifying the compiling and linking options
(1) In either of the following methods, display the Set Options dialog box shown below:

�From the Tools menu, choose the Options command.

�Click the option button in the toolbar.

(2) Select the check boxes of the options you want to specify.
For details about the options, refer to Subsection 2.4.7.

26

[2] Compiling
In any of the following methods, compile the currently selected source file(s) into an object
file(s):

�From the Build menu, choose the Compile command.
�In the Project Configuration Files dialog box, click the Compile button. (For details
 about the Project Configuration Files dialog box, refer to Subsection 2.4.3.2, [4].)

�Click the compile start button in the toolbar.
�While holding down the Ctrl key, press the G key.

If compiling ends normally, the screen shown below will appear.

[3] Building
In any of the following methods, build a user program or library out of object files:

�From the Build menu, choose the Build command.
�In the Project Configuration Files dialog box, click the Build button. (For details about
 the Project Configuration Files dialog box, refer to Subsection 2.4.3.2, [4].)

�Click the build start button in the toolbar.
�While holding down the Ctrl key, press the B key.

If building ends normally, the screen shown below will appear.

Chapter 2. Development Environment and Procedures

27

2.4.5 Setting the Editor for Displaying Files
Set the editor that you want to use for displaying source files and error message files
(XXX.ERR) according to the steps below.

(1) From the Tools menu, choose the Set Editor command.

The Set Editor dialog box appears as shown below.

(2) In the Command line edit box, type the filename of the editor. If the editor is not located in

the current directory or working directory, type the absolute path or relative path. (The
default editor is Windows NotePad.)

If you don’t know the editor’s filename or directory path, choose the Browse button in the
Set Editor dialog box to display the Select Editor dialog box. From a list of files and
directories displayed, select the appropriate filename and then choose the OK button.

TIP

Setting the editor having the tag-jump function allows you to efficiently correct
a source program file which has caused an error. For details about the
tag-jump function, refer to the user’s manual of the editor.

28

2.4.6 Error Messages and Their Indication onto the
Main Window

[1] Selecting either an editor or main window as an error
message output device

According to the procedure below, you may select whether error messages should be
outputted to an editor or main window if an error message file (XXX.ERR) is produced.

(1) From the Tools menu, choose the Options command.

The Set Options dialog box appears as shown below.

(2) In the Set Options dialog box, select either "To the Editor" or "To the Window" check box.

(The default output device is Editor.)

Chapter 2. Development Environment and Procedures

29

[2] How error messages are displayed on the editor or main
window

During building, the BHT-BASIC 3.5 Compiler may detect errors which can be divided into two
types: syntax errors and fatal errors.
�Syntax errors
If the Compiler detects a syntax error, it outputs the error message to the XXX.ERR file. For
details about the file, refer to Subsection 2.4.9, "Output from the BHT-BASIC 3.5 Compiler."
If the "To the Editor" check box of the Error Message Output is selected in the Set Options
dia-log box, the editor will automatically open and show the detected errors. If the "To the
Window"
check box is selected, those errors will be outputted to the main window.
The total number of detected syntax errors always displays on the main window.

- Error messages displayed on the editor

- Error messages displayed on the main window

�Fatal errors
If the Compiler detects a fatal error, it outputs the error message to the main window.

�ERRORLEVEL
The ERRORLEVEL function is supported only when a +E option is specified at the command
line. (Refer to Subsection 2.4.8, "Starting the BHT-BASIC Compiler from the Command Line,"
[3].)

30

2.4.7 Options
To specify compiling options and linking options, select the check-box options you want in the
Set Options dialog box. Each of available options is explained below.

[1] Compiling options

Compiling Options Description

Debug information file Outputs debug information files (XXX.ADR,
XXX.LBL, and XXX.SYM files).
If this option is not selected, no debug information
file will be outputted. (default)
(For details, refer to [3].)

Address-source List Outputs an address-source list to the file XXX.LST.
If this option is not selected, no address-source list
will be outputted. (default)
(For details, refer to [4].)

Symbol table Outputs a symbol table to the file XXX.LST.
If this option is not selected, no symbol table will be
outputted. (default)
(For details, refer to [4].)

X (Cross) reference Outputs a cross reference to the file XXX.LST.
If this option is not selected, no cross reference will
be out-putted.(default)
(For details, refer to [4].)
Outputs the sizes of common variables, work
variables, and register variables to the file
XXX.ERR. or main window.
If this option is not selected, no variable size will be
outputted.(default)
The output example (TESTA.err) is as follows:

Variable size

Common area

Work area

Register area

= XXXXX bytes (XXXXX bytes on
memory. XXXXX bytes in file)
= XXXXX bytes (XXXXX bytes on
memory. XXXXX bytes in file)
= XXXXX bytes in file

Chapter 2. Development Environment and Procedures

31

[2] Linking options

Linking Options Description

Mapfile Outputs map information to the file XXX.MAP.
If this option is not selected, no map information will
be outputted. (default)
(For details, refer to [5] in this subsection.)

[3] Outputting debug information files
If you select the "Debug information file" check box in the Set Options dialog box and run the
Compiler, then the Compiler will output three types of debug information files.
Each information file will be given the same name as the source program and annexed one of
the three extensions .ADR, .LBL, and .SYM according to the file type as listed below.

Debug Information Files Files Filename Extension

Source line–address file
Label-address file
Variable–intermediate language file

.ADR
.LBL
.SYM

•••• Source lineSource lineSource lineSource line––––address file address file address file address file (.ADR)(.ADR)(.ADR)(.ADR)
Indicates the correspondence of line numbers in a source program to their addresses in
the object program written in intermediate language.
Each line consists of a four-digit line number in decimal notation and a four-digit address
in hexadecimal notation.

•••• LabelLabelLabelLabel––––address file (.LBL)address file (.LBL)address file (.LBL)address file (.LBL)
Indicates the correspondence of labels and user-defined functions defined in a source
program to their addresses in the object program written in intermediate language.
For user-defined functions in the one-line format, the first addresses of those functions in
the object program are listed in this file; for those in the block format, the addresses of the
first statements in the blocks are listed.
Each line consists of a label name or a user-defined function name, and a four-digit
address in hexadecimal notation.

•••• VariableVariableVariableVariable––––intermediate language file (.SYM)intermediate language file (.SYM)intermediate language file (.SYM)intermediate language file (.SYM)
Indicates the correspondence of variables used in a source program to the intermediate
language.
Each line consists of a variable name and its intermediate language.

32

[4] Outputting list files
The Compiler may output three types of list files as listed below depending upon the options
specified at the start of compiling, in order to help you program and debug efficiently.

List File Option Filename Extension

Address-source list
Symbol table
Cross reference

Select the Address-source List check box.
Select the Symbol table check box.
Select the X (Cross) reference check box.

.LST

The list file will be given the same name as the source program file and annexed with an
extension .LST.
When outputted, each list file has the header format as shown below.
BHT-BASIC 3.5 Compiler Version X.XX ←Version of BHT35CPL.DLL
Copyright (C) DENSO WAVE INC. 2001-2002. All rights reserved.

source = Source filename.ext (to be given as an absolute path)

����AddressAddressAddressAddress----source listsource listsource listsource list
Select the Address-source List check box and run the Compiler, and the following information
will be outputted:
BHT-BASIC 3.5 Compiler Version X.XX ←Version of BHT35CPL.DLL
Copyright (C) DENSO WAVE INC. 2001-2002. All rights reserved.
source = C:¥TEST.SRC

Statement

'**
'*
ON ERROR GOTO ErrorProg

DEFREG vF%=0
DEFREG ConF%=0
DEFREG RecF%=0
DEFREG FreeSpace
DEFREG ESC =-1
DEFREG bps$="9600"

REM $ INCLUDE : 'SAKeyFnc.SRC'

Master$ = "Master92.DAT"
Workfile$ = "WrkFils.DAT"
Sales$ = "SalesSA.DAT"

IF vf% = 0 THEN

GOSUB cautionB
CLOSE

 Freespace = FRE(1)
 vF%=1
 END IF
MainProg:

Addr

0000
0000
0000
0003
0003
0003
0003
0003
0003
0003
0003
0338
0338
0338
034A
035C
036D
036D
0377
037A
037E
0387
038E
038E
038E

Line

0001
0002
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

GOSUB filOpen

0000 Error Statement Compiled End.

Address of object program in
intermediate language

Source program statement

Line number in source
program

Chapter 2. Development Environment and Procedures

33

•••• Address of object programAddress of object programAddress of object programAddress of object program in intermediate language in intermediate language in intermediate language in intermediate language
Shows an intermediate language address corresponding to a source program line in
four-digit hexadecimal notation.

•••• Line number Line number Line number Line number in source programin source programin source programin source program
Shows a line number for a source program statement in four-digit decimal notation.

•••• Source program statementSource program statementSource program statementSource program statement
Shows the same content as a statement written in a source program.

Notes for address-source lists
(1) If a source program statement contains line feeding caused by a CR code preceded by

an underline (_) or a comma (,), the line number will increase, but no address will appear.

(2) Neither page headers nor new page codes will be inserted.

(3) If a syntax error occurs, the error message will be outputted on the line following the error
statement line.

(4) If more than one syntax error occurs in a statement, the error message only for the first
detected error will appear.

(5) A TAB code will be replaced with eight space codes.
The total number of syntax errors will be outputted at the end of the list.

����Symbol tableSymbol tableSymbol tableSymbol table
Select the Symbol table check box and run the Compiler, and the following information will be
outputted:
BHT-BASIC 3.5 Compiler Version X.XX ←Version of BHT35CPL.DLL
Copyright (C) DENSO WAVE INC. 2001-2002. All rights reserved.
source = C:¥Test.SRC

C O M M O N S Y M B O L
W O R K S Y M B O L
F%
SU%

INPUTERR%
SUBC%

J2%
SUBFLAG%

SEQNO%
WREC%

SREC%
X1%

R E G I S T E R S Y M B O L
COMF%

 RECNO%

L A B E L S Y M B O L
AMOUNT

AMOUNTKYIN CAUTIONB COMRETRY DATASET

L A B E L S Y M B O L
FNKEYINPUT FNSPAT

FNXCENTER FNZPAT

Variables will be outputted in the following format:
In case of global variables
In case of local variables
In other cases

Variablename
Variablename:Filename (no extension)
Variablename:Name of user-defined function defining
the variable

Symbol table for common variables

Symbol table for register variables

Symbol table for work variables

Symbol table for labels

Symbol table for user-defined functions

34

•••• Symbol table for common variableSymbol table for common variableSymbol table for common variableSymbol table for common variablessss
Lists common variables arranged according to their types. An array variable has a suffix of
parentheses ().

•••• Symbol table for work variableSymbol table for work variableSymbol table for work variableSymbol table for work variablessss
Lists work variables and dummy arguments arranged according to their types. An array
variable has a suffix of parentheses ().

•••• Symbol table for register variableSymbol table for register variableSymbol table for register variableSymbol table for register variablessss
Lists register variables arranged according to their types. An array variable has a suffix of
parentheses ().

•••• Symbol table for labelsSymbol table for labelsSymbol table for labelsSymbol table for labels
Lists labels arranged in alphabetic order.

•••• Symbol table for userSymbol table for userSymbol table for userSymbol table for user----defined functiondefined functiondefined functiondefined functionssss
Lists user-defined functions arranged according to their types (i.e. integer, real, and string
types).

Each of common variables, work variables, and register variables can be divided into the
fol-lowing types:

Non-array integer type
Array integer type

Non-array real type
Array real type

Non-array string type
Array string type

����Cross referenceCross referenceCross referenceCross reference
Select the X (Cross) reference check box and run the Compiler, and the following information
will be outputted:

•••• For common variableFor common variableFor common variableFor common variablessss
Outputs line numbers where common variables are defined and referred to.

•••• For work variableFor work variableFor work variableFor work variablessss
Outputs line numbers where work variables and dummy arguments are referred to.

•••• For register variableFor register variableFor register variableFor register variablessss
Outputs line numbers where register variables are defined and referred to.

•••• For labelsFor labelsFor labelsFor labels
Outputs line numbers where labels are defined and referred to.

•••• For userFor userFor userFor user----defined functiondefined functiondefined functiondefined functionssss
Outputs line numbers where user-defined functions are defined and referred to.

Chapter 2. Development Environment and Procedures

35

[5] Outputting a mapfile
Select the Mapfile check box of the Linking Options in the Set Options dialog box and build a
user program, and the mapfile as shown below will be outputted. The mapfile will be given the
same name as the project file and annexed with an extension .MAP.

COMMON SYMBOL
C% 2400

WORK SYMBOL
A
B
W$

2900
2901
2A00

REGISTER SYMBOL
R$

2E00

FUNCTION SYMBOL
AAA

003B

OBJECT INFORMATION
offset size

PRC
REG
PRD

0000
0035
0064

0035
002F
0047

PRD INFORMATION
offset size [Filename]

test.obj
Function.obj
[Total]

0000
0038
0047

0038
000F

•••• Map for common variableMap for common variableMap for common variableMap for common variablessss
Shows the symbols of common variables in the Interpreter which are arranged according
to their types together with their pointing addresses. An array variable has a suffix of
parentheses (). If no common variables are used, this item will not be outputted.

•••• Map for work variableMap for work variableMap for work variableMap for work variablessss
Shows the symbols of work variables in the Interpreter which are arranged according to
their types together with their pointing addresses. An array variable has a suffix of
parentheses (). If no work variables are used, this item will not be outputted.

•••• Map for register variableMap for register variableMap for register variableMap for register variablessss
Shows the symbols of register variables in the Interpreter which are arranged according to
their types together with their pointing addresses. An array variable has a suffix of
parentheses (). If no register variables are used, this item will not be outputted.

Map for common variables

Map for work variables

Map for register variables

Map for user-defined function

Map for variables and object codes

Details of object codes

36

•••• Map for userMap for userMap for userMap for user----defined functiondefined functiondefined functiondefined functionssss
Shows the symbols of user-defined functions in the Interpreter which are arranged
according to their types (i.e., integer, real, and string types). If no user-defined functions
are used, this item will not be outputted.

•••• Map for variables and object codesMap for variables and object codesMap for variables and object codesMap for variables and object codes
Shows the addresses of variables and object codes in a user program. The PRC indicates
the program allocation information area, the REG indicates the register variables area,
and the PRD indicates the program reserved area.

•••• Details of objectDetails of objectDetails of objectDetails of object codes codes codes codes
Shows the allocation information of objects in a user program. The [Filename] lists the
names of object files configuring a user program. The [Offset] lists the heading addresses
of individual object files in 4-digit hexadecimal form. The [Size] lists the sizes of individual
object files in 4-digit hexadecimal form.

[6] Calculating the address for a statement causing a run-time

error
If a run-time error occurs, the Compiler returns the address (ERL=XXXX) assigned starting
from the head of the user program. When building a user program out of multiple object files,
therefore, you need to calculate an address of a statement in an object file causing a run-time
error according to the procedure given below.

(1) In the Set Options dialog box, select the Address-source List check box of the Compiling
Options and the Mapfile check box of the Linking Options beforehand.

(2) Build a user program out of object files so as to output the address-source list file (source
filename.LST) and the mapfile (projectname.MAP).

(3) In the "details of object codes" item, retrieve an object file containing the address
(ERL=XXXX) assigned to a statement causing a run-time error.

(4) In the Address-source List file of the retrieved object file, retrieve the address for the
statement causing a run-time error.

Subtract the heading address of the object file from the address of the statement causing a
run-time error, and you can obtain where a run-time error has occurred.

Chapter 2. Development Environment and Procedures

37

2.4.8 Starting the BHT-BASIC Compiler from the
Command Line

You may start the BHT-BASIC Compiler from the command line in the MS-DOS Prompt of
Windows95/98/NT/2000/XP.

[1] Syntax
At the MS-DOS command prompt, type in the following format:

BHTC35W [options] [[directorypath]filename…][options]

directorypath

You may specify either an absolute path or relative path.
Omitting this option will make the Compiler look for that file in
the current working directory. Specifications of directorypath
only is not allowed.

filename

You may specify the name of any of a project file, source file
and library file.

options

You may specify compiler processing options, compiling
options, and linking option. For details, refer to the next item,
[2], "Options."

NOTE

The Compiler will recognize a project specified by filename merely as a group
of files. If you do not specify a +BL option (Building library described in [2]),
there-fore, the Compiler automatically produces a user program.

TIP

To produce a user program from a single source file in a batch file, type in the
following:

 >START /W BHTC35W +E +B TEST.SRC
Writing START /W as above will not proceed to the next batch processing until
the BHT-BASIC 3.5 Compiler completes the processing. For details about +E
or +B option, refer to “[2] Options” in this subsection.

38

[2] Options
The BHT-BASIC 3.5 Compiler supports three types of options—compiler processing options,
compiling options, and linking option.

����ComComComCompiler processing optionspiler processing optionspiler processing optionspiler processing options

Processing options Description

+C Compiles one or more designated file(s) into object file(s).
+B programname Builds a user program with the specified program name. If no

programname is specified, the filename specified first will apply.
+BL libraryname Builds a library with the specified library name. If no libraryname

is specified, the filename specified first will apply.
+E , -E Determines whether to terminate the BHT-BASIC 3.5 Compiler

after completion of processing.
Specifying the +E terminates the Compiler without displaying the
compiler window after completion of processing.
Specifying the -E displays the compiler window and does not
terminate the Compiler even after completion of processing.
The default is -E.

NOTE

If more than one option with different specifications is written (e.g., +C, +B,
and +BL), the last option takes effect.
If the same option is set more than one time with different specifications (e.g.,
+E and -E), the last option takes effect.

Chapter 2. Development Environment and Procedures

39

����Compiling optionsCompiling optionsCompiling optionsCompiling options

Compiling options Description

+D +D Outputs debug information files (XXX.ADR, XXX.LBL. and
XXX.SYM files).
(Same as you select the Debug information file check box in the
Set Options dialog box. Refer to Subsection 2.4.7, [1].)

+L Outputs an address-source list to the file XXX.LST.
(Same as you select the Address-source List check box in the
Set Options dialog box. Refer to Subsection 2.4.7, [1].)

+S Outputs a symbol table to the file XXX.LST.
(Same as you select the Symbol table check box in the Set
Options dialog box. Refer to Subsection 2.4.7, [1].)

+X Outputs a cross reference to the file XXX.LST.
(Same as you select the X (Cross) reference check box in the
Set Options dialog box. Refer to Subsection 2.4.7, [1].)

+V Outputs the sizes of common variables, work variables, and
register variables to the file XXX.ERR or main window.
(Same as you select the Variable size check box in the Set
Options dialog box. Refer to Subsection 2.4.7, [1].)

����Linking optionLinking optionLinking optionLinking option

Linking options Description

+M Outputs map information to the file XXX.MAP.
(Same as you select the Mapfile check box in the Set Options
dialog box. Refer to Subsection 2.4.7, [2].)

NOTE

Options specified at the command line will take effect only when you run the
BHT-BASIC3.5 Compiler at the command line. (Those option settings will not
be written into the initialization file BHTC35W.INI.)
Even if you specify a -E option (default) so that the Compiler does not
terminate after completion of processing, neither filename nor options
designated for the preceding processing will be saved. You need to designate
them again.
Option settings stored in the initialization file BHTC35W.INI will not apply
when you run the BHT-BASIC 3.5 Compiler at the command line. To output
debug information files, therefore, you need to specify options at the command
line.

40

[3] Error Level Indication by ERRORLEVEL
If you specify a +E option at the command line and run the BHT-BASIC 3.5 Compiler, the
ERRORLEVEL of MS-DOS allows the Compiler to set the compiling end status to the
MS-DOS environmental variable ERRORLEVEL after completion of processing, as any of the
error levels listed below.
By referring to this ERRORLEVEL, you can learn the compiling end status.

ERRORLEVEL Description
0
1
2
4
5
6
7
8
9

10
20
21
30
40
70
99

Normal end
No designated file or path found.
Filename format not correct
Project invalid
File open error
Write-protect error
File renaming failure
Project file creating failure
Existing project file deleted
Entered option invalid
Compiling syntax error
Compiling fatal error
Link error
Library error
No empty space in the designated disk
Other errors

By making a batch file which automatically starts proper operation according to the error level,
you can facilitate debugging procedures.
For details about the ERRORLEVEL, refer to the MS-DOS Reference Manual.

Chapter 2. Development Environment and Procedures

41

2.4.9 Output from the BHT-BASIC 3.5 Compiler
The BHT-BASIC 3.5 Compiler outputs the following information as well as object programs to
the destination depending upon the conditions.

Output Destination Conditions

Object file File XXX.OBJ (in the
 directory where the source
program is located)

When the specified source
program has been normally
compiled without occurrence of a
compiling error.

User program File YYY.PD3 (in the direc-
tory where the project is
located)

When the specified project has
been normally built without
occurrence of a compiling error
or linking error.

Library file File YYY.LIB (in the directory
where the project is located)

When the specified project has
been normally built without
occurrence of a compiling error
or library error.

File XXX.ERR (in the direc-
tory where the source
program is located)

If a compiling error is detected
during compilation of the
specified source program.

Error message
(Syntax error)

File YYY.ERR (in the direc-
tory where the project is
located)

If an error is detected during
building of the specified project.

Error message
(Fatal error)

Main window If a fatal error is detected during
compilation of the specified
source program.

Source line–
Address
information

File XXX.ADR (in the direc-
tory where the source pro-
gram is located)

Label–
Address
information

File XXX.LBL (in the direc-
tory where the source pro-
gram is located)

Debug
infor-
mation

Variable–
Intermediate
language
information

File XXX.SYM (in the direc-
tory where the source pro-
gram is located)

If the Debug information file
check box is selected in the Set
Options dialog box.

42

Output Destination Conditions

Address–Source list If the Address-source List
check box is selected in the
Set Options dialog box.

Symbol table If the Symbol table check
box is selected in the Set
Options dialog box.

Cross reference

File XXX.LST (in the direc-
Tory where the source
pro-gram
is located)

If the X (Cross) reference
check box is selected in the
Set Options dialog box.

Sizes of variables File XXX.ERR (in the direc-
tory where the source
program
is located) or
File YYY.ERR (in the direc-
tory where the project is
located)

If the Variable size check
box is selected in the Set
Options dialog box.

Mapfile File YYY.MAP (in the direc-
Tory where the project is
located)

If the Mapfile check box is
selected in the Set Options
dialog box.

XXX represents a source program filename.
YYY represents a project name.

Chapter 2. Development Environment and Procedures

43

2.4.10 Structure of User Programs and Libraries
If you specify a user program to be produced in the Project Configuration Files dialog box, the
BHT-BASIC 3.5 Compiler produces a user program provided that no compiling error or link
error occurs. The user program file will be given the same name as the project file and
annexed with an extension .PD3.
If you specify a library to be produced, the Compiler produces a library provided that no
compiling error or library error occurs. The library file will be given the same name as the
project file and annexed with an extension .LIB.
If the name of a newly produced file is the same as that of an existing file in the destination
directory, Compiler will overwrite the existing file with the new file.

Structure of user programs
A user program is expressed in the intermediate language, where statements, functions and
variables are in two-byte form of ASCII characters. A record is 128 bytes in length and
annexed with CR and LF codes.
When downloaded to the BHT and stored in its memory, a user program will be compressed
from two-byte form into single-byte hexadecimal form. Accordingly, the length of a record
comes to 64 bytes.

Structure of libraries
A library consists of more than one object filename and object information.

44

2.5 Downloading
2.5.1 Overview of Transfer Utility/Ir-Transfer Utility

C/Ir-Transfer Utility E
Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E transfers user programs and data files
(e.g., master files) between the BHT and the connected personal computer. It has the
following functions:

Functions of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E
Downloading extension programs
Downloading programs
Downloading data
Uploading programs
Uploading data

For operations of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer Utility E, refer to the related
guide.

2.5.2 Setting up the BHT
If the error message given below appears, it is necessary to set the calendar clock before
downloading user programs.

"Set the current date and time. XX/XX/XX YY:YY"
The above error message appears in any of the following cases:

• The BHT is first powered on from the time of purchase.

• The BHT is powered on after being left without main battery loaded for a long time.
For details about the calendar clock setting, refer to the BHT User’s Manual.

Chapter 2. Development Environment and Procedures

45

2.6 Executing a User Program
2.6.1 Starting
To run a user program, start System Mode and select the desired program in the EXECUTE
PROGRAM menu.
If you have selected a user program as an auto-start execution program in the SET SYSTEM
menu of System Mode, then the BHT will automatically run the program when turned on.
If no user program has been selected as an auto-start execution program, turning the BHT on
will transfer the control to Directory Manager that starts a first-loaded one out of user
programs (.PD3) loaded in the BHT which will appear on the top of the EXECUTE PROGRAM
menu.
For the operating procedure of System Mode, refer to the BHT User’s Manual.

2.6.2 Execution
The Interpreter interprets and executes a user program from the first statement to the next,
one by one.

2.6.3 Termination
The BHT system program terminates a running user program if

• the END, POWER OFF, or POWER 0 statement is executed in a user program,

• the power switch is pressed,

• no valid operations are performed within the specified time length (Automatic
powering-off),
Valid operations: - Entry by pressing any key

- Bar-code reading by pressing the trigger
switch

- Data transmission

- Data reception

Specified time length:

Length of time specified by the POWER
statement in the user program. If not
specified in the program, three minutes will
apply.

or

• the battery voltage level becomes low.
Low battery: If the voltage level of the rechargeable

battery cartridge or that of the dry cells
drops below the specified level, the BHT
displays the low battery warning message on
the LCD and powers itself off.

If the resume function is activated in System Mode, only the execution of the END, POWER OFF,
or POWER 0 statement can terminate a running user program. Other cases above merely turn
off the power, so turning it on again resumes the program.

46

Chapter 3
Program Structure

CONTENTSCONTENTSCONTENTSCONTENTS

3.1 Program Overview ..47
3.1.1 Statement Blocks...47

[1] Subroutines ..47
[2] Error-/Event-handling Routines ..47
[3] User-defined Functions ..48
[4] Block-structured Statements...48

3.1.2 Notes for Jumping into/out of Statement Blocks..49

3.2 Handling User Programs...50
3.2.1 User Programs in the Memory ..50
3.2.2 Program Chaining ...50
3.2.3 Included Files ..51

Chapter 3. Program Structure

47

3.1 Program Overview
3.1.1 Statement Blocks
A statement block is a significant set of statements (which is also called "program routine").
The following types of statement blocks are available in programming for the BHT:

Statement Blocks Description
Subroutine A routine called by the GOSUB statement.

Error-/event-handling routine An error-/event-handling routine to which control

is passed when an error trap or event (of
keystroke) trap occurs, respectively.

User-defined function A function defined by any of the following
statements:
DEF FN (in single-line form)
DEF FN...END DEF (in block form)
SUB...END SUB
FUNCTION...END FUNCTION

Block-structured statement FOR...NEXT
IF...THEN...ELSE...END IF
SELECT...CASE...END SELECT
WHILE...WEND

Avoid jumping into or out of the midst of any of the above statement blocks using the GOTO
statement; otherwise, it will result in an error. (Refer to Section 3.1.2.)

[1] Subroutines
A subroutine is a statement block called from the main routine or other subroutines by the
GOSUB statement.
Using the RETURN statement passes control from the called subroutine back to the statement
immediately following the GOSUB statement in the original main routine or subroutine.

[2] Error-/Event-handling Routines
An error- or event-handling routine is a statement block to which program control passes
when an error trap or event (of keystroke) trap occurs during program execution, respectively.
The RESUME statement passes control from the error-handling routine back to the desired
statement.
The RETURN statement in the keyboard interrupt event-handling routine returns control to the
statement following the one that caused the interrupt.

48

[3] User-defined Functions
Before calling user-defined functions, it is necessary to define those functions with any of the
following statements. Generally, those statements should be placed before the main routine
starts.

DEF FN (in single-line form)
DEF FN ..END DEF (in block form)
SUB ..END SUB
FUNCTION ..END FUNCTION

When using SUB and FUNCTION functions written in other files, it is necessary to declare
them with the DECLARE statement before calling them.

[4] Block-structured Statements
The statements listed below have the statement block structure and are useful for structured
programming.

FOR...NEXT
IF...THEN...ELSE...END IF
SELECT...CASE...END SELECT
WHILE...WEND

�Nested Structure
Block-structured statements allow you to write nesting programs as shown below.

FOR i=1 TO 10
FOR j=2 TO 10 STEP 2

PRINT i,j,k
NEXT j

NEXT i
Nesting subroutines as shown below is also possible.

GOSUB aaa
aaa

PRINT "aaa"
GOSUB bbb
RETURN

bbb
PRINT "bbb"
RETURN

Chapter 3. Program Structure

49

3.1.2 Notes for Jumping into/out of Statement Blocks
It is not recommended to jump control from a main routine or subroutines into the midst of
significant statement blocks or to jump out from the midst of those statement blocks, using the
GOTO statement.

Statement Blocks Jump into Jump out
Subroutine
Error-/event-handling routine
Block-format user-defined function
Block-structured statement

×
×
×
×

×
×
×
△

×: To be avoided. A run-time error may occur.

△: Not recommended, although no run-time error will result directly. Nesting may cause a
run-time error.

• It is possible to jump control out of the midst of block-structured statements (except for
FOR...NEXT) by using the GOTO statement.

• Avoid jumping the control out of the midst of FOR...NEXT statement block with the
GOTO statement. The program given below, for example, should be avoided.

FOR I%=0 TO 10
IF I%=5 THEN

GOTO AAA
ENDIF

NEXT I%
AAA:

NOTE

Generally, the frequent or improper use of GOTO statements in a program will
decrease debugging efficiency and might cause fatal run-time errors. You are,
there-fore, recommended to avoid using GOTO statements, if possible.

50

3.2 Handling User Programs
3.2.1 User Programs in the Memory
The user area of the memory (memories) in the BHT can store more than one user program.
(For details about memories, refer to Appendix F, "Memory Area.")
If you have selected one of those programs as an execution program in the Setting menu of
System Mode, the BHT automatically runs the user program when powered on.
For the operating procedure of System Mode, refer to the BHT User’s Manual.

3.2.2 Program Chaining
Program chaining, which is caused by the CHAIN statement as shown below, terminates a
currently running user program and transfers control to another program.

CHAIN "another.PD3"
To transfer the variables and their values used in the currently running user program to the
chained-to program along the program chain, use the COMMON statement as follows:

COMMON a$(2),b,c%(3)
CHAIN "another.PD3"

The Interpreter writes these declared variable values into the "common variable area" in the
memory. To make the chained-to program refer to these values, use the COMMON statement
again.

COMMON a$(2),b,c%(3)
In BHT-BASIC, all of the name, type, definition order, and number of COMMON-declared
variables used in the currently running program should be identical with those in the next
program (the chained-to program).
When compiling and linking more than one file to produce a user program, define all
necessary common variables in the main object (to be executed first). In other objects,
declare common variables required only in that object. If you link an object where common
variables not defined in the main object are newly defined, an error will result.

'prog1.PD3
COMMON a(10),b$(3),c%

CHAIN "prog2.PD3"
'prog2.PD3
COMMON a(10),b$(3),c%

Since the COMMON statement is a declarative statement, no matter where it is placed in a
source program, the source program will result in the same output (same object program), if
compiled.

Chapter 3. Program Structure

51

3.2.3 Included Files
"Included files" are separate source programs which may be called by the INCLUDE
metacommand.
Upon encounter with the INCLUDE metacommand in a source program, the Compiler fetches
the designated included file and then compiles the main source program while integrating that
included file to generate a user program.
You should specify the name of an included file by using the REM $INCLUDE or ’$INCLUDE.
In the included files, you can describe any of the statements and functions except the REM
$INCLUDE and ’$INCLUDE.
If a compilation error occurs in an included file, it will be merely indicated on the line where the
included file is called by the INCLUDE metacommand in the main source program, and neither
detailed information of syntax errors detected in the included files nor the cross reference list
will be outputted. It is, therefore, necessary to debug the individual included files carefully
beforehand.

52

Chapter 4
Basic Program Elements

CONTENTSCONTENTSCONTENTSCONTENTS

4.1 Structure of a Program Line ..53
4.1.1 Format of a Program Line ...53

[1] Labels...53
[2] Statements..54
[3] Comments ..54

4.1.2 Program Line Length...55

4.2 Usable Characters ..56
4.2.1 Usable Characters...56
4.2.2 Special Symbols and Control Codes ...57

4.3 Labels..59

4.4 Identifiers ...60

4.5 Reserved Words..61

Chapter 4. Basic Program Elements

53

4.1 Structure of a Program Line
4.1.1 Format of a Program Line
A program line consists of the following elements:

[label] [statement] [:statement] ... [comment]

• label• label• label• label

A label is placed at the beginning of a program line to identify lines.

• statement• statement• statement• statement

A statement is a combination of functions, variables, and operators according to the
syntax.
A group of the statements is a program.

• comment• comment• comment• comment

You may describe comments in order to make programs easy to understand.

[1] Labels
To transfer control to any other processing flow like program branching, you may use labels
which designate jump destinations. Labels can be omitted if unnecessary.
Labels differ from line numbers used in the general BASIC languages; that is, labels do not
determine the execution order of statements.
You should write a label beginning in the 1st column of a program line. To write a statement
following a label, it is necessary to place one or more separators (spaces or tabs) between
the label and the statement.
As shown below, using a label in the IF statement block can eliminate the GOTO statement
which should usually precede a jump-destination label.

IF a=1 THEN Check
ELSE 500
ENDIF

Where the words "Check" and "500" are used as labels.
For detailed information about labels, refer to Section 4.3.

54

[2] Statements
Statements can come in two types: executable and declarative statements.

• Executable statements• Executable statements• Executable statements• Executable statements
They make the Interpreter process programs by instructing the operation to be
executed.

• Declarative state• Declarative state• Declarative state• Declarative statementsmentsmentsments
They manage the memory allocation for variables and handle comments. Declarative
statements available in BHT-BASIC are listed below.

REM or single quotation mark (’)
DATA
COMMON
DEFREG

Multi-statements:

You can describe multiple statements in one program line by
separating
them with a colon (:).

[3] Comments
A single quotation mark (’) or REM can begin a comment.

• Singl• Singl• Singl• Single quotation mark (')e quotation mark (')e quotation mark (')e quotation mark (')
A single quotation mark or apostrophe (’) can begin in the first column of a program
line to describe a comment.
When following any other statement, a comment starting with a single quotation mark
requires no preceding colon (:) as a delimiter.

’ comment
PRINT "abc" ' comment

• REM• REM• REM• REM
The REM cannot begin in the first column of a program line.
When following any other statement, a comment starting with a REM requires a
preceding colon (:).

REM comment
PRINT "abc" :REM comment

Chapter 4. Basic Program Elements

55

4.1.2 Program Line Length
A program line is terminated with a CR code by pressing the carriage return key.
The allowable line length is basically 512 characters excluding a CR code placed at the end
of the line.
In either of the following two description ways, however, you can write a program line of up to
8192 characters:
In the samples below, symbol "" denotes a CR code entered by the carriage return key.

• Extend a program line with an underline (_) and a CR code.
IF (a$=","OR a$=".")AND b<c_↓
AND EOF(d)THEN ...

• Extend a program line with a comma (,) and a CR code.
FIELD #1,13 as p$,5 as k$,↓
10 as t$↓

Note that the latter description way above (using a comma and CR code) cannot be used for
the PRINT, PRINT#, and PRINT USING statements. Only the former way should apply to
them.

56

4.2 Usable Characters
4.2.1 Usable Characters
Listed below are characters which can be used for writing programs. Note that a double quote
(") cannot be used inside a character string. Symbols | and ~ inside a character string will
appear as ↓and →on the LCD of the BHT, respectively.
If used outside of a character string, symbols and control codes below have special meaning
described in Subsection 4.2.2.

• Alphabet letters

• Numerals

• Symbols

• Control codes
• Katakana
• Kanji (2-byte codes)

(Full-width characters)
• Kanji (2-byte codes)

(Half-width characters)

Including both the uppercase and lowercase letters(A to Z
and a to z).
Including 0 to 9 for decimal notation, and 0 to 9 and A to F
(a to f) for hexadecimal notation.
Including the following:

$ % * + – . / < = > " & ' () : ; [] { } # ! ? @ | ~ , _
CR, space, and tab
e.g.,
e.g.,

e.g.,

����Distinction between Uppercase and Lowercase LettersDistinction between Uppercase and Lowercase LettersDistinction between Uppercase and Lowercase LettersDistinction between Uppercase and Lowercase Letters
The Compiler makes no distinction between the uppercase and lowercase letters, except for
those used in a character string data. All of the statements below, for example, produce the
same effect.

PRINT a

print a

PRINT A

print A

When used in a character string data, uppercase and lowercase letters will be distinguished
from each other. Each of the statements below, for example, produces different display
output.

PRINT "abc"

PRINT "ABC"

Chapter 4. Basic Program Elements

57

4.2.2 Special Symbols and Control Codes
Symbols and control codes used outside of a character string have the following special
meaning:

Symbols and
control codes Typical use

$
(Dollar sign)

String suffix for variables or user-defined functions

%
(Percent sign)

Integer suffix for variables, constants (in decimal notation), or
user-defined functions

*
(Asterisk)

Multiplication operator

+
(Plus sign)

• Addition operator or unary positive sign
• Concatenation operator in string operation

• Format control character in PRINT USING statement

–
(Minus sign)

Subtraction operator or unary negative sign

.
(Period)

• Decimal point
• Format control character in PRINT USING statement

/
(Slant)

• Division operator
• Separator for date information in DATE$ function

<
(Less-than sign)

Relational operator

=
(Equal sign)

• Relational operator
• Assignment operator in arithmetic or string operation

• User-defined function definition expressions in singleline form
DEF FN

• Register variable definition expressions

>
(Greater-than sign)

Relational operator

"
(Double quote)

A pair of double quotes delimits a string constant or a device
filename.

&
(Ampersand)

• Integer prefix for constants (in hexadecimal notation), which
should be followed by an H.

• Format control character in PRINT USING statement

'
(single quotation mark

or apostrophes)

• Initiates a comment.
• A pair of apostrophes (single quotations) delimits an included

file name.

()
(Left and right
parentheses)

• Delimit an array subscript or a function parameter.
• Force the order of evaluation in mathematical, relational,

string, and logical expressions.

58

Symbols and
control codes Typical use

:
(Colon)

• Separates statements.
• Separates time information in TIME$ function.

;
(Semicolon)

Line feed control character in INPUT and other statements.

[]
(Square brackets)

• Define the length of a string variable.
• Define the string length of the returned value of a string user-

defined function.

{ }
(Braces)

Define the initial value for an array element.

(Pound sign)

• File number prefix in OPEN, CLFILE, FIELD, and other state-
ments.

• Format control character in PRINT USING statement

!
(Exclamation mark)

Format control character in PRINT USING statement

@ Format control character in PRINT USING statement

'
(Comma)

• Separates parameters or arguments.
• Line feed control character in INPUT and other statements.

_
(Underline)

If followed by a CR code, an underline extends one program
line

up to 8192 characters.
CR code
(Enter)

Terminates a program line.

(Half-width space) Separator which separates program elements in a program
line.

(Note that a two-byte full-width space cannot be used as a
separator.)

TAB
(Tab code)

Separator which separates program elements in a program
line.

Chapter 4. Basic Program Elements

59

4.3 Labels
A label can contain the following characters:

• Alphabet characters
• Numeral characters
• Period (.)

����Rules for naming labelsRules for naming labelsRules for naming labelsRules for naming labels
• The label length should be limited to 10 characters including periods.
• A program can contain up to 9999 labels.
• Label names make no distinction between uppercase and lowercase letters.
The following labels, for example, will be treated as the same label.

filewrite
FILEWRITE
FileWrite

• No asterisk (*) or dollar sign ($) should be used for a label. The following label
examples are invalid:

*Label0
Label1$

• A label made up of only numeral letters as shown below is valid.
1000
1230

Note that a single 0 (zero) should not be used as a label name since it has a special
meaning in ON ERROR GOTO, ON KEY...GOSUB, and RESUME statements.
• A reserved word cannot be used by itself for a label name, but can be included within
a label name as shown below.

Inputkey
• A label should not start with the character string FN.

60

4.4 Identifiers
Identifiers for the names of variables should comprise the same alphanumerics as the labels.

����Rules for naming identifiersRules for naming identifiersRules for naming identifiersRules for naming identifiers

• The identifier length should be limited to 10 characters including periods and excluding
$ (dollar sign) and % (percent sign) suffixes.

• Every type of variables can contain up to 255 identifiers.

• A reserved word cannot be used by itself for an identifier name, but can be
includedwithin an identifier name.

• An identifier should not start with a numeral character or the character string FN.
If starting with an FN, the character string will be treated as a function identifier defined
by the DEF FN statement.

Examples of identifiers:
a
abcdef$
a1
a12345%

Chapter 4. Basic Program Elements

61

4.5 Reserved Words
"Reserved words" are keywords to be used in statements, functions, and operators. For the
reserved words, refer to Appendix B, "Reserved Words."

����Rules for using reserved wordRules for using reserved wordRules for using reserved wordRules for using reserved wordssss

• A reserved word cannot be used by itself for a label name, a variable name, or other
identifiers, but can be included within them. The following identifiers, for example, are
improper since they use reserved words "input" and "key" as is, without modification:

input=3
key=1

• A reserved word can be used for a data file name as shown below.
OPEN "input"AS #1

62

Chapter 5
Data Types

CONTENTSCONTENTSCONTENTSCONTENTS

5.1 Constants..63
5.1.1 Types of Constants..63

[1] String Constants...63
[2] Numeric Constants...63

5.2 Variables ...65
5.2.1 Types of Variables according to Format ..65

[1] String Variables ..65
[2] Numeric Variables ..66

5.2.2 Classification of Variables ...67

5.3 User-defined Functions...68

5.4 Type Conversion ...69
5.4.1 Type Conversion ...69
5.4.2 Type Conversion Examples...70

5.5 Scope of Variables ..71
5.5.1 Global Variables ..71
5.5.2 Local Variables..73
5.5.3 Variables Not Declared to be Global or Local..74
5.5.4 Common Variables ..75

Chapter 5. Data Types

63

5.1 Constants
5.1.1 Types of Constants
A constant is a data item whose value does not change during program execution. Constants
are classified into two types: string constants and numeric constants.

Constant Example

String constants "ABC", "123"
Numeric constants Integer constants In decimal notation

In hexadecimal notation
 Real constants

123%, -4567
&HFFF, &h1A2B
123.45, -67.8E3

[1] String Constants
A "string constant" is a character string enclosed with a pair of double quotation marks ("). Its
length should be a maximum of 255 characters.
The character string should not contain a double quotation mark (") or any control codes.

[2] Numeric Constants

����Integer ConstantsInteger ConstantsInteger ConstantsInteger Constants
– In decimal notation

An integer constant in decimals is usually followed by a percent sign (%) as shown below,
but the % can be omitted.

Syntax: sign decimalnumericstring%
Where the sign is either a plus (+) or a minus (–). The plus sign can be omitted.

The valid range is from -32768 to 32767.
If included in an integer constant in decimals, a comma (,) for marking every three
digits will cause a syntax error.

– In hexadecimal notation
Integer constants in hexadecimals should be formatted as shown below.

Syntax: &Hhexnumericstring
The valid range is from 0h to FFFFh.
If included in a numeric string in hexadecimals, a period denoting a decimal point will
cause a syntax error.

64

����Real ConstantsReal ConstantsReal ConstantsReal Constants
Real constants should be formatted as shown below.

Syntax: sign mantissa
Syntax: sign mantissa E sign exponent
Where a lowercase letter "e" is also allowed instead of uppercase letter "E."

mantissa is a numeric string composed of a maximum of 10 significant digits. It can
include a decimal point.
If included in a real constant as shown below, a comma (,) for marking every three digits
will cause a syntax error.

123,456 ’syntax error!

Chapter 5. Data Types

65

5.2 Variables
A variable is a symbolic name that refers to a unit of data storage. The contents of a variable
can change during program execution.

5.2.1 Types of Variables according to Format
Variables are classified into two types: string variables and numeric variables, each of which
is subclassified into non-array and array types.

 Classification of
Variables

 Example

 ab3$ String

variables
Non-array

type
 e$(10)
 Array type One-dimensional
 gh$(1,3)
 Two-dimensional

 a% Numeric
variables

Integer
variables

Non-array
type

 e%(10)
 Array type One-dimensional
 fg%(2,3)
 Two-dimensional
 a,bcd

Real
variables

Non-array
type

 e (10)
 Array type One-dimensional
 fg (2,3)
 Two-dimensional

Array variables should be declared in any of the DIM, COMMON, and DEFREG statements.
Note that the DIM statement should precede statements that will access the array variable.
BHT-BASIC can handle array variables up to two-dimensional.
The subscript range for an array variable is from 0 to 254.

[1] String Variables
A string variable should consist of 1 through 255 characters.

• NonNonNonNon----array string variablearray string variablearray string variablearray string variablessss
A non-array string variable should be formatted with an identifier followed by a dollar
sign ($) as shown below.

Syntax: identifier$
Example: a$,bcd123$

The default number of characters for a non-array string variable is 40.

• Array string variables
An array string variable should be formatted with an identifier followed by a dollar sign
($) and a pair of parentheses () as shown below.

Syntax: identifier$(subscript[,subscript])
Example: a$(2),bcd123$(1,3)
Where a pair of parentheses indicates an array.

The default number of characters for an array string variable is 20.

66

����Memory OccupationMemory OccupationMemory OccupationMemory Occupation
A string variable occupies the memory space by (the number of characters + one) bytes,
where the added one byte is used for the character count. That is, it may occupy 2 to 256
bytes.
If a non-array string variable consisting of 20 characters is declared, for example, it will
occupy 21-byte memory space.

[2] Numeric Variables

• Non• Non• Non• Non----array integer variablearray integer variablearray integer variablearray integer variablessss
A non-array integer variable should be formatted with an identifier followed by a
percent-age sign (%) as shown below.

Syntax: identifier%
Example: a%, bcd%

• Array integer variables• Array integer variables• Array integer variables• Array integer variables
An array integer variable should be formatted with an identifier followed by a
percentage sign (%) and a pair of parentheses () as shown below.

Syntax: identifier%(subscript[,subscript])
Example: e%(10), fg%(2,3),h%(i%, j%)
Where a pair of parentheses indicates an array.

• Non• Non• Non• Non----array real variablearray real variablearray real variablearray real variablessss
A non-array real variable should be formatted with an identifier only as shown below.

Syntax: identifier
Example: a, bcd

• Array real variables• Array real variables• Array real variables• Array real variables
An array real variable should be formatted with an identifier followed by a pair of
parentheses () as shown below.

Syntax: identifier(subscript[,subscript])
Example: e(10), fg(2,3),h(i%, j%)
Where a pair of parentheses indicates an array.

����Memory OccupationMemory OccupationMemory OccupationMemory Occupation
A numeric variable occupies 2 bytes or 6 bytes of the memory space for an integer
variable or a real variable, respectively.

Chapter 5. Data Types

67

5.2.2 Classification of Variables

����Work VariablesWork VariablesWork VariablesWork Variables
A work variable is intended for general use. You may use it either by declaring with the
DIM statement as a non-array variable or without declaration as an array variable. The
following examples show work variables:

DIM a(10),b%(5),c$(1)
d=100:e%=45
FOR count%=s1%TO s2%
NEXT count%

At the start of a user program, the Interpreter initializes all of the work variables to zero (0)
or a null character string. At the end of the program, all of these variables will be deleted.
Upon execution of the DIM statement declaring an array variable, the Interpreter allocates
the memory for the array variable. The declared array variable can be deleted by the
ERASE statement.

����Common VariablesCommon VariablesCommon VariablesCommon Variables
A common variable is declared by the COMMON statement. It is used to pass its value to
the chained-to programs.

����Register VariablesRegister VariablesRegister VariablesRegister Variables
A register variable is a unique non-volatile variable supported exclusively by BHT-BASIC.
It will retain its value (by battery backup) even after the program has terminated or the
BHT power has been turned off. Therefore, it should be used to store settings of programs
and other values in the memory.
The Interpreter stores register variables in the register variables area of the memory which
is different from the work variables area.
Like other variables, register variables are classified into two types: string variables and
numeric variables, each of which is subclassified into non-array and array types.
The format of register variables is identical with that of general variables. However, you
need to declare register variables including non-array register variables with DEFREG
statements.
BHT-BASIC can handle array variables up to two-dimensional.

68

5.3 User-defined Functions
Out of user-defined functions, the SUB and FUNCTION functions can be called from other files.
The DEF FN function can be called only in the file where that function is defined and should
start with an FN.
The DEF FN and FUNCTION functions are classified into three types: integer functions, real
functions, and character functions, each of which should be defined in the following format:

User-defined Function Format of DEF FN Format of FUNCTION
Integer functions
Real functions

Character functions

FN
FN
FN

functionname %
functionname
functionname $

����Setting Character String Length oSetting Character String Length oSetting Character String Length oSetting Character String Length of Returned Values of Character Functionsf Returned Values of Character Functionsf Returned Values of Character Functionsf Returned Values of Character Functions
A character function may return 1 through 255 characters. Note that the default character
string length results in the returned value of 40 characters.
If the returned value of the character string length is always less than 40 characters, you can
use the stack efficiently by setting the actual required value smaller than the default as the
maximum length. This is because the Interpreter positions returned values on the stack during
execution of user-defined functions so as to occupy the memory area by the maximum length
size. To define a function which results in the returned value of one character, for example,
describe as follows:

DEF FNshort$(i%)[1]
On the other hand, if the returned value is more than 40 characters, it is necessary to set the
actually required length. To define a function which results in the returned values of 128
characters, for example, describe as follows:

DEF FNlong$(i%)[128]

����Dummy Arguments and Real ArgumentsDummy Arguments and Real ArgumentsDummy Arguments and Real ArgumentsDummy Arguments and Real Arguments
Dummy arguments are used for defining user-defined functions. In the example below, i% is a
dummy argument.

DEF FNfunc%(i%)
FNfunc%=i%*5

END DEF
Real arguments are actually passed to user-defined functions when those functions are called.
In the example below, 3 is a real argument.

PRINT FNfunc%(3)

Chapter 5. Data Types

69

5.4 Type Conversion
5.4.1 Type Conversion
BHT-BASIC has the type conversion facility which automatically converts a value of one data
type into another data type during value assignment to numeric variables and operations;
from a real number into an integer number by rounding off, and vice versa, depending upon
the conditions.

• The Interpreter automatically converts a value of a real into an integer, in any of the
following cases:

- Assignment of real expressions to integer variables
- Operands for an arithmetic operator MOD
- Operands for logical operators: AND, OR, NOT, and XOR
- Parameters for functions
- File numbers
In the type conversion from real into integer, the allowable value range of resultant
integer is limited as shown below. If the resultant integer comes out of the limit, a
run-time error will occur.

-32768 ≤resultantintegervalue ≤+32767
• In assignments or operations from integer to real, the type-converted real will have
higher accuracy:

Syntax: realvariable = integerexpression
In the above case, the Interpreter applies the type conversion to the evaluated
resultant of the integer expression before assigning the real value to the real variable.
Therefore, a in the following program will result in the value of 184.5.

a=123%*1.5

70

5.4.2 Type Conversion Examples
The following examples show the type conversion from real to integer.

����Assignment of Real Expressions to Integer VariablesAssignment of Real Expressions to Integer VariablesAssignment of Real Expressions to Integer VariablesAssignment of Real Expressions to Integer Variables
When assigning the value of the real expression (right side) to the integer variable (left
side), the Interpreter carries out the type conversion.

Syntax: integervariable = realexpression
Example: b% = 123.45
Where b% will become 123.

����Operands for an Arithmetic Operator MODOperands for an Arithmetic Operator MODOperands for an Arithmetic Operator MODOperands for an Arithmetic Operator MOD

Before executing the MOD operation, the Interpreter converts operands into integers.
Syntax: realexpression MOD realexpression
Example: 10.5 MOD 3.4
Where the result will become identical with 11 MOD 3.

����Operands for Logical Operators ANDOperands for Logical Operators ANDOperands for Logical Operators ANDOperands for Logical Operators AND, OR, OR, OR, OR, NOT, NOT, NOT, NOT, and XOR, and XOR, and XOR, and XOR

Before executing each logical operation, the Interpreter converts operands into integers.
Syntax: NOT realexpression,

realexpression {AND|OR|XOR} realexpression
Example: 10.6 AND 12.45
Where the result will become identical with 11 AND 12.

����Parameters for FunctionsParameters for FunctionsParameters for FunctionsParameters for Functions
If parameters i and j of the functions below are real expressions, for example, the
Interpreter converts them into integers before passing them to each function.

CHR$(i),HEX$(i),LEFT$(x$,i),MID$(x$,i,j),
RIGHT$(x$,i),...

����File NumbersFile NumbersFile NumbersFile Numbers
The Interpreter also rounds off file numbers to integers.

EOF(fileno),LOC(fileno),LOF(fileno),...

Chapter 5. Data Types

71

5.5 Scope of Variables
You may scope work variables and register variables to be local or global with the PRIVATE
or GLOBAL statement, respectively.

(1) Global variables
A global variable can be accessed by any routine in source files to share information
between those routines. Before access to it, you need to declare it with the GLOBAL
statement.

(2) Local variables
A local variable can only be accessed by any routine in a source file where it is
defined.
Before access to it, you need to declare it with the PRIVATE statement.

(3) Variables not declared to be global or local
If not declared to be global or local, a variable is closed in each file where it is defined.
A variable used inside the FUNCTION or SUB function without declaration is available
only within a function where it is defined.

You may also share variables between user programs when one program chains to another
by declaring variables to be common with the COMMON statement.

5.5.1 Global Variables
A global variable can be shared between source files in a program. In each file where you
want to use a particular global variable, write GLOBAL preceding a desired variable name or
DEFREG statement.

(Example) GLOBAL aaa%
GLOBAL bbb$[10]
GLOBAL ccc$(5,3)[30]
GLOBAL DEFREG ddd
GLOBAL DEFREG eee%(5)

(Example 1) To share the variable aa% between Files 1 and 2, define aa% by using the
GLOBAL statement in each file as follows:

File 1

GLOBAL aa%

File 2

GLOBAL aa%
Before access to a global variable, you should define it.

72

If used inside the SUB or FUNCTION function in the same file where the global variable is
defined, the variable will also have the same value.
(Example 2) The variable aa% defined by the GLOBAL statement will have the same value as
aa% within the FUNCTION.

File 1

GLOBAL aa%
DECLARE SUB printaa(x)
FUNCTION addaa(x)

addaa=aa%+x
END FUNCTION
aa%=2
print addaa(2)
printaa(2)

File 2

GLOBAL aa%

SUB printaa(x)
print aa%+x

END SUB

If you link Files 1 and 2 above into a program file, the variable aa% used in those files will
have the same value.

����If a same name variableIf a same name variableIf a same name variableIf a same name variable is used in one file where it is declared to be global is used in one file where it is declared to be global is used in one file where it is declared to be global is used in one file where it is declared to be global and in the and in the and in the and in the
other file where it is not declaredother file where it is not declaredother file where it is not declaredother file where it is not declared
In those files where the variable is declared to be global by the GLOBAL statement, all of those
variables will have the same value. In a file where the variable is not declared, the variable is
available only in each file.
(Example) If in each of Files 1 and 2 the variable aa% is declared by the GLOBAL statement
and in File 3 the variable aa% is not declared:

File 1

GLOBAL aa%[50]
File 2

GLOBAL aa%[50]

File 3

PRIVATE aa%[50]
If you link Files 1, 2, and 3 above into a program file, the variables aa% in Files 1 and 2 will
have the same value and aa% in File 3 will be treated as a variable different from those in
Files 1 and 2.

Chapter 5. Data Types

73

5.5.2 Local Variables
A local variable can be accessed only in a file where it is defined. Write PRIVATE preceding a
desired variable name or DEFREG statement.

(Example) PRIVATE aaa%
PRIVATE bbb$[10]
PRIVATE ccc$(5,3)[30]
PRIVATE DEFREG ddd
PRIVATE DEFREG eee%(5)

Before access to a local variable, you should define it.
If used inside more than one SUB or FUNCTION function in the same file where the local
variable is defined, all of those variables will also have the same value.

(Example) PRIVATE aa%
FUNCTION addaa(x)
addaa=aa%+x

END FUNCTION
SUB printaa(x)
print aa%+x

END SUB
aa%=2
print addaa(2)
printaa(2)

In the above example, the variable aa% used in "addaa" and "printaa" will have the same
value.

����Variables with overlapping scopeVariables with overlapping scopeVariables with overlapping scopeVariables with overlapping scope
If your program has a global variable and a local variable with the same name, in those files
where the variable is declared with the GLOBAL statement, those variables will be treated as
the same; in a file where the variable is declared with the PRIVATE variable, the variable is
available only in that file.
(Example) If in each of Files 1 and 2 the variable aa% is declared by the GLOBAL statement
but in File 3 it is not declared by the GLOBAL statement:

File 1

GLOBAL aa%[50]
File 2

GLOBAL aa%[50]

File 3

PRIVATE aa%[50]
If you link Files 1, 2, and 3 above into a program file, the variables aa% in Files 1 and 2 will
have the same value and aa% in File 3 will be treated as a variable different from those in
Files 1 and 2.

74

5.5.3 Variables Not Declared to be Global or Local
If not declared to be global or local, a variable is closed in each file where it is defined. A
variable used inside the FUNCTION or SUB function without declaration is available only within
a function where it is defined.

(Example) FUNCTION addaa(x)
addaa=aa%+x

END FUNCTION
SUB printaa(x)
print aa%+x

END SUB
aa%=2
print addaa(2)
printaa(2)

In the above example, all variables aa% used in "addaa," "printaa," and others will be treated
as different ones.

Chapter 5. Data Types

75

5.5.4 Common Variables
A common variable should be declared in a main object beforehand. To share the common
variable by files other than the main object, you need to declare it with the COMMON statement
in each file where the common variable should be available.

File 1

DECLARE SUB
printaa(x)
COMMON a%
a%=2
printaa(5)

File 2

COMMON a%

SUB printaa(x)
print a%+x
SUB

To use a% as a common variable in Files 1 and 2, define the variable with the COMMON
statement in each file.
If a common variable declared with the COMMON statement is used within the SUB or
FUNCTION function in a file where the variable is defined, then the common variable will have
the same value.

(Example) COMMON aa%
FUNCTION addaa(x)
addaa=aa%+x

END FUNCTION
SUB printaa(x)
print aa%+x

END SUB
aa%=2
print addaa(2)
printaa(2)

In the above example, variables aa% used in "addaa" and "printaa" will be treated as same
one.

76

Chapter 6
Expressions and Operators

CONTENTSCONTENTSCONTENTSCONTENTS

6.1 Overview...77

6.2 Operator Precedence..78

6.3 Operators ..79
6.3.1 Arithmetic Operators ...79
6.3.2 Relational Operators ...80
6.3.3 Logical Operators..81

[1] The NOT operator...81
[2] The AND operator...82
[3] The OR operator...82
[4] The XOR operator ..82

6.3.4 Function Operators..83
6.3.5 String Operators ..83

Chapter 6. Expressions and Operators

77

6.1 Overview
An expression is defined as a combination of constants, variables, and other expressions
which are connected using operators.
There are two types of expressions--numeric expressions and string expressions.
BHT-BASIC has the following types of operators:

Operators Description
Arithmetic operator
Relational operator
Logical operator

Function operator
String operator

Performs arithmetic operations.
Compares two values.
Combines multiple tests or Boolean expressions into a single
true/false test.
Performs the built-in or user-defined functions.
Concatenates or compares character strings.

78

6.2 Operator Precedence
When an expression contains more than one operator, BHT-BASIC performs the operations
in the standard precedence as shown below.
Precedence

1.1.1.1. Parentheses () Parentheses () Parentheses () Parentheses ()
The parentheses allow you to override operator precedence; that is, operations
enclosed with parentheses are first carried out.
For improving the readability of an expression, you can use parentheses to separate
two operators placed in succession.

2. 2. 2. 2. Function operationsFunction operationsFunction operationsFunction operations

3.3.3.3. Arithmetic operations Arithmetic operations Arithmetic operations Arithmetic operations

Operations Arithmetic Operators Precedence
Negation
Multiplication and division
Modulo arithmetic
Addition and subtraction

-
* and /
MOD
+ and -

1
2
3
4

4. 4. 4. 4. Relational operationsRelational operationsRelational operationsRelational operations
=,<>,><,<,>,<=,>=,=<,=>

5. 5. 5. 5. Logical operationsLogical operationsLogical operationsLogical operations

Operations Logical Operators Precedence
Logical negation
Logical multiplication
Logical addition
Exclusive logical addition

NOT
AND
OR

XOR

1
2
3
4

6.6.6.6. String operations String operations String operations String operations
When more than one operator occurs at the same level of precedence, the BHT-BASIC
resolves the expression by proceeding from left to right.

a=4+5.0/20*2-1
In the above example, the operation order is as follows;

5.0/20 (=0.25)
0.25*2 (=0.5)
4+0.5 (=4.5)
4.5-1 (=3.5)

Chapter 6. Expressions and Operators

79

6.3 Operators
6.3.1 Arithmetic Operators
Arithmetic operators include a negative sign (-) and operators for multiplication (*), division (/),
addition (+), and subtraction (-). They also include modulo operator MOD.

Operations Arithmetic Operators Precedence Examples

Negation
Multiplication and division
Modulo arithmetic
Addition and subtraction

-
* and /
MOD
+ and -

1
2
3
4

-a
a*b, a/b
a MOD b
a+b, a-b

����Modulo Operation (MOD)Modulo Operation (MOD)Modulo Operation (MOD)Modulo Operation (MOD)
The MOD operator executes the modulo operation; that is, it divides expression 1 by
expression 2 (see the format below) and returns the remainder.

Syntax: expression1 MOD expression2
Where one or more spaces or tab codes should precede and follow the MOD.

If these expressions include real values, the MOD first rounds them off to integers and then
executes the division operation. For example, the MOD treats expression 8 MOD 3.4 as 8
MOD 3 so as to return the remainder "2".

����Overflow and Division by ZeroOverflow and Division by ZeroOverflow and Division by ZeroOverflow and Division by Zero
Arithmetic overflow resulting from an operation or division by zero will cause a run-time
error. Such an error may be trapped by error trapping.

80

6.3.2 Relational Operators
A relational operator compares two values. Depending upon whether the comparison is true
or false, the operator returns true (–1) or false (0).
With the operation result, you can control the program flow.

The relational operators include the following:

Relational Operators Meanings Examples
=
<> or ><
<
>
<= or =<
>= or =>

Equal to
Not equal to
Less than
Greater than
Less than or equal to
Greater than or equal to

A=B
A<>B
A<B
A>B
A<=B
A>=B

If an expression contains both arithmetic and relational operators, the arithmetic operator has
higher precedence than the relational operator.

Chapter 6. Expressions and Operators

81

6.3.3 Logical Operators
A logical operator combines multiple tests and manipulates Boolean operands, then returns
the results. It is used, for example, to control the program execution flow or test the value of
an INP function bitwise, as shown in the sample below.

IF d<200 AND f<4 THEN ...
WHILE i>10 OR k<0 ...
IF NOT p THEN ...
barcod%=INP(0)AND &h02

Listed below are the four types of logical operators available.

Operations Logical Operators Precedence
Negation
Logical multiplication
Logical addition
Exclusive logical addition

NOT
AND
OR

XOR

1
2
3
4

One or more spaces or tab codes should precede and follow the NOT, AND, OR, and XOR
operators.
In the logical expressions (or operands), the logical operator first carries out the type
conversion to integers before performing the logical operation. If the resultant integer value is
out of the range from -32768 to +32767, a run-time error will occur.
If an expression contains logical operators together with arithmetic and relational operators,
the logical operators are given lowest precedence.

[1] The NOT operator
The NOT operator reverses data bits by evaluating each bit in an expression and setting the
resultant bits according to the truth table below.

Syntax: NOT expression
Truth Table for NOT

Bit in Expression Resultant Bit

0
1

1
0

For example, NOT 0 = -1 (true).
The NOT operation for an integer has the returned value of negative 1’s complement. The NOT
X, for instant, is equal to –(X+1).

82

[2] The AND operator
The AND operator ANDs the same order bits in two expressions on either side of the operator,
then sets 1 to the resultant bit if both of these bits are 1.

Syntax: expression1 AND expression2
Truth Table for AND

Bit in Expression 1 Bit in Expression 2 Resultant Bit

0
0
1
1

0
1
0
1

0
0
0
1

[3] The OR operator
The OR operator ORes the same order bits in two expressions on either side of the operator,
then sets 1 to the resultant bit if at least one of those bits is 1.

Syntax: expression1 OR expression2
Truth Table for OR

Bit in Expression 1 Bit in Expression 2 Resultant Bit

0
0
1
1

0
1
0
1

0
1
1
1

[4] The XOR operator
The XOR operator XORes the same order bits in two expressions on either side of the
operator, then sets the resultant bit according to the truth table below.

Syntax: expression1 XOR expression2
Truth Table for XOR

Bit in Expression 1 Bit in Expression 2 Resultant Bit

0
0
1
1

0
1
0
1

0
1
1
0

Chapter 6. Expressions and Operators

83

6.3.4 Function Operators
The following two types of functions are available in BHT-BASIC, both of which work as
function operators:

����BuiltBuiltBuiltBuilt----in Functionsin Functionsin Functionsin Functions
Already built in BHT-BASIC, e.g., ABS and INT.

����UserUserUserUser----defined Functionsdefined Functionsdefined Functionsdefined Functions
Defined by using DEF FN (in single-line form), DEF FN...END DEF (in block form),
SUB...END SUB, or FUNCTION...END FUNCTION statement.

6.3.5 String Operators
A character string operator may concatenate or compare character strings.
Listed below are the types of character string operators available.

Operations Character String Operators Examples
Concatenation
Comparison

+ (Plus sign)
= (Equal)
<>, >< (Not equal)
>, <, =<, =>, <=, >= (Greater or less)

a$+"."+b$
a$=b$
a$<>b$, a$><b$
a$>b$, a$=>b$

����Concatenation of Character StringsConcatenation of Character StringsConcatenation of Character StringsConcatenation of Character Strings
The process of combining character strings is called concatenation and is executed with
the plus sign (+). The example below concatenates the character strings, a$ and b$.

a$="Work1":b$="dat"
PRINT a$+"."+b$

Work1.dat

84

����Comparison of Character StringsComparison of Character StringsComparison of Character StringsComparison of Character Strings
The string operators compare two character strings according to character codes
assigned to individual characters.
In the example below, the expression a1$<b1$ returns the value of true so as to output -1.

a1$="ABC001"
b1$="ABC002"
PRINT a1$<b1$

-1

85

Chapter 7
I/O Facilities

CONTENTSCONTENTSCONTENTSCONTENTS

7.1 Output to the LCD Screen...86
7.1.1 Display Fonts...86

[1] Screen mode and font size ..86
[2] Character attributes (Reverse font and enlargement attribute)88

7.1.2 Coordinates on the LCD..89
7.1.3 Dot Patterns of Fonts ..92
7.1.4 Mixed Display of Different Screen Modes, Font Sizes, and/or

Character Enlargement Sizes ..96
[1] ANK Mode and Kanji Mode Together in One Line................................96
[2] Standard-Size and Small-Size Fonts Together on the Same Screen ...96
[3] Regular-Size and Double-Width Characters Together on the

Same Screen..97
7.1.5 Displaying User-defined Characters..98
7.1.6 VRAM..99
7.1.7 Displaying the System ...101
7.1.8 Other Facilities for the LCD ...103

7.2 Input from the Keyboard..104
7.2.1 Alphabet Entry...104
7.2.2 Other Facilities for the Keyboard...106

[1] Auto-repeat ...106
[2] Shift key..106

7.3 Timer and Beeper ...107
7.3.1 Timer Functions ...107
7.3.2 BEEP Statement..107

7.4 Controlling and Monitoring the I/Os...108
7.4.1 Controlling by the OUT Statement...108
7.4.2 Monitoring by the INP Function ...108
7.4.3 Monitoring by the WAIT Statement ..109

86

7.1 Output to the LCD Screen
7.1.1 Display Fonts

[1] Screen mode and font size
Listed below are the fonts available on BHT.

Screen mode Font size Letter type Character
enlargement

Dots (W x
H) Chars x Lines

Regular 6×8 21×8 Standard-size ANK chars

Double-width 12×8 10×8
Regular 6×6 21×10

Single-byte
ANK* mode

Small-size ANK chars
Double-width 12×6 10×10

Regular 16×16 8×4 Full-width

Double-width 32×16 4×4
Regular 8×16 16×4

Standard-size

Half-width

Double-width 16×16 8×4
Regular 12×12 10×5 Full-width

Double-width 24×12 5×5
Regular 6×12 21×5

Two-byte
Kanji mode

Small-size

Half-width

Double-width 12 ×12 10×5
*ANK: Alphanumerics and Katakana

Chapter 7. I/O Facilities

87

����Screen modeScreen modeScreen modeScreen mode
The ANK mode displays ANK characters listed in Appendices C1 and C2.
The Kanji mode displays the following characters:

• Half-width: Katakana and alphanumerics
• Full-width: JIS Levels 1 and 2 Kanji, alphabets and symbols

NOTE
Half-width Kanji characters differ from ANK characters in size.

����Font sizeFont sizeFont sizeFont size
The standard- and small-size fonts may be displayed.
To display Kanji characters, it is necessary to download Kanji font files listed below.

• To use standard-size fonts: 16-dot font file
• To use small-size fonts: 12-dot font file

Even without those files, the half-width alphanumerics and Katakana may be displayed.
Each of the 16-dot and 12-dot font files consists of JIS Level 1 and Level 2 files.

Switching the screen mode and font size
You may switch the screen mode by using the SCREEN statement (displaymode parameter).
Refer to Chapter 14, SCREEN.
You may switch the font size by using the OUT statement (port &h6080). Refer to Chapter 14,
OUT and Appendix D, "I/O Ports."

88

[2] Character attributes (Reverse font and enlargement
attribute)

����Reverse font attributeReverse font attributeReverse font attributeReverse font attribute
Characters may be reversed (highlighted).

����Enlargement attributeEnlargement attributeEnlargement attributeEnlargement attribute
Characters may be displayed in regular-size and double-width as listed in [1].

Switching the character attributes
You may switch the reverse font attribute and enlargement attribute by using the SCREEN
statement (charaattribute parameter). Refer to Chapter 14, SCREEN.

Chapter 7. I/O Facilities

89

7.1.2 Coordinates on the LCD
To locate characters on the coordinates of the LCD screen, use the LOCATE statement. To
obtain the current cursor position, use the CSRLIN and POS functions.
The coordinates will differ depending upon the screen mode and font size.
Single-byte ANK mode

• Standard-size font

• Small-size font

LOCATE 1,1

LOCATE 8,3

LOCATE 6,5

LOCATE

LOCATE

Regular

Double-widhth

LOCATE 1,1

LOCATE 7,3

LOCATE 5,6

LOCATE

LOCATE 21,10

Regular

Double-widhth

90

Two-byte Kanji Mode
• Standard-size font

Be careful about the specification of line numbers in figures below. A single column
shown below represents an area for a half-width character; Double columns represent
an area for a full-width character.

LOCATE 1,1

LOCATE 6,1

LOCATE 4,3

LOCATE 6,5

LOCATE 4,7 LOCATE
16,7

LOCATE
16,1

Regular

Double-widhth

Regular

Double-widhth

LOCATE 1,2

LOCATE 3,2

LOCATE 3,6

LOCATE 8,6

LOCATE 8,2

LOCATE
16,2

LOCATE
16,6

Regular

Double-widhth

Double-widhth

Chapter 7. I/O Facilities

91

• Small-size font
Be careful about the specification of line numbers in figures below. A single column
shown below represents an area for a half-width character; Double columns represent
an area for a full-width character.

LOCATE 1,1

LOCATE 9,1

LOCATE 8,3

LOCATE 9,5

LOCATE 8,7

LOCATE
21,9

LOCATE
21,1

Regular

Double-widhth

Regular

Double-widhth

LOCATE 1,2

LOCATE 3,2

LOCATE 3,6

LOCATE
12,6

LOCATE
12,2

LOCATE
21,2

LOCATE
21,8

Regular

Double-widhth

Double-widhth

92

7.1.3 Dot Patterns of Fonts

����Character fontsCharacter fontsCharacter fontsCharacter fonts
In the figures below, " " shows a display area for characters. Any character is displayed within
a set of the display areas.
"□ " shows a delimiter area that separates characters from each other and contains no
display data. The corresponding dots are always off.

Single-byte ANK mode

• Standard-size font

6 x 8 dots (Regular) 12 x 8 dots (Double-width)

• Small-size font
6 x 6 dots (Regular) 12 x 6 dots (Double-width)

Chapter 7. I/O Facilities

93

Two-byte Kanji Mode
• Standard-size font

Half-width Kanji
8 x 16 dots (Regular)

Half-width Kanji
16 x 16 dots (Double-width)

Full-width Kanji
16 x 16 dots (Regular)

Full-width Kanji
32 x 16 dots (Double-width)

• Small-size font
Half-width Kanji

6 x 12 dots (Regular)
Half-width Kanji

12 x 12 dots (Double-width)

Full-width Kanji
12 x 12 dots (Regular)

Full-width Kanji
24 x 12 dots (Double-width)

94

����Cursor shapeCursor shapeCursor shapeCursor shape
The LOCATE statement specifies the cursor shape--Underline cursor, full block cursor, or
invisible.
You may define and load the desired cursor shape with the APLOAD or KPLOAD statement
and then specify the user-defined cursor with the LOCATE statement. If the double-width
character size is specified, the cursor will be displayed in double width.
Single-byte ANK mode
• Standard-size font (6 x 8 dots)

In regular size
Underline cursor

Full block cursor

Invisible

In regular size
Underline cursor

Full block cursor

Invisible

• Small-size font (6 x 6 dots)

In regular size
Underline cursor

Full block cursor

Invisible

In regular size
Underline cursor

Full block cursor

Invisible

Chapter 7. I/O Facilities

95

Two-byte Kanji Mode
• Standard-size font (8 x 16 dots)

In regular size
Underline cursor

Full block cursor

Invisible

In regular size
Underline cursor

Full block cursor

Invisible

 • Small-size font (6 x 12 dots)

In regular size
Underline cursor

Full block cursor

Invisible

In regular size
Underline cursor

Full block cursor

Invisible

96

7.1.4 Mixed Display of Different Screen Modes, Font
Sizes, and/or Character Enlargement Sizes

[1] ANK Mode and Kanji Mode Together in One Line
ANK characters and Kanji characters may display together in the same line on the LCD
screen as shown below.

CLS
SCREEN 0
LOCATE 1,1:PRINT "ABCDEFGHabcdefgh"
SCREEN 1
LOCATE 1,1:PRINT " "

If the display data is outputted to the same location more than one time as shown in the
above program, the BHT overwrites the old data with new data.

[2] Standard-Size and Small-Size Fonts Together on the Same

Screen

Standard-size and small-size fonts of ANK characters and Kanji characters (both full-width
and half-width) may display together on the same screen as shown below.

CLS
OUT &h6080, 0
SCREEN 0
PRINT "ABCDEFGH";
OUT &h6080, 1
PRINT "abcdefgh";
OUT &h6080, 0
SCREEN 1
mode
LOCATE 1,2:PRINT " "
OUT &h6080, 1
PRINT " ";

'Select standard-size font
'Regular-size in ANK mode

'Select small-size font

'Select standard-size font
'Regular-size in Kanji

'Select small-size font

Chapter 7. I/O Facilities

97

[3] Regular-Size and Double-Width Characters Together on the
Same Screen

The regular-size and double-width characters may display together on the same screen as
shown below.

CLS
OUT &h6080, 0 'Select standard-size font
SCREEN 0,0 : PRINT "ANK" 'Regular-size in ANK mode
SCREEN 0,2 : PRINT "ANK" 'Double-width in ANK mode
SCREEN 1,0 : PRINT " " 'Regular-size in Kanji mode
SCREEN 1,2 : PRINT " " 'Double-width in Kanji mode

LOCATE 1,1
OUT &h6080, 1 'Select small-size font
SCREEN 0,0 : LOCATE 14 : PRINT "ANK" 'Regular-size in ANK mode
SCREEN 0,2 : LOCATE 14 : PRINT "ANK" 'Double-width in ANK mode
SCREEN 1,0 : LOCATE 14 : PRINT " " 'Regular-size in Kanji mode
SCREEN 1,2 : LOCATE 14 : PRINT " " 'Double-width in Kanji mode

����Switching the screen font from the standardSwitching the screen font from the standardSwitching the screen font from the standardSwitching the screen font from the standard----sizesizesizesize to small to small to small to small----sizesizesizesize
The coordinates on which standard-size fonts are displayed and one on which small-size
fonts are displayed are different from each other.
If the screen font is switched from the standard-size to small-size, then the cursor will move
from the current position to the nearest lower rightward position on the small-size font
coordinates.

Small-size font coordinates

Standard-size font coordinates

12 dots 16 dots

Moves the cursor position

98

7.1.5 Displaying User-defined Characters

����Loading a userLoading a userLoading a userLoading a user----defined fontdefined fontdefined fontdefined font
The APLOAD or KPLOAD statement loads a user-defined font.
The APLOAD statement is capable of loading up to 32 single-byte ANK fonts to be displayed in
the single-byte ANK mode.
The KPLOAD statement is capable of loading up to 128 two-byte Kanji fonts in full width to be
displayed in the two-byte Kanji mode.

����Enlarging/condensing defined font patternsEnlarging/condensing defined font patternsEnlarging/condensing defined font patternsEnlarging/condensing defined font patterns
If the double-width is specified, the Interpreter will enlarge user-defined font patterns for
display.

If the small-size font is specified for font patterns loaded by the APLOAD statement, then the
Interpreter will use a total of 6 bits (bit 0 to 5) each on the 1st to 6th elements and ignores the
bits 6 to 7, as shown below.

If the small-size font is specified for font patterns loaded by the KPLOAD statement, then the
Interpreter will use a total of 12 bits (bit 0 to 11) each on the 1st to 11th elements and ignores
the 12th to 15th elements and bits 12 to 15, as shown below.

Bit 0

Bit 11

11 00 15

Bit0

Bit5

Chapter 7. I/O Facilities

99

7.1.6 VRAM
The INP function may read the VRAM data. The OUT statement writes data into the VRAM so
that graphics may be displayed on the LCD dotwise.

����Specifying an address bytewiseSpecifying an address bytewiseSpecifying an address bytewiseSpecifying an address bytewise
An address on the LCD may be specified bytewise by giving a port number in the OUT
statement and INP function. The entry range of the port number is as follows:

Series Entry range of the port number
BHT-8000 10h to 40Fh

Port numbering system counts, starting from the top left corner of the LCD to the right bottom
corner.

10h 8Fh

90h 10Fh

110h 18Fh

190h 20Fh

210h 28Fh

290h 30Fh

310h 38Fh

390h 40Fh

100

����Setting an 8Setting an 8Setting an 8Setting an 8----bit binary patternbit binary patternbit binary patternbit binary pattern
The data of an 8-bit binary pattern should be designated by bit 7 (LSB) to bit 0 (MSB) in the
OUT statement or INP function. If the bit is 1, the corresponding dot on the LCD will come ON.

OUT &h10,&h80 ’Set bit 7 only to 1

10h

8Fh

90h

10Fh

110h

18Fh

190h

20Fh

210h

28Fh

290h

30Fh

310h

38Fh

390h

40Fh

Chapter 7. I/O Facilities

101

7.1.7 Displaying the System
The BHT-8000 may display the shifted key icon and alphabet input icon at the right end of the
bottom line of the LCD.
For details about the icon shapes, refer to the BHT’s User’s Manual.

����Turning the system statusTurning the system statusTurning the system statusTurning the system status indication on or off indication on or off indication on or off indication on or off

You may turn the system status indication on or off on the SET DISPLAY menu in System
Mode. The default is ON. (For the setting procedure, refer to the "BHT’s User’s Manual") You
may control the system status indication also by using the OUT statement in user programs.
(Refer to Appendix D, "I/O Ports.")

����Notes relating to the system statusNotes relating to the system statusNotes relating to the system statusNotes relating to the system status

Notes when the system statusNotes when the system statusNotes when the system statusNotes when the system status is displayed is displayed is displayed is displayed

The following statements and functions will cause somewhat different operations when the
system status is displayed.

• CLS statement

 The CLS statement clears the VRAM area assigned to the right end of the bottom line of the
 LCD but does not erase the system status displayed.

• OUT statement
 If you send graphic data to the VRAM area assigned to the right end of the bottom line of the

 LCD by using the OUT statement, the sent data will be written into that VRAM area but
cannot
 be displayed on the bottom line.

• INP function

 If you specify the VRAM area assigned to the right end of the bottom line of the LCD as an

 input port, the INP function reads one-byte data from that area.

102

Notes when displaying the system statusNotes when displaying the system statusNotes when displaying the system statusNotes when displaying the system status with OUT with OUT with OUT with OUT statement statement statement statement

Specifying the system status indication with the OUT statement overwrites the system status
on the current data shown at the right end of the bottom line of the LCD. If Kanji characters
are
shown at the right end of the bottom line, the lower half of the Kanji is overwritten with the
system
status but with the upper half remaining on the LCD.

Notes when erasing the system statusNotes when erasing the system statusNotes when erasing the system statusNotes when erasing the system status with the OUT with the OUT with the OUT with the OUT statement statement statement statement

Erasing the system status with the OUT statement displays the content of the VRAM area

(assigned to the right end of the bottom line of the LCD) on that part of the LCD.

Chapter 7. I/O Facilities

103

7.1.8 Other Facilities for the LCD

����Setting national characterSetting national characterSetting national characterSetting national characterssss
Using the COUNTRY$ function displays currency symbols and special characters for countries.
Refer to Appendix C2, "National Character Sets."

����Specifying the cursorSpecifying the cursorSpecifying the cursorSpecifying the cursor shape shape shape shape
The LOCATE statement specifies the cursor shape.

Cursor shape LOCATE statement
Invisible
Underline cursor
Full block cursor
User-defined cursor

LOCATE ,,0
LOCATE ,,1
LOCATE ,,2
LOCATE ,,255

The shape of a user-defined cursor may be defined by using the APLOAD or KPLOAD
statement in the single-byte ANK mode or two-byte Kanji mode, respectively.
In the single-byte ANK mode, the cursor size will become equal to the size of single-byte ANK
characters; in the double-byte Kanji mode, it will become equal to the size of the half-width
characters in each mode.

104

7.2 Input from the Keyboard
7.2.1 Alphabet Entry
In addition to the numeric entry from the keypad, the BHT-8000 supports software keyboard
entry.

����Switching between the Numeric Entry System and Alphanumeric Entry SystemSwitching between the Numeric Entry System and Alphanumeric Entry SystemSwitching between the Numeric Entry System and Alphanumeric Entry SystemSwitching between the Numeric Entry System and Alphanumeric Entry System
To switch between the numeric entry system and alphanumeric entry system, use the OUT
statement in a user program as shown below.

OUT &h60B0,0 ’Switch to the numeric entry system*
OUT &h60B0,1 ’Switch to the alphanumeric entry system

*Selected when the BHT-8000 is cold-started.
To monitor the current key entry system, use the INP function as shown below.

INP(&h60B0)

����SwiSwiSwiSwitching between Numeric and Alphabet Entry Modes in the Alphanumerictching between Numeric and Alphabet Entry Modes in the Alphanumerictching between Numeric and Alphabet Entry Modes in the Alphanumerictching between Numeric and Alphabet Entry Modes in the Alphanumeric Entry Entry Entry Entry
SystemSystemSystemSystem
In the alphanumeric entry system, you may switch between numeric and alphabet entry
modes as described below. The default, which is applied immediately after the BHT-8000 is
switched to the alphanumeric entry system, is the numeric entry mode.
• Pressing the SF key
Pressing the SF key toggles between the numeric and alphabet entry modes.
• Using the OUT statement
Issue the OUT statement as shown below.

OUT &h60B1,0 ’Switch to the numeric entry mode
OUT &h60B1,1 ’Switch to the alphabet entry mode

To monitor the current entry mode, use the INP function as shown below.
INP(&h60B1)

Chapter 7. I/O Facilities

105

����Alphabet Entry ProcedureAlphabet Entry ProcedureAlphabet Entry ProcedureAlphabet Entry Procedure
(1) Switch to the alphanumeric entry system as follows:

Issue "OUT &h60B0,1".
(2) Switch to the alphabet entry mode as follows:

Press the SF key or issue "OUT &h60B1,1".
The ALP icon appears.

(3) Enter alphabet letters from the keypad as follows:
1) Press a numerical key to which the desired alphabet letter is assigned by the required
number of times until the desired alphabet letter appears, referring to the relationship
between keys and their assigned data given below.

To enter "T," for example, press the 1 key two times. At this stage, the "T" is
high-lighted but not established yet.

Keys Key data assigned

7 A, B, C, a, b, c
8 D, E, F, d, e, f
9 G, H, I, g, h, I
4 J, K, L, j, k, l
5 M, N, O, m, n, o
6 P, Q, R, p, q, r
1 S, T, U, s, t, u
2 V, W, X, v, w, x
3 Y, Z, space, y, z
0 +, -, *,
. /, $, %, comma (,)

2) Press any of the following keys to establish the highlighted character ("T" in this
example).

- If you press any one of the function keys (F1 to F8), BS, C, and magic keys (M1 to
M4), then the highlighted character ("T") will be established. The key data of both the
established key and the key you pressed now will be returned.
- If you press the ENT key, the highlighted character ("T") will be established and the
key data will be returned.
- If you press the SF key, the alphabet entry mode will be switched to the numeric
entry mode. The highlighted character will be ignored.
- If you press any other numerical key (e.g. "3" to which "Y" is assigned), the key
data of the highlighted character ("T") will be established and the key data will be
returned. At this state, the "Y" is not established yet.

106

When no key is ready to be established, pressing any of the function keys, BS, C,
ENT, and magic keys will return the key data of the pressed key.
(Example: If you press the 1, 1, 2, and 3 keys)
The key data of "T" and "V" will be returned. The "Y" is not established yet.

(Example: If you press the C, 1, 1, 1, and ENT keys)
The 18H and "U" will be returned.

7.2.2 Other Facilities for the Keyboard

[1] Auto-repeat
The keys on the BHT series are not auto-repeat.

[2] Shift key
The Shift key can be switched to non-lock type or lock type by selecting Nonlock or Onetime
on the SET KEY menu in System Mode, respectively.
• Non-lock type The keypad will be shifted only when the Shift key is held down.
• Lock type Once the Shift key is pressed, the next one key pressed will be shifted and
the following keys will not be shifted.
When the keys are shifted, the SF icon appears in the status display.

Chapter 7. I/O Facilities

107

7.3 Timer and Beeper
7.3.1 Timer Functions
The timer functions (TIMEA, TIMEB, and TIMEC) are available in BHT-BASIC for accurate
time measurement.
Use these timer functions for monitoring the keyboard waiting time, communications timeout
errors, etc.

TIMEA = 100 ’10 sec
WAIT 0,&H10
BEEP
PRINT "10sec."
TIMEC = 20 ’2 sec
WAIT 0,&H41
BEEP
PRINT "2sec.or Keyboard"

7.3.2 BEEP Statement
The BEEP statement sounds a beeper and specifies the frequency of the beeper.
The example below sounds the musical scale of do, re, mi, fa, sol, la, si, and do.

READ readDat%
WHILE (readDat%>=0)

TIMEA =3
BEEP 2,,,readDat%
WAIT 0,&h10
READ readDat%

WEND
DATA 523,587,659,698,783,880,987,1046,-1

Specifying the frequency with value 0, 1, or 2 produces the special beeper effects; that is, the
low-, medium-, or high-pitched tone, respectively.

FOR i%=0 TO 2
TIMEC =20
BEEP ,,,i%
WAIT 0,&h40

NEXT

NOTE

Only if setting 0, 1, or 2 or making no specification to the frequency,
you can adjust the beeper volume on the LCD when turning on the BHT.
(For the adjustment of the beeper volume, refer to the BHT User’s Manual.)

108

7.4 Controlling and Monitoring the
I/Os

7.4.1 Controlling by the OUT Statement
The OUT statement can control the input and output devices (I/Os) listed in Appendix D, I/O
Ports." The table below lists some examples.

OUT Statement I/O Devices
OUT 1,&h02
OUT 1,&h01
OUT 1,&h00

Turns on the indicator LED in green.
Turns on the indicator LED in red.
Turns off the indicator LED.

OUT 3,&hXX (XX : 00 to 07) Sets the LCD contrast.
OUT 4,&h00
OUT 4,&h01

Sets the Japanese message version.
Sets the English message version.

OUT 6,&hXX (XX : 00 to FF) Sets the sleep timer.

7.4.2 Monitoring by the INP Function
The INP function monitors the input and output devices (I/Os) listed in Appendix D, "I/O
Ports."
The table below lists some examples.

INP Function I/O Devices Value Meaning
INP(0)AND &h01

INP(0)AND &h02

INP(0)AND &h04

INP(0)AND &h08

INP(0)AND &h10

INP(0)AND &h20

INP(0)AND &h40

Keyboard buffer & touch
key buffer status

Bar-code buffer status

Trigger switch status*

Receive buffer status

TIMEA function

TIMEB function

TIMEC function

1
0

1
0

1
0

1
0

1

1

1

Data present
No data

Data present
No data

Being pressed
Being released

Data present
No data

Set to 0

Set to 0

Set to 0

* The INP function can monitor the trigger switch status only when the trigger switch
function is assigned to any of the magic keys.

Chapter 7. I/O Facilities

109

7.4.3 Monitoring by the WAIT Statement
The WAIT statement monitors the input and output devices (I/Os) listed in Appendix D, "I/O
Ports." Unlike the INP function, the WAIT statement makes the I/O devices idle while no entry
occurs, thus saving power consumption.
The table below lists some examples.

WAIT Statement I/O Devices
WAIT 0,&h01
WAIT 0,&h02
WAIT 0,&h04
WAIT 0,&h08
WAIT 0,&h10
WAIT 0,&h20
WAIT 0,&h40

Keyboard buffer & touch key buffer status
Barcode buffer status
Trigger switch status*
Receive buffer status
TIMEA function
TIMEB function
TIMEC function

* The WAIT statement can monitor the trigger switch status only when the trigger
switch function is assigned to any of the magic keys.

In a single WAIT statement, you can specify more than one I/O device if the same port
number applies. To monitor keyboard buffer & touch key buffer and the barcode buffer with
the single WAIT statement, for example, describe the program as shown below.

OPEN "BAR:"AS #10 CODE "A:"
WAIT 0,&h03

The above example sets the value of &h03 (00000011) to port 0, indicating that it keeps
waiting until either bit 0 or bit 1 becomes ON by pressing any key or by reading a bar code.

110

Chapter 8
Files

CONTENTSCONTENTSCONTENTSCONTENTS

8.1 File Overview..111
8.1.1 Data Files and Device I/O Files ..111
8.1.2 Access Methods ...111

8.2 Data Files .. 112
8.2.1 Overview ... 112
8.2.2 Naming Files.. 112
8.2.3 Structure of Data Files ... 113
8.2.4 Data File Management by Directory Information 114
8.2.5 Programming for Data Files... 115
8.2.6 About Drives.. 117

8.3 Bar Code Device ... 118
8.3.1 Overview ... 118
8.3.2 Programming for Bar Code Device..120

8.4 Communications Device..122
8.4.1 Overview ...122
8.4.2 Hardware Required for Data Communications ..122
8.4.3 Programming for Data Communications..123
8.4.4 Overview of Communications Protocols ..124

[1] BHT-protocol ..124
[2] BHT-Ir protocol ...125

8.4.5 File Transfer Tools ...126
[1] Transfer Utility ..126
[2] Ir-Transfer Utility C ...126
[3] Ir-Transfer Utility E ...126

Chapter 8. Files

111

8.1 File Overview
8.1.1 Data Files and Device I/O Files
BHT-BASIC treats not only data files but also bar code device I/Os and communications
device I/Os as files, by assigning the specified names to them.

File Type File Name Remarks

Data File

Device I/O File
Device I/O File

filename.extension
drivename:filename.extension
BAR:
COM:

Bar code device
Communications device

TIP

Data files and user program files are stored in the user area of the memory.

8.1.2 Access Methods
To access data files or device I/O files, first use the OPEN statement to open those files. Input
or output data to/from the opened files by issuing statements or functions to them according
to their file numbers. Then, close those files by using the CLOSE statement.

112

8.2 Data Files
8.2.1 Overview
Like user programs, data files will be stored in the user area of the memory. The user area is
located at drives A and B. Note that drive B in the BHT-8000 is provided for ensuring the
compatibility with conventional BHT series.
The memory space available for data files is (Memory space on drive A - Memory space
occupied by user programs).
For the memory mapping, refer to Appendix F, "Memory Area." You may check the current
occupation of the memory with the FRE function.

8.2.2 Naming Files
The name of a data file generally contains filename.extension. The filename can
have one to eight characters; the extension can have one to three characters.
The filename.extension may be preceded by the drivename. The drivename is A: or B:.
If the drivename is omitted, the default A: applies.
The extension can be omitted. In such a case, a period should be also omitted. The
following extensions cannot be used for data files:
Unavailable extensions for data files .PD3, .FN3, .EX3, and .FLD
Programs make no distinction between uppercase and lowercase letters for drive names, file
names, and extensions. They regard those letters as uppercase.

Chapter 8. Files

113

8.2.3 Structure of Data Files

����RecRecRecRecordordordord
A data file is made up of a maximum of 32767 records. A record is a set of data in a data file
and its format is defined by the FIELD statement. The maximum length of a record is 255
bytes including the number of the character count bytes* (= the number of the fields).

* When transferring data files, the BHT-protocol/BHT-Ir protocol automatically prefixes a
character count byte in binary format to each data field.

����FieldFieldFieldField
A record is made up of 1 to 16 fields. Data within the fields will be treated as character (ASCII)
data.
Each field precedes a character count byte in binary format, as described above. Including
that one byte, the maximum length of a field is 255 bytes.
The following FIELD statement defines a record which occupies a 28-byte memory area (13 +
5 + 10 bytes) for data and a 3-byte memory area for three character count bytes.
Totally, this record occupies not a 28-byte area but a 31-byte area in the memory.

FIELD #2,13 AS bardat$,5 AS keydat$,10 AS dt$
'1+13+1+5+1+10=31 bytes

When a data file is transmitted according to the BHT-protocol, the following conditions should
be also satisfied:

• The maximum length of a field is 254 bytes excluding a character count byte.

114

8.2.4 Data File Management by Directory
Information

The Interpreter manages data files using the directory information stored in the system area
of the memory.
The directory information, for example, contains the following:

filename.extension
Information of Each Field (Field length)
Number of Written Records
Maximum Number of Registrable Records

• Number of Written RecordsNumber of Written RecordsNumber of Written RecordsNumber of Written Records
Means the number of records already written in a data file, which the LOF function can
return.
If no record number is specified in the PUT statement, the Interpreter automatically
assigns a number of (the current written record number + 1) to the record.

PUT #1

•••• Maximum Number of Registrable RecordsMaximum Number of Registrable RecordsMaximum Number of Registrable RecordsMaximum Number of Registrable Records
You may declare the maximum number of records registrable in a data file by using the
RECORD option in the OPEN statement, as shown below.

OPEN "work.DAT"AS #10 RECORD 50
FIELD #10,13 AS code$,5 AS price$

The above program allows you to write up to 50 records in the data file named
work.DAT.
If the statement below is executed following the above program, a run-time error will
occur.

PUT #10,51
The maximum number of registrable records can be optionally specified only when you
make a new data file. If designated to the already existing data file, the specification will
be ignored without occurrence of a run-time error.
If the BHT-100 receives a file with the XFILE statement, it will automatically set the
maxi-mum number of registrable records to 32,767 for that file.
Specifying the maximum number of registrable records will not cause the Interpreter to
reserve the memory area.

Chapter 8. Files

115

8.2.5 Programming for Data Files

����Input/Output for Numeric DataInput/Output for Numeric DataInput/Output for Numeric DataInput/Output for Numeric Data
- To write numeric data into a data file:
It is necessary to use the STR$ function for converting the value of a numeric expression into
a string.
To write -12.56 into a data file, for example, the field length of at least 6 bytes is required.
When using the FIELD statement, designate the sufficient field length; otherwise, the data will
be lost from the lowest digit when written to the field.
- To read data to be treated as a numeric from a data file:

Use the VAL function for converting a string into a numeric value.

����Data RetrievalData RetrievalData RetrievalData Retrieval
The SEARCH function not only helps you make programs for data retrieval efficiently but also
makes the retrieval speed higher.
The SEARCH function searches a designated data file for specified data, and returns the
record number where the search data is first encountered. If none of the specified data is
encountered, this function returns the value 0.

����Deletion of Data FilesDeletion of Data FilesDeletion of Data FilesDeletion of Data Files
The CLFILE or KILL statement deletes the designated data file.
CLFILE Erases only the data stored in a data file without erasing its directory information, and

resets the number of written records to 0 (zero) in the directory. This statement is valid
only to opened data files.

KILL Deletes the data stored in a data file together with its directory information. This
statement is valid only to closed data files.

• Program sample with the CLFILE statement

OPEN "work2.DAT"AS #1
FIELD #1,1 AS a$
CLFILE #1
CLOSE #1

• Program sample with the KILL statement
CLOSE
KILL "work2.DAT"

116

����Restrictions on Input/Output of Data FilesRestrictions on Input/Output of Data FilesRestrictions on Input/Output of Data FilesRestrictions on Input/Output of Data Files
No INPUT#, LINE INPUT#, or PRINT# statement or INPUT$ function can access data files.
To access data files, use a PUT or GET statement.

����Drive DefragmentationDrive DefragmentationDrive DefragmentationDrive Defragmentation
During downloading, a delay of a few seconds (response delay from the BHT) may occur
according to the user area condition.
To eliminate the delay, defragment the drive for the size required for downloading
beforehand.
Doing so will also reduce the device open time in communications. Defragmentation before
downloading is recommended.
If there is no specified size of the empty area in the drive, it is necessary to defragment the
whole empty area.
In complicated write operation, any of the following symptoms may be caused in units of a few
seconds. If such occurs frequently, defragment the drive.

- Longer beep than usual

- Keys do not function

- Bar codes cannot read

- Refreshing of the LCD screen is delayed

- Data cannot be received

- TIMEA, TIMEB, or TIMEC operation is delayed

The OUT statement may defragment the drive. In the OUT statement, you may specify the size
of the empty area to be defragmented in units of 4 kilobytes, starting with 4 kilobytes up to the
maximum size of the user area.
During drive defragmentation, user programs will be halted. Upon completion of
defragmentation, they will resume operation.
In the OUT statement, you may also select whether a bar graph showing the progress of
defragmentation will be displayed on the LCD. The bar graph, if selected, will disappear after
completion of defragmentation and the previous screen will come back.
If the auto power-off function is enabled (refer to the POWER statement in Chapter 14) in the
BHT-8000, the system may automatically defragment the drive at the execution of the auto
power-off function. It will take approx. 10 seconds. During defragmentation, a progress bar
graph will be displayed. Until the completion of defragmentation, the battery should not be
removed from the BHT-8000.
For details about defragmentation with OUT statement, refer to Appendix D, "I/O Ports."

Chapter 8. Files

117

8.2.6 About Drives
The BHT-8000 has logical drives.
Drive B is provided for ensuring compatibility with other BHT series.
If you specify drive name "B:" preceding a filename.extension and open an existing file, then
the BHT will open the file as a read-only file. Executing the PUT statement to the read-only
file will result in a run-time error (43h).
If you specify drive name "A:" or omit a drive name, the BHT will open the file as a read/write
file.
The XFILE and KILL statements will ignore drive names "A:" and "B:."
The table below lists the file access details relating to drives.

File access operation To drive A To drive B

Download XFILE statement Same as left.

Create New with OPEN statement Run-time error (43h)

Open Open with OPEN statement Same as left.

Read GET statement Same as left.

Write PUT statement Run-time error (43h)

Close CLOSE statement Same as left.

Clear CLFILE statement Run-time error (43h)

Delete KILL statement Same as left.

118

8.3 Bar Code Device
8.3.1 Overview

����Opening the Bar Code Device by OPENOpening the Bar Code Device by OPENOpening the Bar Code Device by OPENOpening the Bar Code Device by OPEN "BAR:" Statement "BAR:" Statement "BAR:" Statement "BAR:" Statement
The OPEN "BAR:" statement opens the bar code device. In this statement, you may specify
the following bar code types available in the BHT. The BHT can handle one of them or their
combination.

Available Bar Code Types Default Settings
Universal product codes

EAN-13*1
EAN-8
UPC-A*1

UPC-E

No national flag specified.

Interleaved 2of5 (ITF)

No length of read data specified.
No check digit.

Standard 2of5 (STF)

No length of read data specified.
No check digit.
Short format of the start/stop characters
supported.

Codabar (NW-7)

No length of read data specified.
No check digit.
No start/stop character.

Code 39 No length of read data specified.
No check digit.

Code 93 No length of read data specified.

Code 128 (EAN-128)*2 No length of read data specified.

* 1 Reading wide bars
EAN-13 and UPC-A bar codes may be wider than the readable area of the bar-code
reading window.
Such wider bars can be read by long-distance scanning. Pull the bar-code reading window
away from the bar code so that the entire bar code comes into the illumination range. (No
double-touch reading feature is supported.)

* 2 Specifying Code 128 makes it possible to read not only Code 128 but also EAN-128.

Chapter 8. Files

119

����Specifying Options in the OPENSpecifying Options in the OPENSpecifying Options in the OPENSpecifying Options in the OPEN "BAR:" Stat "BAR:" Stat "BAR:" Stat "BAR:" Statementementementement
You may also specify several options as listed below for each of the bar code types in the
OPEN "BAR:" statement.

Options
- Check digit (only for ITF, NW-7, Code 39, and STF)
- Length of read data
- Start/stop character (only for NW-7 and STF)
- Country code represented by flag characters (only for universal product codes)
- Supplemental code (only for universal product codes)

����Barcode BufferBarcode BufferBarcode BufferBarcode Buffer
The barcode buffer stores the inputted bar code data.
The barcode buffer will be occupied by one operator entry job and can contain up to 99
characters.
You can check whether the barcode buffer stores code data, by using any of the EOF,
INP,and LOC functions, and the WAIT statement.
Any of the INPUT# and LINE INPUT# statements, and the INPUT$ function reads bar code
data stored in the buffer into a string variable.

120

8.3.2 Programming for Bar Code Device

����Code MarkCode MarkCode MarkCode Mark
The MARK$ function allows you to check the code mark (denoting the code type) and the
length of the inputted bar code data.
This function returns a total of three bytes: one byte for the code mark and two bytes for the
data length.

����Multiple Code ReadingMultiple Code ReadingMultiple Code ReadingMultiple Code Reading
You may activate the multiple code reading feature which reads more than one code type
while automatically identifying them. To do it, you should designate desired code types
following the CODE in the OPEN "BAR:" statement.

����Read Mode of the Trigger SwitchRead Mode of the Trigger SwitchRead Mode of the Trigger SwitchRead Mode of the Trigger Switch
The trigger switch function is assigned to the magic keys M3 and M4 by default. You may
assign the trigger switch function to other keys by using the KEY statement.
You may select the read mode of the trigger switch by using the OPEN "BAR:" statement as
listed below.

Read Mode OPEN "BAR:" Statement
Auto-off Mode (Default)
Momentary Switching Mode
Alternate Switching Mode
Continuous Reading Mode

OPEN "BAR:F"...
OPEN "BAR:M"...
OPEN "BAR:A"...
OPEN "BAR:C"...

To check whether the trigger switch is pressed or not, use the INP function or the WAIT
statement, as shown below.

trig%=INP(0)AND &h04
If the value of the trig% is 04h, the trigger switch is kept pressed; if 00h, it is released.

����Generating aGenerating aGenerating aGenerating a Check Digit of Bar Code Data Check Digit of Bar Code Data Check Digit of Bar Code Data Check Digit of Bar Code Data
Specifying a check digit in the OPEN "BAR:" statement makes the Interpreter automatically
check bar codes. If necessary, you may use the CHKDGT$ function for generating a check
digit of bar code data.

Chapter 8. Files

121

����Controlling the Indicator LED and Beeper (Vibrator) for of SuccessfulControlling the Indicator LED and Beeper (Vibrator) for of SuccessfulControlling the Indicator LED and Beeper (Vibrator) for of SuccessfulControlling the Indicator LED and Beeper (Vibrator) for of Successful ReadingReadingReadingReading
By using the OPEN "BAR:" statement, you can control:

• whether the indicator LED should light in green or not (Default: Light in green)

• whether the beeper should beep or not (Default: No beep)
(The BHT-8000 may control the vibrator also.)

when a bar code is read successfully. For detailed specification of the OPEN "BAR:"
statement, refer to Chapter 14.

Controlling the indicator LED
If you have activated the indicator LED (in green) in the OPEN "BAR:" statement, the OUT
statement cannot control the LED via output port 1 when the bar code device file is opened.
(For details about settings of bits 0 and 1 on output port 1, refer to Appendix D.)
If you have deactivated the indicator LED in the OPEN "BAR:" statement, the OUT statement
can control the LED via output port 1 even when the bar code device file is opened.
(For details about settings of bits 0 and 1 on output port 1, refer to Appendix D.)
This way, you can control the indicator LED, enabling that:

• a user program can check the value of a scanned bar code and turn on the green LED
when the bar code has been read successfully.
(For example, you can make the user program interpret bar code data valued from 0 to
100 as correct data.)

• a user program can turn on the red LED the moment the bar code has been read.
Controlling the beeper (vibrator)
If you have activated the beeper in the OPEN "BAR:" statement, the BHT will beep when it
reads a bar code successfully.
You may choose beeping only, vibrating only, or beeping & vibrating on the LCD screen or by
setting the output port in the OUT statement.
This feature is used to sound the beeper or operate the vibrator the moment the BHT-8000
reads a bar code successfully.

122

8.4 Communications Device
8.4.1 Overview
The available communications interface in BHT is as follows.

• IrDA interface

• Direct-connect interface

• Bluetooth interface (For BHTs with Bluetooth communications device)
For the Bluetooth interface, refer to Chapter 18.

8.4.2 Hardware Required for Data Communications
The following hardware is required for communications between the BHT and the host
computer:

• Optical communications unit (CU) and its interface cable
or

• Direct-connect interface cable
For the communications specifications, refer to the BHT User's Manual.
Using Ir-Transfer Utility E allows the BHT to directly communicate with the IR port-integrated
host computer or an external IR transceiver. For details about IR port-integrated computers
and external IR transceivers available, refer to the "Ir-Transfer Utility E Guide."

Chapter 8. Files

123

8.4.3 Programming for Data Communications

Setting the Communications ParametersSetting the Communications ParametersSetting the Communications ParametersSetting the Communications Parameters
Use the OPEN "COM:" statement to set the communications parameters.

����For IrDA interfaceFor IrDA interfaceFor IrDA interfaceFor IrDA interface

Communications Parameters Effective Setting Default
Transmission speed (bps) 115200,57600,38400,19200,9600,2400 9600

Parameters other than the transmission speed are fixed (Parity = None, Character length =
8bits, Stop bit length = 1 bit), since the physical layer of the IrDA interface complies with the
IrDA-SIR 1.2.

����For directFor directFor directFor direct----connect interfaceconnect interfaceconnect interfaceconnect interface

Communications Parameters Effective Setting Default
Transmission speed (bps) 115200,57600,38400,19200,9600, 4800,2400,

1200,600,300 9600

Parity* None, even, or odd None
Character length* 7 or 8 bits 8 bits
Stop bit length* 1 or 2 bits 1 bit

* The parity, character length, and stop bit length are fixed to none, 8 bits, and 1 bit,
respectively, if the BHT-Ir protocol is selected.

124

8.4.4 Overview of Communications Protocols
The BHT supports two communications protocols—BHT-protocol and BHT-Ir protocol for file
transmission. Using the XFILE statement, the BHT may upload or download a file according
to either of these protocols.

[1] BHT-protocol
This protocol may be used also in System Mode.
For the communications specifications of the BHT-protocol, refer to the BHT User's Manual.

����Primary station and secondary stationPrimary station and secondary stationPrimary station and secondary stationPrimary station and secondary station
The primary station and the secondary station should be defined as below.

• When uploading data files
Primary station:
Secondary station:

BHT
Host computer

• When downloading data files
Primary station:
Secondary station:

Host computer
BHT

����Protocol functionsProtocol functionsProtocol functionsProtocol functions
In the BHT-protocol, using the following protocol functions may modify a transmission header
or terminator in a send data:

For a header: SOH$ or STX$
For a terminator: ETX$

����Field length that the BHTField length that the BHTField length that the BHTField length that the BHT----protocolprotocolprotocolprotocol can hand can hand can hand can handlelelele
When the BHT transmits files according to the BHT-protocol, each field length should be a
maximum of 254 bytes.
In file transmission, the host computer should also support the same field length as the BHT.
The MS-DOS–based Transfer Utility supports the field length of up to 99 bytes; the
Windows-based Transfer Utility supports up to 254 bytes.

Chapter 8. Files

125

[2] BHT-Ir protocol
In addition to the BHT-protocol, the BHT supports the BHT-Ir protocol.
If you select the BHT-Ir protocol by using the OUT statement (Port &h6060) or in System
Mode, you can upload or download a data file with the XFILE statement.
The BHT-Ir protocol may be used also in System Mode.
For the communications specifications of the BHT-Ir protocol, refer to the BHT User’s Manual.

����Primary station and secondary stationPrimary station and secondary stationPrimary station and secondary stationPrimary station and secondary station
The primary station and the secondary station should be defined as below.

• When uploading data files
Primary station:
Secondary station:

BHT
Host computer

• When downloading data files
Primary station:
Secondary station:

Host computer
BHT

����Protocol functionsProtocol functionsProtocol functionsProtocol functions
In the BHT-Ir protocol, you cannot change the values of the headers and terminator with the
protocol functions in BHT-BASIC.

126

8.4.5 File Transfer Tools

[1] Transfer Utility
Transfer Utility is optionally available in two versions: MS-DOS–based and Windows-based. It
supports the BHT-protocol and allows you to upload or download user program files and data
files between the host and the BHT, when invoked by the XFILE statement.
This utility can also transfer user program files and data files to/from System Mode.

NOTE

If you have modified transmission headers or terminator to any other
character codes by using the protocol functions, then Transfer Utility is no
longer available.

For computers and Windows version which are available for Transfer Utility and the operating
procedure of Transfer Utility, refer to the "Transfer Utility Guide."

[2] Ir-Transfer Utility C
Ir-Transfer Utility C is optionally available in two versions: MS-DOS–based and
Windows-based. It supports the BHT-Ir protocol and allows you to upload or download user
program files and data files between the host and the BHT, when invoked by the XFILE
statement. Ir-Transfer Utility C handles IrDA SIR-compliant communications via the
communications unit CU.
This utility can also transfer user program files and data files to/from System Mode.
For computers and Windows versions which are available for Ir-Transfer Utility C and the
operating procedure of Ir-Transfer Utility C, refer to the "Ir-Transfer Utility C Guide."

[3] Ir-Transfer Utility E
Ir-Transfer Utility E is optional Windows-based software. It supports the BHT-Ir protocol and
allows you to upload or download user program files and data files between the host and the
BHT, when invoked by the XFILE statement. Ir-Transfer Utility E handles IrDA SIR-compliant
communications via the IR port integrated in a computer or an external IR transceiver.
This utility can also transfer user program files and data files to/from System Mode.
For computers and Windows versions which are available for Ir-Transfer Utility E and the
operating procedure of Ir-Transfer Utility E, refer to the "Ir-Transfer Utility E Guide."

127

Chapter 9
Event Polling and Error/Event Trapping

CONTENTSCONTENTSCONTENTSCONTENTS

9.1 Overview...128

9.2 Event Polling..129
[1] Programming sample ...129
[2] I/O devices capable of being monitored by the event polling..............130

9.3 Error Trapping ...131
[1] Overview...131
[2] Programming for trapping errors...132

9.4 Event (of Keystroke) Trapping...133
[1] Overview...133
[2] Programming for trapping keystrokes...133

128

9.1 Overview
BHT-BASIC supports event polling and two types of trapping: error trapping and event
trap-ping.

– Event polling
– Trapping

Error trapping
Event (of keystroke) trapping

����Event PollingEvent PollingEvent PollingEvent Polling
Makes programs monitor the input devices for occurrence of events.

����Error TrappingError TrappingError TrappingError Trapping
Traps a run-time error and handles it by interrupt to transfer control to the error-handling
routine.
If a run-time error occurs when this trapping ability is disabled, the Interpreter will terminate
the current user program while showing the error message.

����Event (of Keystroke) TrappingEvent (of Keystroke) TrappingEvent (of Keystroke) TrappingEvent (of Keystroke) Trapping
Traps a particular keystroke (caused by pressing any of the specified function keys) and
handles it by interrupt to transfer control to the event-handling routine.

Chapter 9. Event Polling and Error/Event Trapping

129

9.2 Event Polling
[1] Programming sample
The program below shows the event polling example which monitors the bar code reader and
the keyboard for occurrence of events.
This example uses the EOF and INKEY$ functions to check the data input for the bar code
reader and the keyboard, respectively.

loop

barcod

keyin

OPEN "BAR:"AS #1 CODE "A"

WAIT 0,3
IF NOT EOF(1)THEN

GOSUB barcod
ENDIF
k$=INKEY$
IF k$<>""THEN

GOSUB keyin
ENDIF
GOTO loop

BEEP
LINE INPUT #1,dat$
PRINT dat$
RETURN

:
:
RETURN

130

[2] I/O devices capable of being monitored by the event polling
Listed below are the I/O devices which the event polling can monitor.

I/O Devices Monitor Means Events
Keyboard INKEY$ function Input of one character

from the keyboard
Bar code reader EOF or LOC function Presence/absence of bar

code data input or the
number of read characters
(bytes)

Receive buffer EOF, LOC, or LOF
function

Presence/absence of
receive data or the number
of received characters
(bytes)

Timer TIMEA, TIMEB, or
TIMEC function

Timer count-up

����Monitoring with the INP FunctionMonitoring with the INP FunctionMonitoring with the INP FunctionMonitoring with the INP Function
Combining the INP function with the above functions enables more elaborate programming
for event polling.
For the INP function, refer to Appendix D, "I/O Ports."

Chapter 9. Event Polling and Error/Event Trapping

131

9.3 Error Trapping
[1] Overview
If a run-time error occurs during program running, error trapping makes the program cause an
interrupt upon completion of the machine instruction so as to transfer control from the current
program to the error-handling routine which has been specified by a label.
If a run-time error occurs when this trapping ability is disabled, the Interpreter will terminate
the current user program while displaying the error message as shown below.
Error message sample:

ERL=38A4 ERR=0034

The above message indicates that a run-time error has occurred at address 38A4h and its
error code is 34h. Both the address and error code are expressed in hexadecimal notation.
The address is a relative address and corresponds to the address in the program list
outputted by the Compiler. According to this address indication, you can pinpoint the program
line where the run-time error has occurred.
The error code 34h (52 in decimal notation) means that the user program attempted to access
a file not opened. (Refer to Appendix A1, "Run-time Errors.")
The ERL and ERR functions described in an error-handling routine will return the same values,
38A4h and 34h, respectively.

NOTE
If an error occurs during execution of user-defined functions or subroutines so
that the error is trapped and handled by the error-handling routine, then do not
directly pass control back to the main routine having the different stack level by
using the RESUME statement. The return address from the user-defined
functions or subroutines will be left on the stack, causing a run-time error due to
stack overflow.
To prevent such a problem, once transfer control to the routine which caused the
interrupt in order to match the stack level and then jump to any other desired
routine.
(Refer to Chapter 3, Section 3.1, "Program Overview.")

132

[2] Programming for trapping errors
To trap errors, use the ON ERROR GOTO statement in which you should designate the
error-handling routine (to which control is to be transferred if a run-time error occurs) by the
label.

err01

ON ERROR GOTO err01
:
:
(Main routine)
:
:
END

(Error-handling routine)
PRINT "***error ***"
PRINT ERR,HEX$(ERL)
RESUME NEXT

If a run-time error occurs in the main routine, the above program executes the error-handling
routine specified by the label err01 in the ON ERROR GOTO statement.
In the error-handling routine, the ERL and ERR functions allow you to pinpoint the address
where the error has occurred and the error code, respectively.

NOTE

According to the error location and error code, you should troubleshoot
the programming error and correct it for proper error handling.

The RESUME statement may pass control from the error-handling routine back to any
specified statement as listed below.

RESUME Statement Description

RESUME or RESUME 0

Resumes program execution with the statement
that caused the error.

RESUME NEXT

Resumes program execution with the statement
immediately following the one that caused the
error.

RESUME label Resumes program execution with the statement
designated by label.

Chapter 9. Event Polling and Error/Event Trapping

133

9.4 Event (of Keystroke) Trapping
[1] Overview
If any of the function keys previously specified for keystroke trapping is pressed, event
trapping makes the program cause an interrupt so as to transfer control from the current
program to the specified event-handling routine.
This trapping facility checks whether any of the function keys is pressed or not between every
execution of the statements.

[2] Programming for trapping keystrokes
To trap keystrokes, use both the ON KEY...GOSUB and KEY ON statements. The ON
KEY...GOSUB statement designates the key number of the function key to be trapped and
the event-handling routine (to which control is to be transferred if a specified function key is
pressed) in its label. The KEY ON statement activates the designated function key.
This trapping cannot take effect until both the ON KEY...GOSUB and KEY ON statements have
been executed.
The keystroke of an unspecified function key or any of the numerical keys cannot be trapped.
The following program sample will trap keystroke of magic keys M1 and M2 (these keys are
numbered 30 and 31, respectively).

sub1

sub2

ON KEY (30)GOSUB sub1
ON KEY (31)GOSUB sub2
KEY (30)ON
KEY (31)ON
:
:
(Main routine)
:
:
END

(Event-handling routine 1)
RETURN

(Event-handling routine 2)
RETURN

The RETURN statement in the event-handling routine will return control to the statement
immediately following that statement where the keyboard interrupt occurred.
Even if a function key is assigned a null string by the KEY statement, pressing the function key
will cause a keyboard interrupt when the KEY ON statement activates that function key.

134

If function keys specified for keystroke trapping are pressed during execution of the following
statements or functions relating keyboard input, this trapping facility operates as described
below.

Statements or Functions Keystroke Trapping

INPUT statement Ignores the entry of the pressed key and
causes no interrupt.

LINE INPUT statement Same as above.

INPUT$ function Same as above.

INKEY$ function Ignores the entry of the pressed key, but
causes an interrupt.

135

Chapter 10
Sleep Function

CONTENTSCONTENTSCONTENTSCONTENTS

10.1 Sleep Function ..136

136

10.1 Sleep Function
The BHT supports the sleep function that automatically interrupts program execution if no

event takes place within the specified length of time in the BHT, thereby minimizing its power
consumption. Upon detection of any event, the BHT in the sleep state immediately starts the
interrupted user program.

By using the OUT statement, you may set the desired length of time to the sleep timer within
the range from 0 to 25.5 seconds in increment of 100 ms. The default is 1 second.

When setting the sleep timer, the OUT statement also copies (assigns) the set value to its
internal variable. The sleep timer immediately starts counting down the value assigned to the
internal variable, -1 per 100 ms. If the value becomes 0, the BHT goes into a sleep.

Note that the sleep timer will not count in any of the following cases. When the BHT exits from
any of them, the value preset to the sleep timer will be assigned to the internal variable again
and the sleep timer will start counting.

• While a communications device file is opened by an OPEN "COM:" statement.

• During execution of a SEARCH, DATE$, or TIME$ function.

• When a value less than 10 seconds is set to a TIMEA, TIMEB, or TIMEC function so that
the returned value is a nonzero.

• When the bar code device file is opened by the OPEN "BAR:" statement under any of the
following conditions:

- With the continuous reading mode specified

- With the momentary switching mode or auto-off mode specified, and with the trigger
switch held down

- With the alternate switching mode, and with the illumination LED being on

• When any key is held down.

• When the backlight is on (except when the backlight is kept on).

• When the beeper is beeping.

• When the vibrator is working.

• When the BHT is updating data on the screen.

• When the BHT is writing data into a data file.

• When a register variable is undergoing change.

137

Chapter 11
Resume Function

CONTENTSCONTENTSCONTENTSCONTENTS

11.1 Resume Function ..138

138

11.1 Resume Function
The resume function automatically preserves the current status of a running application
pro-gram (user program) when the BHT is turned off, and then resumes it when the BHT is
turned on. That is, even if you unintentionally turn off the BHT or the automatic powering-off
function turns off the BHT, turning on the BHT once again resumes the previous status of the
program to allow you to continue the program execution.
The resume function is effective also during data transmission in execution of an application
program, but a few bytes of data being transmitted may not be assured.

NOTE
Even if you become disoriented with the operation during execution of an
application program and turn off the BHT when the resume function is enabled,
the BHT cannot escape you from the current status of the program. This is
because the resume function will not initialize the variables or restart the BHT.
(You can disable the resume function in System Mode.)

The resume function does not work after execution of System Mode or any of the following
statements:

- END
- POWER OFF
- POWER 0

NOTE
In preparation for maintenance or inspection jobs involving execution of System
Mode (which will disable the resume function), store important information
contained in user programs by using files or register variables, preventing your
current operation jobs from getting crippled.

139

Chapter 12
Power-related Functions

CONTENTSCONTENTSCONTENTSCONTENTS

12.1 Low Battery Warning...140

12.2 Prohibited Simultaneous Operation of the Beeper, Illumination LED, and LCD
Backlight..140

12.3 Wakeup Function ..141

12.4 Remote Wakeup Function...142
[1] Outline ..142
[2] Remote wakeup operation..143
[3] Remote wakeup program ...146

140

12.1 Low Battery Warning
If the output voltage of the battery cartridge drops below a specified lower level limit when the
BHT is in operation, then the BHT displays the Level-1 message "Battery voltage has
lowered." on the LCD and beeps three times. After that, it will resume previous regular
operation.
If the battery output voltage drops further, the BHT displays the Level-2 message "Charge the
battery!" or "Replace the batteries!" (when driven by the lithium-ion battery cartridge or dry
battery cartridge, respectively), beeps five times, and then turns itself off automatically.
Refer to the BHT User’s Manual.

12.2 Prohibited Simultaneous
Operation of the Beeper,
Illumination LED, and LCD
Backlight

The BHT is so designed that the beeper (and vibrator), illumination LED, and LCD backlight
will not work simultaneously to save power consumption at peak load. There are priority
orders among them; that is, the beeper (and vibrator) has the highest priority, the illumination
LED has the next priority, and the LCD backlight has the lowest priority.

Chapter 12. Power-related Functions

141

12.3 Wakeup Function
The wakeup function allows you to turn the BHT on at the wakeup time (of the system clock)
specified in user programs.
To set the wakeup time, use the TIME$ function as follows:

(1) Set 1 to bit 2 on port 8. Switches the TIME$ function to the setting of the wakeup
time.

(2) Set the wakeup time by using the TIME$ function.

(3) Set 1 to bit 0 on port 8. Activates the wakeup function.
To confirm the preset wakeup time, use the TIME$ function as follows:

(1) Set 1 to bit 2 on port 8. Switches the TIME$ function to the setting of the wakeup
time.

(2) Retrieve the wakeup time by using the TIME$ function.

TIP
If you set or retrieve the system time or wakeup time by using the
TIME$ function, then the value of bit 2 on port 8 will be automatically reset to
zero.
When bit 2 on port 8 is zero, you can set or retrieve the current system time by
using the TIME$ function.
By reading the value of bit 1 on port 8 in user programs, you may confirm the
initiation option of the BHT. If this bit is 1, it means that the BHT is initiated by
the wakeup function and if 0, it means that it is initiated by the PW key.

142

12.4 Remote Wakeup Function
[1] Outline
The remote wakeup function allows you to wake up the BHT from a remote location so as to
run the specified user program (hereafter referred to "remote wakeup program") by sending
the specified message from the host computer to the BHT via the CU.
Developing user programs utilizing the remote wakeup at both the host computer and BHT
enables you to automatically maintain the master system or update user programs.
To use the remote wakeup between the BHT and host computer, the following is required:

• Optical communications unit (CU-8000)
• CU interface cable

NOTE: If you will not use the remote wakeup function, it is recommended that it be
deactivated. This is because activating the remote wakeup function will periodically run the
CPU for the specified time length during the wakeup effective hours (timeout period) so that
the BHT will consume more power than that with the remote wakeup function deactivated.

Chapter 12. Power-related Functions

143

[2] Remote wakeup operation

����About BHT internal operation enabling remote wakeupAbout BHT internal operation enabling remote wakeupAbout BHT internal operation enabling remote wakeupAbout BHT internal operation enabling remote wakeup
If the BHT is turned off normally* with the remote wakeup function activated, then it will
become ready to receive commands from the host computer at the timing shown below during
the specified timeout period. During this operation, nothing appears on the LCD.
(*"Turned off normally" refers to turned-off with the PW key, with the auto power-off feature, or
with END, POWER OFF, or POWER 0 statement. If the BHT is shut down due to low battery
or no battery loaded, it will no longer become ready for remote wakeup operation.)

Set up the host computer and BHT so that the BHT may receive commands from the host
computer at the timing shown above, referring to the typical operation flow given below.

����Configuring the BHT for the remote wakeupConfiguring the BHT for the remote wakeupConfiguring the BHT for the remote wakeupConfiguring the BHT for the remote wakeup
To use the remote wakeup, you need to configure the BHT in System Mode or in user
programs as listed below.
For the operating procedure in System Mode, refer to the BHT User's Manual. For that in user
programs, refer to "[3] Remote wakeup program."

Items Set values
Remote wakeup function Activate
Transmission speed Match the CU's and host's transmission speed.
Timeout period (Effective hours) Match the timeout specified in the host's

application.

����Typical operation flowTypical operation flowTypical operation flowTypical operation flow

At the host computerAt the host computerAt the host computerAt the host computer
(1) Send a "WAKE" character string to the BHT.

(2) Wait for a response from the BHT.
-If the host receives "ACK + 0 + ID":
The host should conduct transactions with the remote wakeup program in the BHT.
-If the host receives "EOT + 1 + ID":
The host should proceed to the corresponding error processing.

BHT is ready for
remote wakeup

BHT is off

Timeout period for waiting a wakeup
command from the host computer

 1 min.

(Max. interval
error: -1 min.)

1 min.

100 ms (Ready to receive commands)

1 min.

144

If the host receives no response from the BHT for 30 ms, go back to step (1).

(3) Perform steps (1) and (2) repeatedly for 60 seconds or more. If the host receives no
response from the BHT during the period, it should proceed to the specified error
processing.

Refer to the sample program given below.
 sample_e.c

At the BHTAt the BHTAt the BHTAt the BHT
(1) Turn the BHT off and put it on the CU.

(2) Upon receipt of any data, the BHT will check the data.

 If the BHT detects a “WAKE” character string in the data, it will proceed to step (3); if not,
it will go back to step (1).

(3) The BHT will send the following response to the host computer depending upon whether
or not a remote wakeup program exists in the BHT.

Remote wakeup

program
Response message from

the BHT Proceeds to:

Exists ACK + "0" + ID* (4)

Not exist EOT + "1" + ID (2)

*ID: 6-byte numeric string that refers to the lower 6 digits of the BHT product number.

Chapter 12. Power-related Functions

145

(4) The BHT will exit from the off state and execute the remote wakeup program developed

by the user.

Conduct transactions
for BHT's response.

Yes

No

Host computer

Any response
from the BHT?

Turn the BHT on to ready
 to receive commands.

Send response.

Start the remote
wakeup program.

BHT

Conduct transactions with
the BHT application program.

The received command
contains "WAKE"?

"WAKE"

Transacted by the
BHT system program.

Start the sending
timer or counter.

Start the remote wakeup.

30 ms elapsed?
from the BHT?

Sending
timer

End the remote wakeup.

Send

Start 30 ms count.

Start the remote wakeup start timer.

Ready for remote wakeup.

1 min elapsed?

Start 100 ms count.

Any command received
from the host?

Remote wakeup
program exists?

Send response.

ACK
+"0"
+ID

EOT
+"1"
+ID

100 ms elapsed?

Turn the BHT off.

Timeout.

Turn the BHT off.

Remote wakeup
start timer
counted up?

Transacted
by the BHT
hardware.

No Yes

No Yes

No Yes

No

Yes
No

Yes

No

Yes

No

Yes

No

Yes

146

[3] Remote wakeup program

����File nameFile nameFile nameFile name
The BHT may handle the file named "BHTRMT.PD3" as a remote wakeup program.
Upon receipt of data containing a “WAKE” character string, the BHT checks whether the
BHTRMT.PD3 file exists. If the file exists, the BHT will start the remote wakeup operation
described in [2].

����Settings for remote wakeupSettings for remote wakeupSettings for remote wakeupSettings for remote wakeup
To use the remote wakeup function, make the following I/O port settings with the OUT
statement beforehand (refer to Appendix D, "I/O Ports"):

(1) Activate the remote wakeup function
You may activate/deactivate the remote wakeup function as listed below. The default is 0
(Deactivate).

Port No. Bit No. R/W Specifications

60F0h 0 R/W 0: Deactivate the remote wakeup
1: Activate the remote wakeup

(2) Set the transmission speed to be applied for remote wakeup

Set the transmission speed to be applied when activating the remote wakeup as listed
below. The default is 5 (115200 bps).

Port No. Bit No. R/W Specifications

60F1h 7-0 R/W 1: 9600 bps2: 19200 bps
3: 38400 bps4: 57600 bps
5: 115200 bps

(3) Set the timeout period for ready-to-receive state

Set the timeout period during which the BHT will be ready to receive a remote wakeup
command from the host computer. The default is 12 (hours).

Port No. Bit No. R/W Specifications

60F4h 7-0 R/W 1 to 24 (hours).

Chapter 12. Power-related Functions

147

(4) Set the BHT station ID to be used in the BHT response message
Set a 6-byte numeric string referring to the lower 6 digits of the BHT serial number as a
station ID which will be used in the response message to the host. To write and read the
setting, use the extended function SYSTEM.FN3 (Functions #3 and #4). For details, refer
to Chapter 16, "Extended Functions."

Once made in a user program, the above settings will be retained even after the termination
of the user program.
The remote wakeup activation/deactivation, transmission speed to be applied for remote
wakeup, and timeout period for ready-to receive state may be set in System Mode. For details,
refer to the BHT User's Manual.

����Start of a remote wakeupStart of a remote wakeupStart of a remote wakeupStart of a remote wakeup program program program program
When a remote wakeup program starts, the resume function of the most recently running user
program becomes disabled regardless of the resume setting made in System Mode. Also in
other user programs chained from the remote wakeup program with the CHAIN statement, the
resume function will remain disabled.
Accordingly, after termination of the remote wakeup program, any other user program will
perform a cold start.
To enable the resume function of a user program running after the termination of the remote
wakeup program and its chained-to programs, use the extended function SYSTEM.FN3
(Function #1). For details, refer to Chapter 16, "Extended Functions."

����End of a remote wakeupEnd of a remote wakeupEnd of a remote wakeupEnd of a remote wakeup program program program program
The remote wakeup program and its chained-to programs may be either normally terminated
or interrupted as follows:

• Normally terminated
when the program is ended with END, POWER OFF or POWER 0 statement.
• Interrupted
when the program is ended by pressing the PW key, with automatic powering-off function,
low battery power-off or any other factor when the resume function is disabled.

If the resume function is made enabled, the remote wakeup program or its chained-to
program will be neither normally terminated nor interrupted since it will resume the operation
in the next powering-on.

148

����Checking the execution recordChecking the execution recordChecking the execution recordChecking the execution record of remote wakeup of remote wakeup of remote wakeup of remote wakeup
When starting, a user program (including a remote wakeup program) may check via the I/O
ports whether the BHT remotely woke up at the last powering on and its operation was
normally ended. (Refer to Appendix D, "I/O Ports.”)
Making use of the execution record, you may display an alarm message.

Port No. Bit 0 Bit 1 Specifications

60F2h 0 0

 0 1

At the last powering on, the BHT did not remotely
wake up.*

 1 0 At the last powering on, the BHT remotely woke up
and its operation was interrupted.

 1 1 At the last powering on, the BHT remotely woke up
and its operation was normally ended.

*This means that the BHT was cold-started, driven by System Mode, or initialized.

����If the dry cells or battery cartridge is unloaded and reloaded when the BHT is ready for If the dry cells or battery cartridge is unloaded and reloaded when the BHT is ready for If the dry cells or battery cartridge is unloaded and reloaded when the BHT is ready for If the dry cells or battery cartridge is unloaded and reloaded when the BHT is ready for
remote wakeupremote wakeupremote wakeupremote wakeup
When the BHT is ready to receive remote wakeup commands, unloading and reloading the
dry cells or battery cartridge may not retain the ready-to-receive state.
To use the remote wakeup after that, turn the BHT on and off. The BHT will become ready for
remote wakeup and the remote wakeup start timer will start counting from the beginning.

149

Chapter 13
Backlight Function

CONTENTSCONTENTSCONTENTSCONTENTS

13.1 Backlight Function...150

150

13.1 Backlight Function
The BHT has a backlight function (LCD backlight and key backlight). Pressing the M1 key
while holding down the Shift key activates or deactivates the backlight function. The default
length of backlight ON-time (ON-duration) is 3 seconds.
By using an OUT statement, you can enable/disable either or both the LCD backlight and key
backlight. (Refer to Appendix D, "I/O Ports.")
By using a KEY statement, you can select the backlight function on/off key instead of the
combination of the trigger switch and Shift key, as well as modifying the ON-duration of the
backlight. For details about the KEY statement, refer to KEY in Chapter 14.

Setting 1 to port 6020h with the OUT statement activates the backlight function and turns on
the backlight. If no key is pressed for the time length preset to port 6021h (default time: 3
seconds), the backlight goes off but the backlight function remains activated.

Press the M1 key
while holding
down the Shift key.

Or, press the backlight
function on/off key specified
by KEY statement

Press the M1 key
while holding
down the Shift key.

Or, press the backlight
function on/off key specified
by KEY statement.

Press the M1 key
while holding
down the Shift key

Or, press the backlight
function on/off key specified
by KEY statement

The backlight function
isOFF when you turn
onthe BHT.

Backlight OFF

Backlight ON

If no key is pressed
for 3 seconds, the
backlight goes off

Backlight OFF
(The backlight function

remains ON.)

Press any key except for the
backlight function on/off key.

Chapter 13. Backlight Function

151

Setting 0 to port 6020h deactivates the backlight function and turns off the backlight if lit.
When the backlight function is activated with the OUT statement, the backlight function on/off
key and ON-duration specified by the KEY statement will be ignored.

The backlight function
isOFF when you turn
onthe BHT.

Backlight OFF

Backlight ON

If no key is pressed
for the time length
preset to port 6021h,
the backlight goes off.

Backlight OFF
The backlight function

remains activated

Press any key

With the OUT statement,
set 1 to port 6020h

With the OUT statement,
set 0 to port 6020h.

With the OUT statement,
set 0 to port 6020h.

152

Chapter 14
Statement Reference

CONTENTSCONTENTSCONTENTSCONTENTS

APLOAD...153
BEEP..157
CALL ..160
CHAIN ..164
CLFILE ...166
CLOSE ...168
CLS ..169
COMMON...170
CONST...172
CURSOR..173
DATA ..174
DECLARE...175
DEF FN ..177
DEF FN…END DEF181
DEFREG ..185
DIM...189
END..191
ERASE ...192
FIELD ...193
FOR…NEXT...195
FUNCTION…END FUNCTION197
GET ..201
GLOBAL ...203
GOSUB ..205
GOTO...206
IF…THEN…ELSE…END IF207
INPUT...209
INPUT #..212
KEY ..214
KEY ON and KEY OFF...........................218
KILL ..220

KPLOAD ..222
LET ..227
LINE INPUT ...228
LINE INPUT # ..230
LOCATE...232
ON ERROR GOTO235
ON…GOSUB，ON…GOTO236
ON KEY…GOSUB238
OPEN...240
OPEN "BAR: " ..242
OPEN "COM: "252
OUT ...256
POWER ...258
PRINT ..260
PRINT # ...262
PRINT USING ..264
PRIVATE ..268
PUT..271
READ ...273
REM...275
RESTORE..276
RESUME..277
RETURN ..279
SCREEN ..280
SELECT…CASE…END SELECT..........282
SUB…END SUB284
WAIT ..288
WHILE…WEND290
XFILE ...292
$INCLUDE ...297
Additional Explanation for Statements....299

Chapter 14. Statement Reference

153

__
ANK Pattern LOAD I/O statement

APLOAD
Loads a user-defined font in the single-byte ANK* mode
__

*ANK: Alphanumeric and Katakana

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Loading a user-defined font):

APLOAD characode,fontarrayname
Syntax 2 (Loading a user-defined cursor.):

APLOAD characode,cursorarrayname
Parameter:Parameter:Parameter:Parameter:

characode
• For user-defined font

• For user-defined cursor

A numeric expression which returns a value from
128 (80h) to 159 (9Fh).
A numeric expression which returns a value 0.

fontarrayname and cursorarrayname
An array integer variable name.

NOTE

Do not specify parentheses () or subscripts which represent a general array as
shown below; doing so will result in a syntax error.

APLOAD &H80,cp%() ’error
APLOAD &H80,cp%(5) ’error

Description:Description:Description:Description:
�Loading a user-defined font
APLOAD loads a user-defined font data defined by fontarrayname to the user font area
specified by characode.

• To display user-defined fonts loaded by the APLOAD, you use the PRINT statement in
the single-byte ANK mode. If you attempt to display an undefined character code, a
space character will appear.

• The loaded user-defined fonts are effective during execution of the user program which
loaded those fonts and during execution of the successive user programs chained by
the CHAIN statement.

154

• If you issue more than one APLOAD statement specifying a same character code, the
last statement takes effect.

• Only when the Interpreter executes the APLOAD statement, it refers to the array data
defined by fontarrayname. So, once a user program has finished load-ing the user
font, changing the data in the array or deleting the array itself (by the ERASE statement)
will not affect the already loaded user font.

• An array integer variable--a work array, register array, or common array--for
fontarrayname should be declared by the DIM, DEFREG, or COMMON statement,
respectively.

DIM cp0%(11)
DEFREG cp1%(11)
COMMON cp2%(11)

The array variable should be one-dimensional and have at least 6 elements.
Each element data should be an integer and stored in the area from the 1st to 6th
elements of the array.

• Also when the small-size font or double-width is specified, user-defined fonts loaded by
the APLOAD will be effective. For those font patterns, refer to Chapter 7, Subsection
7.1.3, "Dot Patterns of Fonts" and Subsection 7.1.5, "Displaying User-defined
Characters."

�Loading a user-defined cursor
APLOAD loads a user-defined cursor data defined by cursorarrayname to the user font
area specified by characode.

• To display a user-defined cursor loaded by the APLOAD, you set 255 to the
cursorarrayname in the LOCATE statement in the single-byte ANK mode.
(LOCATE ,,255)

• The loaded user-defined cursors are effective during execution of the user program
which loaded those cursors and during execution of the successive user programs
chained by the CHAIN statement.

• Only when the Interpreter executes the APLOAD statement, it refers to the array data
defined by cursorarrayname. So, once a user program has finished loading the user
cursor, changing the data in the array or deleting the array itself (by the ERASE
statement) will not affect the already loaded user cursor.

Chapter 14. Statement Reference

155

• The cursor size will be as shown below.

Display font Size (W×H) No. of elements
Standard-size 6×8 dots

LSB

MSB

6

Small-size 6×6 dots

LSB

MSB

6

• An array integer variable--a work array, register array, or common array—for
cursorarray-
name should be declared by the DIM, DEFREG, or COMMON statement, respectively.

DIM cp0%(11)
DEFREG cp1%(11)
COMMON cp2%(11)

The array variable should be one-dimensional and have at least 12 elements.
Each element data should be an integer and stored in the area from the 1st to 12th
elements of the array.

• If you specify cursorarrayname exceeding the allowable cursor size (height: no. of
bits, width: no. of elements), the excess will be discarded.

• If the double-width, double-height, or quadruple-size is specified, then user-defined
cursors loaded by the APLOAD will display in double-width, double-height, or
quadruple-size, respectively. For details, refer to Chapter 7, Subsection 7.1.3, "Dot
Patterns of Fonts."

156

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • No fontarrayname or cursorarrayname

is defined.

• fontarrayname or cursorarrayname has
an array string variable.

• fontarrayname or cursorarrayname
includes parentheses ().

• fontarrayname or cursorarrayname
includes subscripts.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(• characode is out of the specified range.)
(• The array structure is not correct.)

08h Array not defined

Example:Example:Example:Example:
DIM cp%(5)
cp%(0)=&H00
cp%(1)=&H08
cp%(2)=&H1C
cp%(3)=&H3E
cp%(4)=&H7F
cp%(5)=&H00
APLOAD &H80,cp%
PRINT CHR$(&H80)

Array Elements

Reference:Reference:Reference:Reference:
Statements: COMMON, DEFREG, DIM, KPLOAD, PRINT, and SCREEN

Bit in each
array element

0

1

2

3

4

5

6

7

cp%(0) cp%(1) cp%(2) cp%(3) cp%(4) cp%(5)

(LSB)

(MSB)

Chapter 14. Statement Reference

157

__
I/O statement

BEEP
Drives the beeper or vibrator.
__

Syntax:Syntax:Syntax:Syntax:
BEEP[onduration[,offduration[,repetitioncount [,frequency]]]]

Parameter:Parameter:Parameter:Parameter:
onduration, offduration, and repetitioncount

Numeric expressions, each of which returns a value from 0 to 255.
frequency

A numeric expression which returns a value from 0 to 32767.

Description:Description:Description:Description:
BEEP sounds the beeper or drives the vibrator during the length of time specified by
onduration at the intervals of the length of time specified by offduration by the
number of repetitions specified by repetitioncount.
The beeper sounds at the pitch of the sound in Hz specified by frequency.

• The unit of onduration and offduration is 100 msec.

• Defaults:

onduration and
offduration: 1（100 msec. ）

repetitioncount: 1
frequency: 2793 Hz*

(*Same as that when 2 is set to frequency)

• Note that specification of 0, 1, or 2 to frequency produces the special beeper effects

as listed below.

Specification to
frequency Frequency Tone Statement example

0 698 Hz Low-pitched BEEP ,,,0

1 1396 Hz Medium-pitched BEEP ,,,1

2 2793 Hz High-pitched BEEP ,,,2

Specification of 0, 1, or 2 to frequency drives the beeper or vibrator depending upon the
settings made on the main adjustment screen of the LCD, beeper, and touch screen.
If 0, 1, or 2 is set to frequency (or if the frequency option is omitted), then you can
adjust the beeper volume on the LCD when turning on the BHT. (For the adjustment
procedure, refer to the BHT User's Manual.)

158

You may change the beeper volume with the OUT statement. (For details, refer to
Appendix D, "I/O Ports.")
If you set a value other than 0, 1, and 2 to frequency, the beeper volume is
automatically set to the maximum and not adjustable.

• Specification of any of 3 through 61 to frequency deactivates the beeper or vibrator.

• Specification of zero to onduration deactivates the beeper.

• Specification of a value except for zero to onduration and specification of zero to
offduration keep beeping.

• Specification of a value except for zero to onduration and offduration and
specification of zero to repetitioncount deactivate the beeper.

• For your reference, the relationship between the frequencies and the musical scale is
listed below.

 Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

do 130 Hz 261 Hz 523 Hz 1046 Hz 2093 Hz 4186 Hz

do# 138 277 554 1108 2217

re 146 293 587 1174 2349

re# 155 311 622 1244 2489

mi 164 329 659 1318 2637

fa 174 349 698 1396 2793

fa# 184 369 739 1479 2959

sol 195 391 783 1567 3135

sol# 207 415 830 1661 3322

la 220 440 880 1760 3520

la# 233 466 932 1864 3729

si 246 493 987 1975 3951

• The BEEP statement does not suspend execution of the subsequent statement until the
beeper completes sounding or vibrating. Instead, the execution of the subsequent
statement proceeds immediately.

If a second BEEP statement is encountered while the BHT is still beeping or vibrating
by a first BEEP, the first BEEP is cancelled and the new BEEP statement executes.

• If low battery warning operation starts during beeping or vibrating programmed by the
BEEP, then the warning operation overrides the programmed beeping or vibrating. Upon
completion of the warning operation, the beeper or vibrator resumes working as
programmed.

Chapter 14. Statement Reference

159

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error The number of parameters or commas (,) exceeds

the limit.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

05h Parameter out of the range

Example:Example:Example:Example:
BEEP bon%,boff%,count%,helz%
BEEP bon%,boff%,count%
BEEP bon%,boff%,,helz%
BEEP bon%,,count%,helz%
BEEP ,boff%,count%,helz%
BEEP bon%,boff%
BEEP bon%,,count%
BEEP ,boff%,count%
BEEP bon%,,,helz%
BEEP ,boff%,,helz%
BEEP ,,count%,helz%
BEEP bon%
BEEP ,boff%
BEEP ,,count%
BEEP ,,,helz%
BEEP

160

__
Flow control statement

CALL
Calls an FN3 or SUB function.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Calling an FN3):

CALL "[drivename:]filename" functionnumber [data [,data]...]
Syntax 2 (Calling a SUB):

CALL functionname [(realparameter[,realparameter…])]

Parameter:Parameter:Parameter:Parameter:
[drivename:]filename

A string expression.
functionnumber

An integer constant.
data

A string variable or a numeric variable.
functionname

Real function name.
realparameter

A numeric expression or a string expression.

Description:Description:Description:Description:

����Calling an extension libraryCalling an extension libraryCalling an extension libraryCalling an extension library (FN3 function) (FN3 function) (FN3 function) (FN3 function)
CALL calls a function specified by functionnumber from a file specified by
"[drivename:] filename" and assigns the parameter specified by data to the called
function.

• [drivename:] is used in conventional BHT models. In the BHT-100 series, it is merely
for the compatibility with their specifications. The drivename may be A: or B:, but it
will be ignored.

Chapter 14. Statement Reference

161

• filename is the name of an FN3 function. The extension of the file names is fixed
to .FN3. (For the FN3 functions, refer to Chapter 16, "Extended Functions" or the
"BHT-BASIC Extension Library Manual.")

• functionnumber is the function number of an FN3 specified by filename.

• data is a variable for the function number of the FN3 (that is, it is used as an argument
to the FN3 function).

• When specifying an array to data, add a pair of parentheses containing nothing as
shown below.

Example: CALL "_xxx.FN3" 1 DATA ()

• When calling a function (specified by functionnumber) that returns a string variable:
Reserve a storage area for a returned string variable by using a variable declaration
statement (DIM, COMMON, or DEFREG). It is not necessary to assign arbitrary data of
the string length required for a return value to the variable.
If the string length of a returned value is greater than the length reserved by a variable
declaration statement, then a run-time error will result.
(Example 1) If a return value is a fixed-length string, e.g. 8-character length:

DIM OUTPUT$[8] ' Reserve a storage area of 8 characters.
(Example 2) If a return value is a variable-length string of a maximum of N characters:

DIM OUTPUT$[N] ' Reserve a storage area of a max. of N chars.

NOTE

To use FN3 functions except extended functions given in Chapter 16, you need to
download the extension programs from an extension library sold separately.

162

����Calling a userCalling a userCalling a userCalling a user----defined functiondefined functiondefined functiondefined function (SUB function) (SUB function) (SUB function) (SUB function)
This statement calls a user-defined function specified by functionname. You may omit
CALL when calling a SUB function.

• functionname should be a user-defined function defined by SUB...END SUB
statement.

• The number of realparameters should be equal to that of dummyparameters, and
the types of the corresponding variables used in those parameters should be identical.

• If you specify a global variable in realparameter when calling a user-defined function,
the user-defined function cannot update the value of the global variable.

This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")

NOTE

Before any call to a SUB function, you need to place definition of the SUB
function or declaration of the SUB function by using the DECLARE statement in
your source program.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 3: ’" ’ missing No double quote precedes or follows

[drivename:]filename.
error 68: Mismatch • The number of real parameters is not equal to

that of the dummy parameters.

• dummyparameter was an integer variable in
defining a function, but realparameter is a
real type in calling the function. (If a dummy
parameter was a real variable in defining a
function and realparameter is an integer type
in calling, then no error occurs.)

error 71: Syntax error • [drivename:]filename is not enclosed in
double quotes.

• The function specified by functionname has
not been defined.

Chapter 14. Statement Reference

163

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
02h Syntax error

("[drivename:]filename" is in incorrect syntax or the extension is
not .FN3.)

05h Parameter value out of range
(In calling an FN3 function, the number of parameters exceeds 16.)

07h Insufficient memory space
(You nested calling statements of a user-defined function to more
than 10 levels.)

1Fh functionnumber out of the range

35h File not found

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Insufficient string variable storage area

ReferencReferencReferencReference:e:e:e:
Statements: DECLARE and SUB ..END SUB

164

__
Flow control statement

CHAIN
Transfers control to another program.
__

Syntax:Syntax:Syntax:Syntax:
CHAIN "[drivename:]programfilename"

Parameter:Parameter:Parameter:Parameter:
"[drivename:]programfilename"

A string expression.

Description:Description:Description:Description:
CHAIN transfers control to a program specified by "[drivename:]programfilename".
That is, it terminates the current running program (1st program) and closes all of the files
being opened. Then, it initializes environments for the chained-to user program (2nd
program) specified by "[drivename:]programfilename" and executes it.

• [drivename:] is used in conventional BHT series. In the BHT-100 series, it is merely for
the compatibility with their specifications. The drivename may be A: or B:, but it will be
ignored.

• "[drivename:]programfilename" is an executable object program compiled by the
Compiler and has the extension .PD3, as shown below. The extension .PD3 cannot be
omitted.

CHAIN "prog1.PD3"
• You should download an executable object program (2nd program) to the BHT before

the CHAIN statement is executed.

• You can pass variables from the current program to the chained-to program (2nd
program) with the COMMON statement.

• User-defined fonts loaded by the APLOAD or KPLOAD statement and the setting values
assigned by the KEY statement or COUNTRY$ function remain effective in chained-to
programs.

• The ON ERROR GOTO statement cannot trap run-time error 07h (which means "Insufficient
memory space") happened during initialization of environments for chained-to programs.

Chapter 14. Statement Reference

165

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 3: ’"’ missing No double quote precedes or follows

[drivename:]programfile-name.
error 71: Syntax error [drivename:]programfile-name is not

enclosed in double quotes.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
02h Syntax error

("[drivename:]programfilename" is in incorrect syntax or the
extension is not .PD3.)

07h Insufficient memory space
(The 1st program uses too many variables.)

35h File not found
(The file specified by "[drivename:]programfilename" does not
exist.)

41h File damaged

Reference:Reference:Reference:Reference:
Statements: APLOAD, COMMON, and KPLOAD

166

__
CLear FILE File I/O statement

CLFILE
Erases the data stored in a data file.
__

Syntax:Syntax:Syntax:Syntax:
CLFILE [#]filenumber

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:
CLFILE erases data in the data file specified by filenumber and resets the number of
written records in the directory to zero.

• The memory area freed by CLFILE can be used for other data files or user pro-gram
files.

• User programs can no longer refer to the erased data.

• CLFILE cannot erase data in files stored in drive B.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning

error 71: Syntax error filenumber is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a file other than data files.)
3Ah File number out of the range

43h Not allowed to access data in drive B

Chapter 14. Statement Reference

167

Example:Example:Example:Example:
OPEN "master.Dat"AS #1
FIELD #1,20 AS bar$,10 AS ky$
CLFILE #1
CLOSE #1

168

__
File I/O statement

CLOSE
Closes file(s).
__

Syntax:Syntax:Syntax:Syntax:
CLOSE [[#]filenumber[,[#]filenumber...]]

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:
CLOSE closes file(s) specified by filenumber(s).

• The file number(s) closed by the CLOSE statement becomes available for a sub-sequent
OPEN statement.

• If no file number is specified, the CLOSE statement closes all of the opened data files
and device I/O files.

• Specifying an unopened file number causes neither operation nor a run-time error.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning

error 71: Syntax error filenumber is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

3Ah File number out of range

Reference:Reference:Reference:Reference:

Statements: END and OPEN

Chapter 14. Statement Reference

169

__
CLear Screen I/O statement

CLS
Clears the LCD screen.
__

Syntax:Syntax:Syntax:Syntax:
CLS

Description:Description:Description:Description:
CLS clears the liquid crystal display (LCD) screen and returns the cursor to the upper left
corner of the screen.

• The CLS statement does not affect settings made by displaymode or
charaattribute in the SCREEN statement. (For details about display-mode and
charaattribute, refer to the SCREEN statement.)

• This statement turns off the cursor.

• Execution of the CLS statement, when the system status is displayed on the LCD,
clears the VRAM area assigned to the system status area of the LCD, but does not
erase the system status displayed.

170

__
Declarative statement

COMMON
Declares common variables for sharing between user programs.
__

Syntax:Syntax:Syntax:Syntax:
COMMON commonvariable[,commonvariable...]

Parameter:Parameter:Parameter:Parameter:
commonvariable

A non-array integer variable, a non-array real variable, a non-array string variable, an
array integer variable, an array real variable, or an array string variable.

DescDescDescDescription:ription:ription:ription:
COMMON defines common variables for sharing them when one program chains to another.

• Common variables defined by COMMON keep effective as long as programs chained by
the CHAIN statement are running.

• A COMMON statement can appear anywhere in a source program.

• All of the variable name, type, quantity, and definition order of common variables used
in the current program should be identical with those in the chained-to programs. If not,
variables having indefinite values will be passed.

• Up to two-dimensional array variables can be defined. You can specify a sub-script
ranging from 0 to 254 for an array variable.

• The total variable data size which can be passed between chained programs is 32
kilobytes including work variables.

• The size of an array data is equal to the element size multiplied by the number of
elements.

• You can specify the maximum string length within the range from 1 to 255 to a string
variable.

• The default length of a non-array string variable is 40.

• The default length of an array string variable is 20.

Chapter 14. Statement Reference

171

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 5: Variable name redefinition A same variable name is double declared in

a program.

error 73: Improper string length The length of a string variable is out of the
range from 1 to 255.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

07h Insufficient memory space

(The COMMON statement defines too much data.)

Example:Example:Example:Example:
COMMON a%,b,c$,d%(2,3),e(4),f$(5)

Reference:Reference:Reference:Reference:
Statements: CHAIN

172

__
Declarative statement

CONST
Defines symbolic constants to be replaced with labels.
__

Syntax:Syntax:Syntax:Syntax:
CONST constname = expr

Parameter:Parameter:Parameter:Parameter:
constname

A label, identifier, or string expression of characters consisting of
alphanumerics and period (.).

expr
A string

Description:Description:Description:Description:
CONST replaces a label, identifier or a character string specified by constname with a
string constant defined by expr before compiling.

• expr may contain labels defined by other CONST declarations. However, calling those
labels each other (recursively) will result in an error.

• A CONST statement can appear anywhere in your source program. However, it will take
effect from a program line following the CONST declaration.

Chapter 14. Statement Reference

173

__
I/O statement

CURSOR
Turns the cursor on or off.
__

Syntax:Syntax:Syntax:Syntax:
CURSOR ｛ON ｜OFF ｝

Description:Description:Description:Description:
When a user program is initiated, the cursor is set to OFF. CURSOR ON turns on the cursor
for keyboard entry operation by the INKEY$ function. CURSOR OFF turns off the cursor.

• The cursor size depends upon the screen mode (single-byte ANK mode or two-byte
Kanji mode), the screen font size (standard-size or small-size), and the character
enlargement attribute (regular-size, double-width, double-height, or quadruple-size). For
details about the cursor, refer to Chapter 7, Subsection 7.1.3.

• The cursor shape specified by the most recently executed LOCATE statement takes
effect.

• After execution of LOCATE ,,0 which makes the cursor invisible, even execution of
CURSOR ON statement cannot display the cursor. To display the cursor, it is necessary to
make the cursor visible by using the LOCATE statement.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error Specification other than ON and OFF is

described.

Reference:Reference:Reference:Reference:
Statements: APLOAD, INPUT, KPLOAD, LINE INPUT, and LOCATE
Functions: INKEY$ and INPUT$

174

__
Declarative statement

DATA
Stores numeric and string literals for READ statements.
__

Syntax:Syntax:Syntax:Syntax:
DATA literal[,literal...]

Parameter:Parameter:Parameter:Parameter:
literal

A numeric or string constant.

Description:Description:Description:Description:
DATA stores numeric and string literals so that READ statements can assign them to
variables.

• A DATA statement can appear anywhere in a source program.

• A string data should be enclosed with a pair of double quotation marks (").

• You may have any number of DATA statements in a program. The READ statement
assigns data stored by DATA statements in the exact same order that those DATA
statements appear in a source program.

• Using the RESTORE statement can read a same DATA statement more than once since
the RESTORE can change a location where the READ statement should start reading
data.

• You can specify more than one literal in a program line (within 512 characters) by
separating them with commas (,).

• You can describe DATA statements also in included files.

Syntax erSyntax erSyntax erSyntax errors:rors:rors:rors:

Error code and message Meaning
error 3:’"’ missing No double quote precedes or follows a string

data.

Reference:Reference:Reference:Reference:
Statements: READ, REM and RESTORE

Chapter 14. Statement Reference

175

__
User-defined function declarative statement

DECLARE
Declares user-defined function FUNCTION or SUB externally defined.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Defining a numeric FUNCTION):

DECLARE FUNCTION funcname [(dummyparameter[,dummyparameter...])]
Syntax 2 (Defining a string FUNCTION):

DECLARE FUNCTION funcname [(dummyparameter
[,dummyparameter...])][[stringlength]]

Syntax 3 (Defining a SUB):
DECLARE SUB subname[(dummyparameter [,dummyparameter...])]

Parameter:Parameter:Parameter:Parameter:
funcname

• For numerics
funcname% Integer function name
funcname Real function name

• For strings
funcname$ String function name

subname
Real function name.

dummyparameter
A non-array integer variable, a non-array real variable, or a non-array string variable.

stringlength
An integer constant having a value from 1 to 255.

176

Description:Description:Description:Description:
DECLARE defines a user-defined function defined in other source program files.

• Declaration of a user-defined function should appear preceding a calling statement of
the user-defined function in your source program.

• funcname, subname, and dummyparameter should be declared in the same way as
the function names and real parameters defined in the original functions (defined in
other source program files).

• You cannot make double definition to a same function name.

• The DECLARE statement should not be defined in the block-structured statements
(FOR ..NEXT, IF ..THEN ..ELSE ..END IF, SELECT ..CASE ..END SELECT,
WHILE ..WEND, DEF FN ..END DEF, FUNCTION ..END FUNCTION, and SUB ..END

SUB), in the error-handling routine, event-handling routine, or in the subroutines.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning

error 64: Function redefinition You made double definition to a same function
name.

error 71: Syntax error • stringlength is out of the range.
• stringlength is not an integer constant.

Reference:Reference:Reference:Reference:

Statements: FUNCTION ..END FUNCTION and SUB ..END SUB

Chapter 14. Statement Reference

177

__
DEFine FuNction User-defined function definition statement

DEF FN
Names and defines a user-defined function.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Defining a numeric function):

DEF
FNfunctionname[(dummyparameter[,dummyparameter...])]=expression

Syntax 2 (Defining a string function):
DEF FNfunctionname[(dummyparameter
[,dummyparameter...])] [[stringlength]]=expression

Syntax 3 (Calling the function):
FNfunctionname[(realparameter[,realparameter ...])]

Parameter:Parameter:Parameter:Parameter:
functionname

• For numerics
functionname% Integer function name
functionname Real function name

• For strings
functionname$ String function name
where the FN can be in lowercase.

dummyparameter
A non-array integer variable, a non-array real variable, or a non-array string variable.

stringlength
An integer constant having a value from 1 to 255.

expression and realparameter
A numeric or string expression.

(Single-line form)

178

Description:Description:Description:Description:
�Creating a user-defined function
DEF FN creates a user-defined function.

• Definition of a user-defined function should appear preceding a calling statement of the
user-defined function in a source program.

• You cannot make double definition to a same function name.

• The DEF FN statement should not be defined in the block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ...ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB
and WHILE ..WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

• DEF FN functions cannot be recursive.

• The type of functionname should match that of the function definition expression.

• In defining a string function, you can specify the maximum stringlength for a return
value. If its specification is omitted, the default value of 40 characters takes effect.

• dummyparameter, which corresponds to the variable having the same name in the
function definition expression, is a local variable valid only in that expression .
Therefore, if a variable having the same name as dummyparameter is used outside
DEF FN statement or used as a dummyparameter of any other function in the same
program, then it will be independently treated.

• expression describes some operations for the user-defined function. It should be
within one program line including definition described left to the equal sign (=).

• expression can call other user-defined functions. You can nest DEF FN statements to
a maximum of 10 levels.

• If variables other than dummyparameter(s) are specified in expression, they will be
treated as global variables whose current values are available.

• stringlength should be enclosed with a pair of square brackets [].

�Calling a user-defined function
FN functionname calls a user-defined function.

• The number of realparameters should be equal to that of dummyparameters, and
the types of the corresponding variables used in those parameters should be identical.

• If you specify a global variable in realparameter when calling a user-defined function,
the user-defined function cannot update the value of the global variable. This is because
all realparameters are passed not by address but by value. (So called
"Call-by-value")

Chapter 14. Statement Reference

179

Syntax errors:Syntax errors:Syntax errors:Syntax errors:
�When defining a user-defined function

Error code and message Meaning
error 61: Cannot use DEF FN

incontrol structure
The DEF FN statement is defined in block-
structured statements such as FOR and IF
statements.

error 64: Function redefinition You made double definition to a same function
name.

error 65: Function definitions
exceed 200 ――――

error 66: Arguments exceed 50
――――

error 71: Syntax error • functionname is an integer function name,
but expression is a real type. (If
functionname is a real function name and
expression is an integer type, then no
error occurs.)

• stringlength is out of the range.

• stringlength is not an integer constant.

�When calling a user-defined function

Error code and message Meaning
error 68: Mismatch argument

type or number
• The number of the real parameters is not

equal to that of the dummy parameters.

• dummyparameter was an integer variable
in defining a function, but realparameter
is a real type in calling the function. (If
dummypa-rameter was a real variable in
defining a function and realparameter is
an integer type, then no error occurs.)

error 69: Function undefined Calling of a user-defined function precedes the
definition of the user-defined function.

180

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
07h Insufficient memory space

(You nested DEF FN statements to more than 10 levels.)
0Fh String length out of the range

(The returned value of the stringlength exceeds the allow-able
range.)

Example:Example:Example:Example:
�Example 1

DEF FNadd(a%,b%)=a%+b%
PRINT FNadd(3,5)

8

�Example 2
DEF FNappend$(a$,b$)[80] =a$+b$
PRINT FNappend$("123","AB")

123AB

Chapter 14. Statement Reference

181

__
DEFine FuNction...END DEFine User-defined function definition statement

DEF FN…END DEF
Names and defines a user-defined function.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Defining a numeric function):

DEF FNfunctionname[(dummyparameter[,dummyparameter...])]
Syntax 2 (Defining a string function):

DEF FNfunctionname[(dummyparameter
[,dummyparameter...])][[stringlength]]

Syntax 3 (Exiting from the function block prematurely):
EXIT DEF

Syntax 4 (Ending the function block):
END DEF

Syntax 5 (Assigning a returned value):
FNfunctionname = generalexpression

Syntax 6 (Calling a function):
FNfunctionname[(realparameter[,realparameter ...])]

Parameter:Parameter:Parameter:Parameter:
Same as for DEF FN (Single-line form).

(Block form)

182

Description:Description:Description:Description:
�Creating a user-defined function
DEF FN ..END DEF creates a user-defined function. The function definition block between
DEF FN and END DEF is a set of some statements and functions.

• Definition of a user-defined function should appear preceding a calling statement of the
user-defined function in a source program.

• You cannot make double definition to a same function name.

• This statement block should not be defined in the block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION, IF ..THEN .. ELSE ..END

IF, SELECT ..CASE ..END SELECT, SUB ..END SUB and WHILE ...WEND), in the
error-handling routine, event-handling routine, or in the subroutines.

• DEF FN ..END DEF functions can be recursive.

• In defining a string function, you can specify the maximum stringlength. If its
specification is omitted, the default value of 40 characters takes effect.

• dummyparameter, which corresponds to the variable having the same name in the
function definition block, is a local variable valid only in that block. Therefore, if a
variable having the same name as dummyparameter is used outside DEF FN ..END
DEF statement block or used as a dummyparameter of any other function in the same
program, then it will be independently treated.

• In user-defined functions, you can call other user-defined functions. You can nest DEF
FN ..END DEF statements to a maximum of 10 levels.

• When using the DEF FN ..END DEF together with block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION, IF ..THEN .. ELSE ..END

IF, SELECT ..CASE ..END SELECT, SUB ..END SUB and WHILE ...WEND), you
can nest them to a maximum of 30 levels.

• If variables other than dummyparameter(s) are specified in the function definition block,
they will be treated as global variables whose current values are available.

• EXIT DEF exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

• The block-format DEF FN statement should be followed by END DEF which ends the
function block and returns control to the position immediately after the statement that
called the user-defined function.

• Using Syntax 5 allows you to assign a return value for a user-defined function. The type
of functionname should match that of a return value. If no return value is assigned to
functionname, then the value 0 or a null string will be returned for a numeric function
or a string function, respectively.

Chapter 14. Statement Reference

183

�Calling a user-defined function
FNfunctionname calls a user-defined function.

• The number of realparameters should be equal to that of dummyparameters, and
the types of the corresponding variables used in those parameters should be identical.

• If you specify a global variable in realparameter when calling a user-defined function,
the user-defined function cannot update the value of the global variable. This is because
all realparameters are passed not by address but by value. (So called
"Call-by-value")

Syntax errors:Syntax errors:Syntax errors:Syntax errors:
�When creating a user-defined function

Error code and message Meaning
error 59: Incorrect use of DEF

FN... EXIT DEF...END
DEF

• The EXIT DEF statement is specified
outside the function definition block.

• The END DEF statement is specified outside
the function definition block.

error 60: Incomplete control
struc-ture
(DEF FN...END DEF)

END DEF is missing.

error 61: Cannot use DEF FN in
control structure

The DEF FN...END DEF statement is defined
in other block-structured statements such as
FOR and IF statement blocks.

error 64: Function redefinition You made double definition to a same
function name.

error 71: Syntax error • functionname is an integer function
name, but generalexpression is a real
type. (If functionname is a real function
name and generalexpression is an
integer type, then no error occurs.)

• stringlength is out of the range.

• stringlength is not an integer constant.

• The function name is assigned a value
outside the function definition block.

184

�When calling a user-defined function

Error code and message Meaning
error 68: Mismatch argument type

or number
• The number of the real parameters is not

equal to that of the dummy parameters.

• dummyparameter was an integer
variable in defining a function, but
realparameter is a real type in calling
the function. (If dummypa-rameter was
a real variable in defining a function and
realparameter is an integer type, then
no error occurs.)

error 69: Function undefined Calling of a user-defined function precedes
the definition of the function.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
07h Insufficient memory space

(You nested DEF FN statements to more than 10 levels.)
0Dh END DEF out of the DEF FN block

0Fh String length out of the range
(The returned value of stringlength exceeds the allowable
range.)

ExExExExample:ample:ample:ample:
DEF FNappend$(a$,b%)[128]

c$=""
FOR i%=1 TO b%

c$=c$+a$
NEXT
FNappend$=c$

END DEF
PRINT FNappend$("AB",3)

ABABAB

Chapter 14. Statement Reference

185

__
DEFine REGister Declarative statement

DEFREG
Defines register variables.
__

Syntax:Syntax:Syntax:Syntax:
DEFREG registerdefinition[,registerdefinition ...]

Parameter:Parameter:Parameter:Parameter:
registerdefinition

non-arraynumericvariable [=numericconstant]
DEFREG n1%=10
DEFREG n2=12.5

arraynumericvariable(subscript)
[=numericinitialvaluedefinition]

DEFREG n3(5,6)
non-arraystringvariable[[stringlength]]
[=stringconstant]

DEFREG s1$="abc123"
DEFREG s2$[6] ="abc123"

arraystringvariable(subscript)[[stringlength]]
[=stringinitialvaluedefinition]

DEFREG s2$(1,3)[16]
subscript

For one-dimensional: integerconstant
DEFREG n4%(3)

For two-dimensional: integerconstant,integerconstant
DEFREG n5%(4,5)

Where integerconstant is a value from 0 to 254.

186

numericinitialvaluedefinition
For one-dimensional:
{numericconstant[,numericconstant...]}

DEFREG n6%(3)={9,8,7,6}
For two-dimensional:
{{numericconstant[,numericconstant...]},
{numericconstant[,numericconstant...]} ...}

DEFREG n7(1,2)={{10,11,12},{13,14,15}}
stringinitialvaluedefinition

For one-dimensional:
{stringconstant[,stringconstant...]}

DEFREG s3$(3)={"a","bc","123","45"}
For two-dimensional:
{{stringconstant[,stringconstant...]},
{stringconstant[,stringconstant...]} ...}

DEFREG s4$(1,1)={{"a","b"},{"c","1"}}
stringlength

An integer constant from 1 to 255.

Description:Description:Description:Description:
DEFREG defines non-array or array register variables.

• A DEFREG statement can appear anywhere in a source program.

• Up to 2-dimensional array variables can be defined.

• For both non-arraystringvariable and arraystringvariable,the string length
can be specified.

• Defaults:
stringlength for non-array variables: 40 characters
stringlength for array variables: 20 characters

• The memory area for register variables is allocated in user program files in the memory.
Register variables, therefore, are always updated. An uploaded user program, for
example, contains the updated register variables if defined.

• The total number of bytes allowable for register variables is 64 kilobytes.

• You can specify an initial value to an array variable by enclosing it with a pair of braces
{ }. No comma (,) is allowed for terminating the list of initial values.

If the number of the specified initial values is less than that of the array elements or if
no initial value is specified, then the Compiler automatically sets a zero (0) or a null
string as an initial value for a numeric variable or a string variable of the array
elements not assigned initial values, respectively.

Chapter 14. Statement Reference

187

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 6: Variable name

redefinition
A same register variable name is double
declared in a program.

error 71: Syntax error • stringlength is not an integer constant.

• The number of the specified initial values is
greater than that of the array elements.

• The list of initial values is terminated with a
comma.

• The type of the specified variable does not
match that of its initial value. (Note that a
real variable can have an integer constant
as an initial value.)

• subscript is not an integer constant.
error 73: Improper string length stringlength is out of the range.

error 74: Improper array
element number

subscript is out of the range.

error 75: Out of space for
register variable
area

Definition by DEFREG exceeds the register
variable area.

error 77: Initial string too
long

• The dimension of the specified array
variable does not match that of its initial
value.

• The number of initial value elements for the
specified string variable is greater than its
string length.

error 83: ’)’ missing No closing parenthesis follows subscript.

error 84: ’]’ missing No closing square bracket follows
stringlength.

error 90: ’{’ missing No opening brace precedes the initial value.

188

Example:Example:Example:Example:
Example 1: Valid DEFREG statements

DEFREG a,e$
DEFREG b=100,c(10),d$(2,4)[10]
DEFREG bps$="19200"
DEFREG a%(2)={1,2}
DEFREG a%(2)={1,,3}
DEFREG a%(2)={,,3}
DEFREG b%(1,1)={{},{1,2}}
DEFREG b%(1,1)={,{1,2}}
DEFREG b%(1,1)={{1,2}}

Example 2: Position of elements in an array

DEFREG a%(1,1)={{1},{,3}}
The elements of the above array have the following initial values:

a%(0,0):1
a%(0,1):0
a%(1,0):0
a%(1,1):3

DEFREG b$(1,1)[3] ={,{"123"}}
The elements of the above array have the following initial values:

b$(0,0):""
b$(0,1):""
b$(1,0):"123"
b$(1,1):""

Example 3: DEFREG statements causing syntax errors
DEFREG c%(2)={1,2,3,4}
DEFREG d%(2)={1,2,}
DEFREG e%(1,1)={{,},{1,2}}
DEFREG f%(1,1)={{1,2},}

Reference:Reference:Reference:Reference:
Statements: DIM

Chapter 14. Statement Reference

189

__
DIMension Memory control statement

DIM
Declares and dimensions arrays; also declares the string length for a string variable.
__

Syntax:Syntax:Syntax:Syntax:
DIM arraydeclaration[,arraydeclaration...]

Parameter:Parameter:Parameter:Parameter:
arraydeclaration

numericvariable (subscript)
DIM n1%(12)
DIM n2(5,6)

stringvariable (subscript)[[stringlength]]
DIM s1$(2)
DIM s2$(2,6)
DIM s3$(4)[16]
DIM s4$(5,3)[30]

subscript
For one-dimensional: integerexpression
For two-dimensional: integerexpression,

integerexpression

Where integerexpression is a numeric expression which returns a value
from 0 to 254.

stringlength
An integer constant that has a value from 1 to 255 which indicates the number
of characters.

Description:Description:Description:Description:
DIM declares array variables and dimensions the arrays that a program will utilize.

• A DIM statement can appear anywhere before the first use of the array in a source
program. However, when possible, you should place all your DIM statements together
near the beginning of the program and should not place them in the program execution
loops in order to prevent errors.

• Up to 2-dimensional array variables can be declared.

190

• In declaring an array string variable, you can specify the string length. If its specification
is omitted, the default value of 20 characters takes effect.

• If no subscript is specified for a string variable, the Compiler automatically regards the
string variable as a non-array string variable so that the default for a non-array string
variable, 40 characters, takes effect.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 7: Variable name

redefinition
The array declared with DIM had been already
declared with DEFREG.

error 71: Syntax error • stringlength is out of the range.

• stringlength is not an integer
constant.

error 72: Variable name
redefinition

• A same variable name is double declared
inside a same DIM statement.

• A same variable name is used for a
non-array variable and array variable.

error 78: Array symbols exceed
30 for one DIM
 statement

More than 30 variables are declared inside one
DIM statement.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)

Reference:Reference:Reference:Reference:
Statements: DEFREG and ERASE

Chapter 14. Statement Reference

191

__
Flow control statement

END
Terminates program execution.
__

Syntax:Syntax:Syntax:Syntax:
END

Description:Description:Description:Description:
END terminates program execution and sounds the beeper for a second.

• An END can appear anywhere in a source program.

• When an END statement executes, all of the files being opened become closed, and the
BHT turns off the power after three seconds from the message indication of the
"Program end."

192

__
Memory control statement

ERASE
Erases array variables.
__

Syntax:Syntax:Syntax:Syntax:
ERASE arrayvariablename[,arrayvariablename...]

Parameter:Parameter:Parameter:Parameter:
arrayvariablename

An array numeric or array string variable.

Description:Description:Description:Description:
ERASE erases an array variable(s) specified by arrayvariablename and frees the
memory used by the array.

• arrayvariablename is the name of an array variable already declared by the DIM
statement. If it has not been declared by DIM, the ERASE statement will be ignored.

• After erasing the name of an array variable with ERASE, you can use that name to
declare a new array variable with the DIM statement.

• arrayvariablename should not include subscripts or parentheses () as shown
below.

DIM a(3),b1%(5,10),c$(3)[20]
ERASE a,b1%,c$

• ERASE cannot erase a register variable declared by the DEFREG statement, a common
variable declared by the COMMON statement, or a non-array string variable.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error You attempted to erase a register variable

declared by DEFREG, a common variable by
COMMON, or a non-array string variable.

Reference:Reference:Reference:Reference:
Statements: DEFREG and DIM

Chapter 14. Statement Reference

193

__
File I/O statement

FIELD
Allocates string variables as field variables.
__

Syntax:Syntax:Syntax:Syntax:
FIELD [#]filenumber,fieldwidth AS fieldvariable [,fieldwidth AS
fieldvariable...]

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
fieldwidth

A numeric expression which returns a value from 1 to 254.
fieldvariable

A non-array string variable.

Description:Description:Description:Description:
FIELD declares the length and field variable of each field of a record in a data file.

• filenumber is the file number of a data file opened by the OPEN statement.

• fieldwidth is the number of bytes for a corresponding field variable.

• You can assign a same field variable to more than one field.

• There is no difference in usage between a field variable and a general variable except
that no register variable, common variable, or array variable can be used for a field
variable.

• A record can contain up to 16 fields. The total number of bytes of all fieldwidths plus
the number of fields should not exceed 255.

• If a FIELD statement executes for an opened file having the number of fields or field
width unmatching that of the FIELD specifications except for field variables, a run-time
error will occur.

194

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error filenumber is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(fieldwidth out of the range)
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a file other than data files.)
3Ah File number out of the range

3Ch FIELD overflow
(A FIELD statement specifies the record length exceeding 255
bytes.)

3Dh A FIELD statement specifies the field width which does not match
one that specified in file creation.

Example:Example:Example:Example:
fileNumber%=4
OPEN "Datafile.dat"AS #fileNumber%
FIELD #fileNumber%,20 AS code39$,
16 AS itf$,5 AS kyin$

Reference:Reference:Reference:Reference:
Statements: CLFILE, CLOSE, GET, OPEN, and PUT

Chapter 14. Statement Reference

195

__
Flow control statement

FOR…NEXT
Defines a loop containing statements to be executed a specified number of times.
__

Syntax:Syntax:Syntax:Syntax:
FOR controlvariable = initialvalue TO finalvalue [STEPincrement]
 -
 -
 -
NEXT [controlvariable]

Parameter:Parameter:Parameter:Parameter:
controlvariable

A non-array numeric variable.
initialvalue, finalvalue, and increment

Numeric expressions.

Description:Description:Description:Description:
FOR…NEXT defines a loop containing statements (which is called "body of a loop")to be
executed by the number of repetitions controlled by initialvalue,finalvalue, and
increment.
�Processing procedures

(1) The Interpreter assigns initialvalue to controlvariable.

(2) The Interpreter checks terminating condition; that is, it compares the value of
controlvariable against the finalvalue.

- When the value of increment is positive:
If the value of controlvariable is equal to or less than the finalvalue,go to step
(3). If it becomes greater the finalvalue, the program proceeds with the first line
after the NEXT statement (the loop is over).
- When the value of increment is negative:
If the value of controlvariable is equal to or greater than the finalvalue,go to
step (3). If it becomes less than the finalvalue, the program proceeds with the first
line after the NEXT statement (the loop is over).

(3) The body of the loop executes and the NEXT statement increases the value of
controlvariable by the value of increment. Then, control returns to the FOR
statement at the top of the loop. Go back to step (2).

196

• The default value of increment is 1.

• You can nest FOR ..NEXT statements to a maximum of 10 levels.

• When using the FOR ..NEXT statement together with block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ...ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB
and WHILE ..WEND), you can nest them to a maximum of 30 levels.

• A same controlvariable should not be reused in a nested loop. Reusing it will
cause a run-time error when the NEXT statement for an outer FOR ..NEXT loop
executes.

• Nested loops should not be crossed. Shown below is a correctly nested sample.
FOR i%=1 TO 10

FOR j%=2 TO 100
FOR k%=3 TO 1000
NEXT k%

NEXT j%
NEXT i%
FOR l%=1 TO 3
.
.
.
NEXT l%

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 26 ： Too deep nesting.

error 52: Incorrect use of
FOR…NEXT

NEXT without FOR.

error 53: Incomplete control
structure

Incomplete pairs of FOR and NEXT.

error 54: Incorrect FOR Index
variable

controlvariable for FOR is different from
that for NEXT.

error 88: 'TO' missing TO finalvalue is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
01h NEXT without FOR

07h Insufficient memory space
(Too deep nesting.)

Chapter 14. Statement Reference

197

__
User-defined function statement

FUNCTION…END FUNCTION
Names and creates user-defined function FUNCTION.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Defining a numeric function):

FUNCTION funcname [(dummyparameter [,dummyparameter...])]
Syntax 2 (Defining a string function):

FUNCTION funcname [(dummyparameter
[,dummyparameter...])][[stringlength]]

Syntax 3 (Existing from the function block prematurely):
EXIT FUNCTION

Syntax 4 (Ending the function block):
END FUNCTION

Syntax 5 (Assigning a returned value):
funcname = generalexpression

Syntax 6 (Calling a function):
funcname[(realparameter[,realparameter...])]

Parameter:Parameter:Parameter:Parameter:
funcname

• For numerics
funcname% Integer function name
funcname Real function name

• For strings
funcname$ String function name

dummyparameter
A non-array integer variable, a non-array real variable, or a non-array string variable.

stringlength
An integer constant having a value from 1 to 255.

realparameter
A numeric or string expression.

198

Description:Description:Description:Description:
�Creating a user-defined function
FUNCTION...END FUNCTION creates a user-defined function. The function definition
block between FUNCTION and END FUNCTION is a set of some statements and functions.

• You cannot make double definition to a same function name.

• This statement block should not be defined in the block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ...ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB
and WHILE ..WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

• FUNCTION...END FUNCTION functions can be recursive.

• In defining a string function, you can specify the maximum stringlength. If its
specification is omitted, the default value of 40 characters takes effect.

• dummyparameter, which corresponds to the variable having the same name in the
function definition block, is a local variable valid only in that block. Therefore, if a
variable having the same name as dummyparameter is used outside
FUNCTION...END FUNCTION statement block or used as a dummyparameter of any
other function in the same program, then it will be independently treated.

• In user-defined functions, you can call other user-defined functions. You can nest
FUNCTION...END FUNCTION statements to a maximum of 10 levels.

• When using the FUNCTION...END FUNCTION together with block-structured
statements (DEF FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,
IFTHEN ..ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB and
WHILE ..WEND), you can nest them to a maximum of 30 levels.

• If variables other than dummyparameter(s) are specified in the function definition block,
they will be treated as local variables whose current values are avail-able only in that
function definition block, unless PRIVATE or GLOBAL is specified.

• EXIT FUNCTION exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

• Using Syntax 5 allows you to assign a return value for a user-defined function. The type
of funcname should match that of a return value. If no return value is assigned to
funcname, then the value 0 or a null string will be returned for a numeric function or a
string function, respectively.
�Calling a user-defined function
funcname calls the function.

• The number of realparameters should be equal to that of dummyparameters, and
the types of the corresponding variables used in those parameters should be identical.

Chapter 14. Statement Reference

199

• If you specify a global variable in realparameter when calling a user-defined function,
the user-defined function cannot update the value of the global variable.
This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")

NOTE

Before any call to a FUNCTION...END FUNCTION, you need to place
def-inition of the FUNCTION function or declaration of the FUNCTION by
the DECLARE statement in your source program.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:
�When programming a user-defined function

Error code and message Meaning
error 64: Function redefinition You made double definition to a same

function name.

error 71: Syntax error • funcname is an integer function
name, but generalexpression is a
real type.
(If funcname is a real function name
and generalexpression is an
integer type, then no error occurs.)

• stringlength is out of the range.

• stringlength is not an integer
constant.

• The function name is assigned a
value outside the function definition
block.

error 95: Incorrect use of
FUNCTION, EXIT FUNC-TION,
or END FUNCTION

• The EXIT FUNCTION statement is
specified outside the function
definition block.

• The END FUNCTION statement is
specified outside the function
definition block.

error 96: Incomplete control
structure(FUNC-TION...END
FUNCTION)

END FUNCTION is missing.

error 97: Cannot use FUNCTION in
control structure

The FUNCTION…END FUNCTION
statement is defined in other
blockstructured statements such as FOR
and IF statement blocks.

200

�When calling a user-defined function

Error code and message Meaning
error 68: Mismatch argument

type or number
• The number of the real parameters is not

equal to that of the dummy parameters.

• dummyparameter was an integer variable
in defining a function, but realparameter
is a real type in calling the function.
(If dummyparameter was a real variable in
defining a function and realparameter is
an integer type, then no error occurs.)

error 69: Function undefined Calling of a user-defined function precedes the
definition of the user-defined function.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
07h Insufficient memory space

(You nested FUNCTION statements to more than 10 levels.)
0Fh String length out of the range

(The returned value of stringlength exceeds the allowable
range.)

Example:Example:Example:Example:
File 1

DECLARE FUNCTION add(X,Y)
A=1:B=2
PRINT "TEST"
C=add(A,B)
PRINT C:

File 2
FUNCTION add(X,Y)

add=X+Y
END FUNCTION

TEST
 3

Reference:Reference:Reference:Reference:
Statements: DECLARE

Chapter 14. Statement Reference

201

__
File I/O statement

GET
Read a record from a data file.
__

Syntax:Syntax:Syntax:Syntax:
GET [#]filenumber[,recordnumber]

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
recordnumber

A numeric expression which returns a value from 1 to 32767.

Description:Description:Description:Description:
GET reads the record specified by recordnumber from the data file specified by
filenumber and assigns the data to the field variable(s) specified by the FIELD
statement.

• filenumber is the file number of a data file opened by the OPEN statement.

• If a data file having no record is specified, a run-time error will occur.

• The first record in a data file is counted as 1.

• If no recordnumber is specified, the GET statement reads a record whose number is
one greater than that of the record read by the preceding GET statement.

If no recordnumber is specified in the first GET statement after opening of a file, the
first record (numbered 1) in the file will be read.

• recordnumber should be equal to or less than the number of written records. If it is
greater, a run-time error will occur.

• If a GET statement without recordnumber is executed after occurrence of a run-time
error caused by an incorrect record number in the preceding GET statement, then the
new GET statement reads the record whose record number is one greater than that of
the latest record correctly read.

• If a GET statement without recordnumber is executed after execution of the preceding
GET statement specifying the last record (the number of the written records), then a
run-time error will occur.

202

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error filenumber is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a file other than data files.)
3Ah File number out of the range

3Eh A PUT or GET statement executed without a FIELD statement.

3Fh Bad record number
(No record to be read in a data file.)

Example:Example:Example:Example:
GET #filNo,RecordNo
GET #4
GET #3,100

Reference:Reference:Reference:Reference:
Statements: FIELD, OPEN, and PUT

Chapter 14. Statement Reference

203

__
Declarative statement

GLOBAL
Declares one or more work variables or register variables defined in a file,
to be global.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

GLOBAL varname [,varname...]
Syntax 2:

GLOBAL DEFREG registerdefinition [,registerdefinition...]

Parameter:Parameter:Parameter:Parameter:
varname

numericvar [(subscript)]
stringvar [(subscript)[[stringlength]]]

registerdefinition
non-arraynumericvar [=numericconstant]
arraynumericvar(subscript) [=numericinitialvaluedefinition]
non-arraystringvar[[stringlength]][=stringconstant]
arraystringvar(subscript)[[stringlength]][=stringinitialvaluedef
inition]
numericinitialvaluedefinition

For one-dimensional:
{numericconstant[,numericconstant...]}
For two-dimensional:
{{numericconstant[,numericconstant...]},
{numericconstant[,numericconstant...]} ...}

stringinitialvaluedefinition
For one-dimensional:
{stringconstant[,stringconstant...]}
For two-dimensional:
{{stringconstant[,stringconstant...]},
{stringconstant[,stringconstant...]} ...}

204

subscript
For one-dimensional: integerconstant
For two-dimensional: integerconstant,integerconstant
Where integerconstant is a numeric expression which returns a value from 0
to 254.

stringlength
An integer constant from 1 to 255 which indicates the number of characters.

Description:Description:Description:Description:
GLOBAL allows variables declared by varname to be referred to or updated in other
programs.

• If a same variable name as specified inside the GLOBAL statement is already declared
in your file, the GLOBAL statement will result in an error.

• Up to 30 variables can be declared inside one GLOBAL statement.

• You may declare non-array variables and array variables together inside one GLOBAL
statement.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:
Error code and message Meaning
error 7: Variable name

redefinition
The variable declared with GLOBAL statement
had been already declared with DEFREG
statement.

error 71: Syntax error • stringlength is out of the range.

• stringlength is not an integer constant.
error 72: Variable name

redefinition
• A same variable name is double declared

inside a same GLOBAL statement.

• A same variable name is used for a
non-array variable and array variable.

error 78: Array symbols exceed
30 for one DIM,
PRI-VATE, or GLOBAL
statement

• More than 30 variables are declared inside
one GLOBAL statement.

RunRunRunRun----time errors:time errors:time errors:time errors:
Error code Meaning
05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)

Reference:Reference:Reference:Reference:
Statements: DIM and PRIVATE

Chapter 14. Statement Reference

205

__
Flow control statement

GOSUB
Branches to a subroutine.
__

Syntax:Syntax:Syntax:Syntax:
GOSUB label

Description:Description:Description:Description:
GOSUB calls a subroutine specified by label.

• Within the subroutine itself, you use a RETURN statement which indicates the logical end
of the subroutine and returns control to the statement just after the GOSUB that called
the subroutine.

• You may call a subroutine any number of times as long as the Interpreter allows the
nest level and other conditions.

• Subroutines can appear anywhere in a source program. However, you should separate
subroutines from the main program by any means such as by placing subroutines
immediately following the END or GOTO statement, in order to pre-vent the main part of
the program from falling into those subroutines.

• A subroutine can call other subroutines. You can nest GOSUB statements to a maximum
of 10 levels.

• When using the GOSUB statement together with block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ...ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB,
and WHILE ..WEND), you can nest them to a maximum of 30 levels.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • label has not been defined.

• label is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
03h RETURN without GOSUB

07h Insufficient memory space
(Too deep nesting)

Reference:Reference:Reference:Reference:
Statements: RETURN

206

__
Flow control statement

GOTO
Branches to a specified label.
__

Syntax:Syntax:Syntax:Syntax:
GOTO label

Description:Description:Description:Description:
GOTO unconditionally transfers control to a label specified by label.

• In an IF statement block, you can omit GOTO immediately following THEN or ELSE, as
shown below.

IF a=0 THEN Lbl1 ELSE Lbl2
END IF

• GOTO allows you to branch anywhere in your program. However, you should branch only
to another line in a program module or subroutine at the same pro-gram level. Avoid
transferring control to a DEF FN block or other blocks at the different program level.

• You can use GO TO instead of GOTO.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • label has not been defined.

• label is missing.

Chapter 14. Statement Reference

207

__
Flow control statement

IF…THEN…ELSE…END IF
Conditionally executes specified statement blocks depending upon the evaluation of a
conditional expression.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

IF conditionalexpression THEN
statementblock1
［ELSE
statementblock2]
END IF

Syntax 2:
IF conditionalexpression ELSE
statementblock
END IF

Parameter:Parameter:Parameter:Parameter:
conditionalexpression

A numeric expression which evaluates to true or false.

Description:Description:Description:Description:
IF statement block tests whether conditionalexpression is true or false. If the
condition is true (not zero), statementblock which follows THEN is executed; if it is false
(zero), statementblock which follows ELSE is executed.
Then, program control passes to the first statement after END IF.

• You can omit either THEN block or ELSE block.

• IF statement block should terminate with END IF which indicates the end of the block.

• IF statement blocks can be nested. When using the IF statement block together with
other block-structured statements (DEF FN ..END DEF, FOR ..NEXT,

FUNC-TION ..END FUNCTION, IF ..THEN ..ELSE ..END IF, SELECT ..CASEEND

SELECT, SUB ..END SUB, and WHILE ..WEND), you can nest them to a maxi-mum of
30 levels.

208

• A block-structured IF statement block has the following advantages over a single-line
IF statement (which is not supported in BHT-BASIC):

- More complex conditions can be tested since an IF statement block can contain more
than one line for describing conditions.

- You can describe as many statements or statement blocks as you want.

- Since it is not necessary to put more than one statement in a line, you can describe
easy-to-read programs according to the logical structure, making correction and
debugging easy.

• You can use ENDIF instead of END IF.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 26 : Too deep nesting.

error 50 : Incorrect use of IF...
THEN...ELSE...END IF

THEN is missing.

error 51 : Incomplete control
structure

END IF is missing.

Example:Example:Example:Example:
k$=INKEY$
IF k$<>""THEN

PRINT k$;
END IF

ReferenReferenReferenReference:ce:ce:ce:
Statements: DEF FN ..END DEF, FOR ..NEXT, ONGOSUB, ON ..GOTO,

SELECT ..CASE ..END SELECT, and WHILE ..WEND

Chapter 14. Statement Reference

209

__
I/O statement

INPUT
Reads input from the keyboard into a variable.
__

Syntax:Syntax:Syntax:Syntax:
INPUT [;]["prompt"{,|;}]variable

Parameter:Parameter:Parameter:Parameter:
"prompt"

A string constant.
variable

A numeric or string variable.

DescriptDescriptDescriptDescription:ion:ion:ion:
When execution reaches an INPUT statement, the program pauses and waits for the user
to enter data from the keyboard while showing a prompting message specified by
"prompt".
After typing data, the user must press the ENT key. Then, the INPUT statement assigns
the typed data to variable.

• "prompt" is a prompting message to be displayed on the LCD.

• The semicolon (;) or comma (,) after "prompt " has the following meaning:
If "prompt " is followed by a semicolon, the INPUT statement displays the prompting
message followed by a question mark and a space.

INPUT "data=";a$

data=?

If "prompt" is followed by a comma, the statement displays the prompting message
but no question mark or space is appended to the prompting message.

INPUT "data=",a$

data=

210

• The cursor shape specified by the most recently executed LOCATE statement takes
effect.

• Even after execution of the CURSOR OFF statement, the INPUT statement displays the
cursor.

• Data inputted by the user will echo back to the LCD. To assign it to variable, it is
necessary to press the ENT key.

Pressing the ENT key causes also a line feed. If INPUT is followed by a semicolon (;)
in an INPUT statement, however, line feed is suppressed.
If you type no data and press the ENT key, an INPUT statement automatically assigns
a zero or a null string to variable that is a numeric or string, respectively.

• When any echoed back data is displayed on the LCD, pressing the Clear or BS key
erases the whole displayed data or a most recently typed-in character of the data,
respectively. If no data is displayed, pressing the Clear or BS key produces no
operation.

• Notes for entering numeric data:
The effective length of numeric data is 12 characters. The 13th typed-in literal and the
following will be ignored.
Valid literals include 0 to 9, a minus sign (-), and a period (.). They should be in correct
numeric data form. If not, INPUT statement accepts only numeric data from the first
literal up to correctly formed literal, as valid data. If no valid data is found, the INPUT
statement automatically assigns a zero (0) to variable.
A plus sign (+) can be typed in and echo back on the LCD, but it will be ignored in
evaluation of the typed-in data.

• Notes for entering string data:
The effective length of string data is the maximum string length of variable.
Overflowed data will be ignored.

• The sizes of prompting message literals, echoed back literals and cursor depend upon
the screen mode (single-byte ANK mode or two-byte Kanji mode), the screen font size
(standard-size or small-size), and the character enlargement attribute (regular-size,
double-width, double-height, or quadruple-size). For details, refer to Chapter 7,
Subsection 7.1.3.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • Neither a comma (,) nor semicolon (;)

follows "prompt".

• "prompt " is not a string constant.

Chapter 14. Statement Reference

211

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
06h The operation result is out of the allowable range.

(Numeric variable is out of the range.)

Reference:Reference:Reference:Reference:
Statements: LINE INPUT and LOCATE
Functions: INKEY$ and INPUT$

212

__
File I/O statement

INPUT #
Reads data from a device I/O file into specified variables.
__

Syntax:Syntax:Syntax:Syntax:
INPUT #filenumber,variable[,variable...]

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
variable

A numeric or string variable.

Description:Description:Description:Description:
INPUT # reads data from a device I/O file (a communications device file or bar code
device file) specified by filenumber and assigns it to variable.

• filenumber is a number assigned to the device I/O file when it was opened.

• Reading data from a communications device file:
An INPUT # statement reads data fields separated by CR codes or commas (,) and
assigns them to variable.
If more than one variable is specified in an INPUT # statement, the program waits
until all of the specified variables receive data.
If an INPUT # statement reads data longer than the allowable string length, it ignores
only the overflowed data and completes execution, causing no run-time error.

• Reading data from a bar code device file:
An INPUT # statement reads the scanned data into the 1st variable.
If more than one variable is specified in an INPUT # statement, the program ignores
the 2nd and the following variables.
If an INPUT # statement reads data longer than the allowable string length, it ignores
only the overflowed data and completes execution, causing no run-time error.

TIP

If the maximum number of digits has been omitted in the read code
specifications of the OPEN "BAR:" statement (except for the universal
product codes), then the INPUT # statement can read bar codes of up to 99
digits. To read bar codes exceeding 40 digits, you should define a sufficient
string variable length beforehand.

Chapter 14. Statement Reference

213

• Notes for entering numeric data:
Valid characters include 0 to 9, a minus sign (-), and a period (.). They should be in
correct numeric data form. If not, INPUT # statement accepts only numeric data from
the first character up to correctly formed character, as valid data. If no valid data is
found, the INPUT # statement automatically assigns a zero (0) to variable.
If the INPUT # statement reads alphabetical characters with a numeric variable, it
automatically assigns a zero (0) to variable. For reading of Code 39 bar codes that
may encode alphabetical characters, therefore, special care should be taken.

Syntax errSyntax errSyntax errSyntax errors:ors:ors:ors:

Error code and message Meaning
error 71: Syntax error filenumber is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
06h The operation result is out of the allowable range.

(Numeric variable is out of the range.)
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a file other than device I/O files.)
3Ah File number out of the range

Example:Example:Example:Example:
INPUT #fileNo,dat$

Reference:Reference:Reference:Reference:
Statements: CLOSE, LINE INPUT #, OPEN "BAR:", and OPEN "COM:"
Functions: INPUT$

214

__
I/O statement

KEY
Assigns a string or a control code to a function key; also defines a function key as a backlight
function on/off key. This statement also defines a magic key as a trigger switch, shift key, or
battery voltage display key.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Assigning a string or a control code to a function key):

KEY keynumber,stringdata
Syntax 2 (Defining a function key as a backlight function on/off key):

KEY backlightkeynumber,onduration
Syntax 3 (Defining a magic key as a trigger switch, shift key, or battery voltage display

key):
KEY magickeynumber, "TRG" (Trigger switch)
KEY magickeynumber, "SFT" (Shift key)
KEY magickeynumber, "BAT" (Battery voltage display key)

Parameter:Parameter:Parameter:Parameter:
keynumber

A numeric expression which returns a value from 1 to 31 and 33 to 38.
stringdata

A string expression which returns up to two characters or a single control code.
backlightkeynumber

A numeric expression which returns a value from 0 to 38.
onduration

Keyword BL and a string expression which returns a value from 0 to 255. (BL0 to
BL255)

magickeynumber
30, 31, 35, or 36

Chapter 14. Statement Reference

215

Description:Description:Description:Description:
�Assigning a string or a control code to a function key
KEY in syntax 1 assigns a string or a control code specified by stringdata to a function
key specified by keynumber. Pressing the specified function key generates the assigned
string data or control code and then passes it to the user program as if each character is
keyed in directly from the keyboard.

• keynumber is a key number assigned to a particular function key. (Refer to Appendix E,
"Key Number Assignment on the Keyboard.")

• Specifying 32 will be ignored.

• stringdata is a character code ranging from 0 (00h) to 255 (FFh). (For the character
codes, refer to Appendix C, "Character Sets.")

• If you specify more than two characters to stringdata, only the first two characters
are valid.

• stringdata inputted by pressing the specified function key may be read to the user
program by INPUT or LINE INPUT statement or INKEY$ or INPUT$ function.

Note that INKEY$ or INPUT$ (1) function can read only the first one character of the
assigned two. The second character remains in the keyboard buffer and can be read
by the INPUT or LINE INPUT statement or INKEY$ or INPUT$ function.

• If pressed together with the shift key, any numerical key can operate as a function key.

• If you issue more than one KEY statement specifying a same function key, the last
statement takes effect.

• If a null string is assigned to a function key, pressing the function key produces no key
entry. To make a particular function key invalid, you specify a null string to stringdata
as shown below.

KEY 1,""
KEY 2,CHR$(0)
KEY 3,CHR$(&h0)

�Defining a function key as a backlight function on/off key
KEY in syntax 2 defines a function key specified by backlightkeynumber as a backlight
function on/off key and sets the length of backlight ON-time specified by onduration.
(Refer to Chapter 13, "Backlight Function.")

• backlightkeynumber is a key number assigned to a particular function key.
(Refer to Appendix E, "Key Number Assignment on the Keyboard.")
Pressing the specified backlight function on/off key activates or deactivates the
backlight function.

• Specifying a zero (0) or 32 to backlightkeynumber defines the combination of the
shift key and M4 key (key number 36) or the M4 key as a backlight function on/off key,
respectively.

216

• Pressing the M1 key (key number 30) while holding down the shift key functions as a
backlight on/off control key by default.

• If pressed together with the shift key, any numerical key can operate as a function key.

• onduration is the length of time in seconds from when the backlight is turned on to
automatic turning-off. Pressing the trigger switch or any key (except for the backlight
function on/off key) while the backlight is on resets the counter of onduration to the
specified time length and restarts counting down.

Specification of BL0 disables the backlight function. Specification of BL255 keeps the
backlight on.

• A function key defined as a backlight function on/off key cannot be used to enter string
data.

• If you issue more than one KEY statement, the last statement takes effect. That is, if you
define more than one key as a backlight function on/off key as shown below, only the
function key numbered 8 operates as a backlight function on/off key and the length of
backlight ON-time is 15 seconds.

KEY 5,"BL40"
KEY 8,"BL15"

�Defining a magic key as a trigger switch, shift key, or battery voltage display key

• KEY in syntax 3 defines a magic key as a trigger switch, shift key, or battery voltage
display key, as well as assigning string data.

KEY 30,"TRG"
KEY 31,"SFT"
KEY 35,"BAT"

’M1 key as a trigger switch
’M2 key as a shift key
’M3 key as a battery voltage display key

Chapter 14. Statement Reference

217

NOTE

If you issue KEY statements specifying a same function key, only the last
KEY statement takes effect.
The description below, for example, makes the function key numbered 3
operate as a backlight function on/off key and the length of backlight
ON-time is 100 seconds.

KEY 3,"a"
KEY 3,"BL100"

The description below assigns string data "a" to the function key numbered 3.
The default backlight function on/off key (combination of M1 key and shift
key) will be restored.

KEY 3,"BL100"
KEY 3,"a"

The description below defines the M1 key as a trigger switch. The default
battery voltage display key (combination of ENT key and shift key) will be
restored.

KEY 30,"BAT"
KEY 30,"TRG"

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • keynumber is missing.

• stringdata is missing.
• backlightkeynumber is missing.
• stringdata is a numeric expression.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(keynumber, backlightkeynumber, or magickeynumber is out
of the range.)

Example:Example:Example:Example:
Syntax 1:

KEY 1,"a"
KEY 2,"F"+CHR$(13)
KEY 3,""

Syntax 2:
KEY 1,"BL60"

Reference:Reference:Reference:Reference:
Statements: KEY OFF, KEY ON, and ON KEY ..GOSUB

218

__
I/O statement

KEY ON and KEY OFF
Enables or disables keystroke trapping for a specified function key.
__

Syntax:Syntax:Syntax:Syntax:
KEY (keynumber){ON|OFF}

Parameter:Parameter:Parameter:Parameter:
keynumber

A numeric expression which returns a value from 1 to 31 and 33 to 38.

Description:Description:Description:Description:
�KEY ON
KEY ON enables keystroke trapping for a function key specified by keynumber. (Refer to
Appendix E, "Key Number Assignment on the Keyboard.")

• Between every execution of statements, the Interpreter checks whether a function key
specified by the KEY ON statement is pressed or not. If the key is pressed, the Interpreter
transfers control to the event-handling routine defined by an ON KEY ..GOSUB statement
(which should be executed before the KEY ON statement).

• If a function key which has been assigned a null string by the KEY statement is
specified by the KEY ON statement, the keystroke trap takes place.

• If you specify a function key which has been defined as a backlight function on/off key,
trigger switch, shift key, or software keyboard display key by using the KEY ON statement,
then no keystroke trap takes place.

• Keystroke trapping has priority over the INKEY$ function.

• When a program waits for the keyboard entry by the INPUT, LINE INPUT statement or
INPUT$ function, pressing a function key specified by the KEY ON statement neither
reads the pressed key data nor causes keystroke trapping.

• Specifying 32 to keynumber will be ignored.
�KEY OFF
KEY OFF disables keystroke trapping for a function key specified by keynumber.

• Specifying 32 to keynumber will be ignored.

Chapter 14. Statement Reference

219

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • keynumber is not enclosed in parentheses ().

• Neither ON or OFF follows (key-number).

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(keynumber is out of the range.)

Reference:Reference:Reference:Reference:
Statements: KEY and ON KEY ..GOSUB

220

__
File I/O statement

KILL
Deletes a specified file from the memory.
__

Syntax:Syntax:Syntax:Syntax:
KILL "[drivename:]filename"

Parameter:Parameter:Parameter:Parameter:
"[drivename:]filename"

A string expression.

Description:Description:Description:Description:
KILL deletes a data file or a user program file specified by "[drive-name:]filename".

• [drivename:] is used in conventional BHT series. In the BHT-100 series, it is merely for
the compatibility with their specifications. The drivename may be A: or B:, but it will be
ignored.

• The specified file will be deleted from both the data and the directory in the memory.

• A file to be deleted should be closed beforehand.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 3: ’"’ missing No double quote precedes or follows

[drivename:]filename.

error 71: Syntax error [drivename:]filename is not enclosed in
double quotes.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
02h Syntax error

(The format of "[drivename:]filename" is not correct.)
35h File not found

37h File already open

Chapter 14. Statement Reference

221

Example:Example:Example:Example:
CLOSE
IF kyIn$="Y"THEN

KILL "Master.Dat"
END IF

Reference:Reference:Reference:Reference:
Statements: CLFILE

222

__
Kanji Pattern LOAD I/O statement

KPLOAD
Loads a user-defined Kanji font in the two-byte Kanji mode.
This statement also loads a user-defined cursor.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Loading a user-defined Kanji font):

KPLOAD kanjicode, fontarrayname
Syntax 2 (Loading a user-defined cursor):

KPLOAD kanjicode, cursorarrayname
Parameter:Parameter:Parameter:Parameter:

kanjicode
• For a user-defined Kanji font

A numeric expression which returns a value from EBC0h to EBFCh, EC40h to
EC7Eh, and EC80h to EC83h.

• For a user-defined cursor
A numeric expression which returns zero (0).

fontarrayname and cursorarrayname
An array integer variable name.

NOTE

Do not specify parentheses () or subscripts which represent a general
array as shown below; doing so will result in a syntax error.

KPLOAD &HEBC0,kp%() ’error
KPLOAD &HEBC0,kp%(2) ’error

Description:Description:Description:Description:
�Loading a user-defined Kanji font
KPLOAD loads a user-defined Kanji font data defined by fontarrayname to the user font
area specified by kanjicode.

• kanjicode is a shift JIS code.

• To display user-defined Kanji fonts loaded by the KPLOAD, you use the PRINT
statement in the two-byte Kanji mode. If you attempt to display an undefined Kanji
character code, a full-width space character will appear.

Chapter 14. Statement Reference

223

• The loaded user-defined fonts are effective during execution of the user program which
loaded those fonts and during execution of the successive user programs chained by
the CHAIN statement.

• If you load a font to the same kanjicode more than one time, the most recently
specified font takes effect.

• Only when the Interpreter executes the KPLOAD statement, it refers to the array data
defined by fontarrayname. So, once a user program has finished loading the user
font, changing the data in the array or deleting the array itself (by the ERASE statement)
will not affect the already loaded user font.

• An array integer variable--a work array, register array, or common array--for
fontarrayname should be declared by the DIM, DEFREG, or COMMON statement,
respectively.

DIM kp0%(15)
DEFREG kp1%(15)
COMMON kp2%(15)

The array variable should be one-dimensional and have at least 16 elements. Each
element data should be an integer and stored in the area from the 1st to 16th elements
of the array.

• Also when the small-size font or double-width is specified, user-defined fonts loaded by
the APLOAD will be effective. The system will enlarge the dot pattern of each loaded
font
in small-size or double-width.
For font patterns specified the small-size font or double-width, refer to Chapter 7,
Subsection 7.1.3, "Dot Patterns of Fonts" and Subsection 7.1.5, "Displaying
User-defined Characters."

�Loading a user-defined cursor
KPLOAD loads a user-defined cursor data defined by cursorarrayname to the user font
area specified by kanjicode.

• To display a user-defined cursor loaded by the KPLOAD, you set 255 to cursorswitch
in the LOCATE statement in the two-byte Kanji mode. (LOCATE ,,255)

• The loaded user-defined cursors are effective during execution of the user
program which loaded those cursors and during execution of the successive user
program chained by the CHAIN statement.

• Only when the Interpreter executes the KPLOAD statement, it refers to the array data
defined by cursorarrayname. So, once a user program has finished loading the user
cursor, changing the data in the array or deleting the array itself (by the ERASE
statement) will not affect the already loaded user cursor.

224

• An array integer variable--a work array, register array, or common array--for
cursorarrayname should be declared by the DIM, DEFREG, or COMMON statement,
respectively.

DIM KP0%(5)
DEFREG KP1%(5)
COMMON KP2%(5)

The array variable should be one-dimensional and have at least 6 elements. Each
element data should be an integer and stored in the area from the 1st to 6th elements
of the array.

• If the cursor size (the number of elements in an array variable wide by the number of
bits high) defined by cursorarrayname exceeds the allowable size, the excess will be
discarded.

• The cursor size will be as follows depending upon the font size.

Font size Cursor size (W x H) No. of elements

Standard-size 8 x 16 dots 8

Small-size 6 x 12 dots 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5

LSB

MSB

LSB

MSB

Chapter 14. Statement Reference

225

• If the double-width is specified, then user-defined cursors loaded by the KPLOAD will
display in double-width, respectively. For details, refer to Chapter 7, Subsection 7.1.3
"Dot Patterns of Fonts."

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • No fontarrayname or cursorarrayname

is defined.

• fontarrayname or cursorarrayname
has an array string variable.

• fontarrayname or cursorarrayname
includes parentheses ().

• fontarrayname or cursorarrayname
includes subscripts.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(• kanjicode is out of the range.)
(• fontarrayname or cursorarrayname is not correct.)

08h Array not defined

226

Example:Example:Example:Example:
DIM kp%(15)
kp%(0)=&H0000
kp%(1)=&H8011
kp%(2)=&H6022
kp%(3)=&H1844
kp%(4)=&H0600
kp%(5)=&H8802
kp%(6)=&H8AF2
kp%(7)=&H4A92
kp%(8)=&H4A97
kp%(9)=&H2A92
kp%(10)=&H1FF2
kp%(11)=&H2A92
kp%(12)=&H4A97
kp%(13)=&H4A92
kp%(14)=&H8AF2
kp%(15)=&H8802
:
:
SCREEN 1
KPLOAD &HEBC0,kp%
PRINT CHR$(&HEB);CHR$(&HC0)

Array Elements

Reference:Reference:Reference:Reference:
Statements: APLOAD, COMMON, DEFREG, DIM, PRINT, and SCREEN

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(LSB)

(MSB)

kp%(0) kp%(5) kp%(10) kp%(15) Bit in each array element

Chapter 14. Statement Reference

227

__
Assignment statement

LET
Assigns a value to a given variable.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

[LET] stringvariable = stringexpression
Syntax 2:

[LET] numericvariable = numericexpression

Description:Description:Description:Description:
LET assigns a value of expression on the right-hand side to a variable on the left-hand
side.

• In a numeric data assignment, the assignment statement automatically converts an
integer value to a real value. In the type conversion from a real value to an integer value,
it rounds off the fractional part.

• Keyword LET can be omitted since the equal sign is all that is required to assign a
value.

• The data type of a variable and an expression must correspond.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error The data type on the right- and left-hand sides

does not correspond. That is, the variable on
the left-hand side is numeric but the expression
on the right-hand side is a string, or vice versa.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
06h The operation result is out of the allowable range.

0Fh String length out of the range
(In a string assignment, the string length of the evaluated result on
the right-hand side exceeds the maximum length of the string
variable on the left-hand side.)

10h Expression too long or complex

228

__
LINE INPUT

LINE INPUT
Reads input from the keyboard into a string variable.
__

Syntax:Syntax:Syntax:Syntax:
LINE INPUT ["prompt"{,|;}]stringvariable

Parameter:Parameter:Parameter:Parameter:
"prompt"

A string constant.
stringvariable

A string variable.

Description:Description:Description:Description:
When execution reaches a LINE INPUT statement, the program pauses and waits for the
user to enter data from the keyboard while showing a prompting message specified by
"prompt".
After typing data, the user must press the ENT key. Then, the LINE INPUT statement
assigns the typed data to stringvariable.

• A LINE INPUT statement cannot assign a numeric variable. (An INPUT statement can
do.)

• "prompt" is a prompting message to be displayed on the LCD.

• The semicolon (;) or comma (,) after "prompt" has the following meaning:
If "prompt" is followed by a semicolon, the LINE INPUT statement displays the
prompting message followed by a question mark and a space.

LINE INPUT "data=";a$

data=?

Chapter 14. Statement Reference

229

If "prompt" is followed by a comma, the statement displays the prompting message
but no question mark or space is appended to the prompting message.

LINE INPUT "data=",a$

data=

• The cursor shape specified by the most recently executed LOCATE statement takes
effect.

• Even after execution of the CURSOR OFF statement, the LINE INPUT statement displays
the cursor.

• Data inputted by the user will echo back to the LCD. To assign it to stringvariable,
it is necessary to press the ENT key.

Pressing the ENT key causes also a line feed.
If you type no data and press the ENT key, a LINE INPUT statement automatically
assigns a null string to stringvariable.

• When any echoed back data is displayed on the LCD, pressing the Clear or BS key
erases the whole displayed data or a most recently typed-in character of the data,
respectively. If no data is displayed, pressing the Clear or BS key produces no
operation.

• Notes for entering string data:
The effective length of string data is the maximum string length of stringvariable.
Overflowed data will be ignored.

• The sizes of prompting message literals, echoed back literals and cursor depend upon
the screen mode (single-byte ANK mode or two-byte Kanji mode), the screen font size
(standard-size or small-size), and the character enlargement attribute (regular-size,
double-width, double-height, or quadruple-size). For details, refer to Chapter 7,
Subsection 7.1.3.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • INPUT is missing.

• Neither a comma (,) or semicolon (;) follows
"prompt".

• "prompt" is not a string constant.

• stringvariable has a numeric variable.

• A semicolon (;) immediately follows LINE
INPUT.

Reference:Reference:Reference:Reference:
Statements: INPUT and LOCATE
Functions: INKEY$ and INPUT$

230

__
File I/O statement

LINE INPUT #
Reads data from a device I/O file into a string variable.
__

Syntax:Syntax:Syntax:Syntax:
LINE INPUT #filenumber,stringvariable

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
stringvariable

A string variable.

Description:Description:Description:Description:
LINE INPUT # reads data from a device I/O file (a communications device file or bar code
device file) specified by filenumber and assigns it to stringvariable.

• filenumber is a number assigned to the device I/O file when it was opened.

• A LINE INPUT # statement cannot assign a numeric variable. (An INPUT # statement
can do.)

• Reading data from a communications device file:
A LINE INPUT # statement reads all of the string literals preceding a CR code and
assigns them to stringvariable except for CR codes and LF codes which
immediately follow a CR code.
If a LINE INPUT # statement reads data longer than the allowable string length before
reading a CR code, it ignores only the overflowed data and completes execution,
causing no run-time error.

• Reading data from a bar code device file:
A LINE INPUT # statement reads the scanned data into stringvariable.
If a LINE INPUT # statement reads data longer than the allowable string length, it
ignores only the overflowed data and completes execution, causing no run-time error.

TIP

If the maximum number of digits has been omitted in the read code
specifications of the OPEN "BAR:" statement (except for the universal
product codes), then the LINE INPUT # statement can read bar codes of up
to 99 digits. To read bar codes exceeding 40 digits, you should define a
sufficient string variable length beforehand.

Chapter 14. Statement Reference

231

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • INPUT is missing.

• filenumber is missing.
• "prompt" is not a string constant.
• stringvariable has a numeric variable.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a file other than device I/O files.)
3Ah File number out of the range

ExampExampExampExample:le:le:le:
LINE INPUT #fileNo,dat$

Reference:Reference:Reference:Reference:
Statements: CLOSE, INPUT #, OPEN "BAR:", and OPEN "COM:"
Functions: INPUT$

232

__
I/O statement

LOCATE
Moves the cursor to a specified position and changes the cursor shape.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

LOCATE [column][,row[,cursorswitch]]
Syntax 2:

LOCATE,,cursorswitch
Parameter:Parameter:Parameter:Parameter:

A numeric expression which returns a value given below.

Screen mode Screen font column row cursorswitch

Single-byte
ANK Mode

Standard-size
font
Small-size font

1 to 22

1 to22

1 to 8

1 to 10
0 to 2, and 255

Two-byte Kanji
Mode

Standard-size
font
Small-size font

1 to 17

1 to 22

1 to 7

1 to 9

0 to 2, and 255

0 to 2, and 255

Description:Description:Description:Description:
LOCATE moves the cursor to a position specified by column number and row number as
coordinates on the LCD. It also changes the cursor shape as specified by
cursorswitch.

• The cursor location in the upper left corner of the LCD is 1, 1 which is the default.

• cursorswitch specifies the cursor shape as listed below.

cursorswitch value Cursor shape
0 Invisible
1 Underline cursor (default)
2 Full block cursor

255 User-defined cursor
• If some parameter is omitted, the current value remains active. If you omit column, for

example, the cursor stays in the same column but moves to the newly specified row
position.

Chapter 14. Statement Reference

233

• The entry ranges of the column and row are the same in the regular-size, double-width.

• Any parameter value outside its range will result in a run-time error.

• Specification of the maximum value to column moves the cursor off the screen and out
of sight.

Example: SCREEN 0,0 ’Regular size in ANK mode
LOCATE 22

This cursor is invisible

If you display data on the screen under the above condition, the cursor moves to the
1st column of the next row, from where the data appears.

• If the double-width or quadruple-size is specified, specification of the (maximum value -
1) to column moves the cursor off the screen and out of sight.

Example: SCREEN 0,2 ’Double-width in ANK mode
LOCATE 21

This cursor is invisible

If you display data on the screen under the above condition, the cursor moves to the
1st column of the next row, from where the data appears.
Switching to the regular-size will make the cursor visible as shown below.

SCREEN 0,0 ’Regular size in ANK mode

 This cursor is visible

234

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

05h Parameter out of the range

Example:Example:Example:Example:
LOCATE 1,2
LOCATE xPos, xCSRLIN
LOCATE ,,2

Reference:Reference:Reference:Reference:
Functions: CSRLIN and POS

Chapter 14. Statement Reference

235

__
Error control statement

ON ERROR GOTO
Enables error trapping.
__

Syntax:Syntax:Syntax:Syntax:
ON ERROR GOTO label

Description:Description:Description:Description:
ON ERROR GOTO enables error trapping so as to pass control to the first line of an
error-handling routine specified by label if an error occurs during program execution.

• To return control from an error-handling routine to a specified program location, you use
a RESUME statement in the error-handling routine.

• Specification of zero (0) to label disables error trapping.
If ON ERROR GOTO 0 is executed outside the error-handling routine, the occurrence of
any subsequent error displays a regular run-time error code and terminates the
program.
If ON ERROR GOTO 0 is executed inside the error-handling routine, the Interpreter
immediately displays the regular run-time error code and terminates the program.

• You cannot trap errors which may occur during execution of the error-handling routine.
The occurrence of such an error immediately displays a run-time error code and
terminates the program.

• You can use ON ERROR GO TO instead of ON ERROR GOTO.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • label has not been defined.

• label is missing.

Reference:Reference:Reference:Reference:
Statements: RESUME
Functions: ERL and ERR

236

__
Flow control statement

ON…GOSUB, ON…GOTO
Branches to one of specified labels according to the value of an expression.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

ON expression GOSUB label [,label...]
Syntax 2:

ON expression GOTO label [,label...]
Parameter:Parameter:Parameter:Parameter:

expression
A numeric expression which returns a value from 1 to 255.

Description:Description:Description:Description:
ON...GOSUB or ON...GOTO block branches to a label in the label list according to the
value of expression.

• If expression has the value 3, for example, the target label is the third one in the label
list counting from the first.

• If expression has the value 0 or a value greater than the number of labels in the label
list, execution of the ON ..GOSUB or ON ..GOTO block causes no run-time error and
passes control to the subsequent statement.

• You can specify any number of labels so long as a statement block does not exceed
one program line (512 characters).

• You can nest ON...GOSUB statements to a maximum of 10 levels.

• When using the GOSUB statement together with block-structured statements(DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ...ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB
and WHILE ..WEND), you can nest them to a maximum of 30 levels.

• You can use ON ..GO TO instead of ON ..GOTO.

Chapter 14. Statement Reference

237

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • label has not been defined.

• label is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(expression is negative or greater than 255.)

07h Insufficient memory space
(The program nesting by GOSUB statements only is too deep.)

Reference:Reference:Reference:Reference:
Statements: GOSUB, GOTO, and SELECT ..CASE ..END SELECT

238

__
I/O statement

ON KEY…GOSUB
Specifies an event-handling routine for keystroke interrupt.
__

Syntax:Syntax:Syntax:Syntax:
ON KEY (keynumber) GOSUB label

Parameter:Parameter:Parameter:Parameter:
keynumber

A numeric expression which returns a value from 1 to 31 and 33 to 38.

Description:Description:Description:Description:
According to label, ON KEY ..GOSUB specifies the first line of an event-handling routine

to be invoked if a function key specified by keynumber is pressed. (Refer to Appendix
E, "Key Number Assignment on the Keyboard.")

• ON KEY ..GOSUB specifies only the location of an event-handling routine but does not
enable keystroke trapping. It is KEY ON statement that enables keystroke trapping.
(Refer to KEY ON and KEY OFF.)

• Specification of zero (0) to label disables keystroke trapping.

• If a keystroke trap occurs, the Interpreter automatically executes KEY OFF statement for
the pressed function key before passing control to an event-handling rou-tine specified
by label in ON KEY ..GOSUB statement. This prevents a same event-handling routine
from becoming invoked again by pressing a same function key during execution of the
routine until the current event-handling routine is completed by issuing a RETURN
statement.

When control returns from the event-handling routine by a RETURN statement, the
Interpreter automatically executes KEY ON statement.
If it is not necessary to resume keystroke trapping, you describe a KEY OFF statement
in the event-handling routine.

• If you issue more than one ON KEY ..GOSUB statement specifying a same keynumber,
the last statement takes effect.

• You can nest GOSUB statements to a maximum of 10 levels.

• When using the ON KEY ..GOSUB statement together with block-structured statements
(DEF FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ..ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB
and WHILE ..WEND), you can nest them to a maximum of 30 levels.

• Specifying 32 to keynumber will be ignored.

Chapter 14. Statement Reference

239

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • label has not been defined.

• label is missing.
• keynumber is not enclosed in parentheses
().

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(keynumber is out of the range.)
07h Insufficient memory space

(The program nesting by GOSUB statements is too deep.)

Reference:Reference:Reference:Reference:
Statements: KEY, KEY OFF, and KEY ON

240

__
File I/O statement

OPEN
Opens a data file for I/O activities.
__

Syntax:Syntax:Syntax:Syntax:
OPEN "[drivename:]filename" AS [#] filenumber [RECORD filelength]

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
"[drivename:]filename"

A string expression.
filelength

An integer constant which has the value from 1 to 32767.

Description:Description:Description:Description:
OPEN opens a data file specified by "[drivename:]filename" and associates the opened
file with filenumber for allowing I/O activities according to filenumber.

• The maximum number of files which can be opened at one time is 16 including the bar
code device file and communications device files.

• "filename" consists of a file name and a file extension.
The file name should be 1 to 8 characters long. Usable characters for the file name
include alphabet letters, numerals, a minus (-) sign, and an underline (_).
Note that a minus sign and underline should not be used for the starting character of
the file name. Uppercase and lowercase alphabet letters are not distinguished from
each other and both are treated as uppercase letters.
The file extension should be up to 3 characters long. It should be other
than .PD3, .EX3, .FN3, and .FLD and may be omitted (together with a period).

a.dat
master01.dat

• If you set B: to [drivename], the specified file will be opened as a read-only file; if you
set "A:" or omit [drivename], it will be opened as a read/write file.

Chapter 14. Statement Reference

241

• filelength is the maximum number of registrable records in a file. It can be set only
when a new data file is created by an OPEN statement. If you specify filelength when
opening any of existing data files (including downloaded data files), then the
filelength will be ignored.

• Specifying only filelength does not allocate memory. Whether or not a PUT
statement can write records up to the specified filelength depends on the memory
occupation state.

• If filelength is omitted, the default file size is 1000 records.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 3: ’"’ missing No double quote precedes or follows

 [drivename:]filename.
error 71: Syntax error • filelength is out of the range.

• filelength is not an integer constant.

• [drivename:]filename is not enclosed in
double quotes.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
02h Syntax error

("[drivename:]filename" is not correct. Or the bar code device file
or communications device file is specified.)

07h Insufficient memory space

32h File type mismatch

37h File already open

3Ah File number out of the range

41h File damaged

Reference:Reference:Reference:Reference:
Statements: CLOSE, OPEN "BAR:", and OPEN "COM:"

242

__
File I/O statement

OPEN "BAR: "
Opens the bar code device file. This statement also activates or deactivates the indicator LED
and the beeper (vibrator) individually.
__

Syntax:Syntax:Syntax:Syntax:
OPEN "BAR:[readmode][beepercontrol][LEDcontrol]" AS [#]filenumber
CODE readcode
[,readcode...]

Parameter:Parameter:Parameter:Parameter:
readmode

A string expression.
beepercontrol

A string expression. Specification of B activates the beeper (vibrator).
(Default: Deactivated)

LEDcontrol
A string expression. Specification of L deactivates the green indicator LED.
(Default: Activated)

filenumber
A numeric expression which returns a value from 1 to 16.

readcode
A string expression.

Description:Description:Description:Description:
OPEN "BAR:" opens the bar code device file and associates it with filenumber for
allowing data entry from the bar code device (BHT) according to filenumber.
If the bar code device file has been opened with the OPEN "BAR:" statement, pressing the
trigger switch *1 turns on the illumination LED *2 and makes the BHT ready to scan a bar
code.

• If the BHT reads a bar code successfully, the indicator LED for reading confirmation will
illuminate in green. Specification to LEDcontrol may activate or deactivate the
indicator LED. Specification to beepercontrol may activate or deactivate the beeper
and vibrator function.

• A bar code read will be decoded and then transferred to the barcode buffer.
*1 The trigger switch function is assigned to the magic keys.
*2 The illumination LED may not come on where the environment is bright enough for

the BHT to scan.

Chapter 14. Statement Reference

243

• Only a single bar code device file can be opened at a time. The total number of files
which can be opened at a time is 16 including data files and communications device
files.

• The BHT cannot open the bar code device file and the IrDA interface of the
communications device file concurrently. If you attempt to open them concurrently, a
run-time error will occur. The BHT can open the bar code device file and the
direct-connect interface concurrently.

• The name of the bar code device file, BAR, may be in lowercase.
OPEN "bar :"AS #10 CODE "A"

• Alphabet letters to be used for readmode, beepercontrol, LEDcontrol and
readcode may be in lowercase.

• Up to eight readcodes can be specified.

• If you specify more than one condition for a same bar code type with readcode(s) ("I"
in the example below), all of those conditions are valid. The sam-ple below makes the
BHT read both of the 6- and 10-digit ITF codes.

OPEN "BAR:"AS #1 CODE "I:6","I:10"
OPEN "BAR:"AS #1 CODE "I:6,10"

• If you specify more than one readcode including "I" (ITF), then ITF codes less than 4
digits cannot be read unless numbers of digits are specified.

����readmode

The BHT supports four read modes--the momentary switching mode, the auto-off mode,
the alternate switching mode, and the continuous reading mode, which can be selected by
specifying M, F, A, and C to readmode, respectively.

□□□□Momentary switching mode (M)

OPEN "BAR ：M"AS #7 CODE "A"
Only while you hold down the trigger switch *1 , the illumination LED *2 lights and the
BHT can read a bar code.
If the bar code device file becomes closed when the trigger switch *1 is helddown, the
illumination LED will go off.
Until the entered bar code data is read out from the barcode buffer, pressing the
trigger switch *1 cannot turn on the illumination LED *2 so that the BHT cannot read the
next bar code.

*1 The trigger switch function is assigned to the magic keys.
*2 The illumination LED may not come on where the environment is bright enough for

the BHT to scan.

244

□□□□Auto-off mode (F)

OPEN "BAR :F"AS #7 CODE "A"
If you press the trigger switch *1 , the illumination LED *2 comes on. When you release
the switch or when the BHT completes bar code reading, then the illumination LED will
go off. Holding down the trigger switch *1 lights the illumination LED for a maximum of
5 seconds.
While the illumination LED is on, the BHT can read a bar code until a bar code is read
successfully or the bar code devices file becomes closed.
If the illumination LED goes off after 5 seconds from when you press the trigger switch
*1, it is necessary to press the trigger switch *1 again for reading a bar code.
Once a bar code is read successfully, pressing the trigger switch *1 cannot turn on the
illumination LED *2 and the BHT cannot read the next bar code as long as the entered
bar code data is not read out from the barcode buffer.

□□□□Alternate switching mode (A)

OPEN "BAR :A"AS #7 CODE "A"
If you press the trigger switch *1, the illumination LED *2 comes on. Even if you release
the switch, the illumination LED *2 remains on until the bar code device file becomes
closed or you press that switch again. While the illumination LED *2 is on, the BHT can
read a bar code.
Pressing the trigger switch *1 toggles the illumination LED *2 on and off.
Once a bar code is read successfully, pressing the trigger switch *1 turns on the
illumination LED *2 but the BHT cannot read the next bar code as long as the entered
bar code data is not read out from the barcode buffer.

□□□□Continuous reading mode (C)

OPEN "BAR :C"AS #7 CODE "A"
Upon execution of the above statement, the BHT turns on the illumination LED *2 and
keeps it on until the bar code device file becomes closed, irrespec-tive of the trigger
switch *1.
While the illumination LED *2 is on, the BHT can read a bar code.
Once a bar code is read successfully, the BHT cannot read the next bar code as long
as the entered bar code data is not read out from the barcode buffer.

*1 The trigger switch function is assigned to the magic keys.
*2 The illumination LED may not come on where the environment is bright enough for

the BHT to scan.

Chapter 14. Statement Reference

245

• If readmode is omitted, the BHT defaults to the auto-off mode.

• In the momentary switching mode, alternate switching mode, or continuous reading
mode, after you read a low-quality bar code which needs more than one second to be
read, keeping applying the barcode reading window to that bar code may re-read the
same bar code in succession at intervals of one second or more.

����beepercontrol and and and and LEDcontrol
The OPEN "BAR:" statement can control the beeper and the indicator LED to activate or
deactivate each of them when a bar code is read successfully. The BHT may also control
the vibrator with beepercontrol.

• You should describe parameters of readmode, beepercontrol, and LEDcontrol
without any space inbetween.

• You should describe readmode, beepercontrol, and LEDcontrol in this order.

• Specifying B to beepercontrol allows you to choose beeping only, vibrating only, or
beeping & vibrating by making setting on the adjustment screen of the LCD contrast,
beeper, and vibrator or by setting the I/O ports with the OUT statement.

To sound the beeper when a bar code is read successfully:
OPEN "BAR :B"AS #7 CODE "A"

To deactivate the indicator LED when a bar code is read successfully:
OPEN "BAR :L"AS #7 CODE "A"

246

����readcode
The BHT supports seven types of bar codes--the universal product codes, Interleaved 2 of
5 (ITF), Standard 2 of 5 (STF), Codabar (NW-7), Code 39, Code 93, and Code 128. The
BHT can read also EAN-128 if Code 128 is specified.
(For readable bar code types, refer to the BHT User’s Manual.)

□□□□Universal product codes (A)

Syntax:
A[:[code][1stchara[2ndchara]][supplemental]
[,[code][1stchara[2ndchara]][supplemental]]
[,[code][1stchara[2ndchara]][supplemental]]]

where
code is A, B, or C specifying the following:

code Bar code type
A EAN-13, UPC-A
B EAN-8
C UPC-E

If code is omitted, the default is all of the universal product codes.
1stchara and 2ndchara are flag characters representing a country code and should
be numerals from 0 to 9. If a question mark (?) is specified to 1stchara or 2ndchara,
it acts as a wild card.
supplemental is a supplemental code. Specifying an S to supplemental allows
the BHT to read also supplemental codes.

OPEN "BAR :"AS #1 CODE "A :49S"

Chapter 14. Statement Reference

247

□□□□Interleaved 2 of 5 (ITF) (I)

Syntax :
I[:[mini.no.digits[-max.no.digits]][CD]
[,[mini.no.digits[-max.no.digits]][CD]]
[,[mini.no.digits[-max.no.digits]][CD]]]

where
mini.no.digits and max.no.digits are the minimum and maximum numbers of
digits for bar codes to be read by the BHT, respectively.
They should be a numeral from 2 to 99 and satisfy the following conditions:

mini.no.digits •max.no.digits
If both of mini.no.digits and max.no.digits are omitted, then the default
reading range is from the minimum number of digits specified in System Mode up to 99
digits.
If only max.no.digits is omitted, the BHT can only read the number of digits
specified by mini.no.digits.
CD is a check digit. Specifying a C to CD makes the Interpreter check bar codes with
MOD-10. The check digit is included in the number of digits.

OPEN "BAR :"AS #1 CODE "I :6-10C"

□□□□Codabar （（（（NW-7）（）（）（）（N））））

Syntax:
N[:[mini.no.digits[-max.no.digits]][startstop][CD]
[,[mini.no.digits[-max.no.digits]][startstop][CD]]
[,[mini.no.digits[-max.no.digits]][startstop][CD]]]

where
mini.no.digits and max.no.digits are the minimum and maximum numbers of
digits for bar codes to be read by the BHT, respectively.
They should be a numeral from 3 to 99 and satisfy the following condition:

mini.no.digits •max.no.digits
If both of mini.no.digits and max.no.digits are omitted, then the default
reading range is from the minimum number of digits specified in Sys-tem Mode up to
99 digits.
If only max.no.digits is omitted, the BHT can only read the number of digits
specified by mini.no.digits.
start and stop are the start and stop characters, respectively. Each of them should
be an A, B, C, or D. If a question mark (?) is specified, it acts as a wild card. The start
and stop characters are included in the number of digits.
The A through D will be stored in the barcode buffer as a through d.

248

CD is a check digit. Specifying a C to CD makes the Interpreter check bar codes with
MOD-16. The check digit is included in the number of digits.

OPEN "BAR :"AS #1 CODE "N :8AAC"

□□□□Code 39 （（（（M））））

Syntax:
M[:[mini.no.digits[-max.no.digits]][CD]
[,[mini.no.digits[-max.no.digits]][CD]]
[,[mini.no.digits[-max.no.digits]][CD]]]

where
mini.no.digits and max.no.digits are the minimum and maximum numbers of
digits for bar codes to be read by the BHT, respectively.
They should be a numeral from 1 to 99, excluding start/stop characters. They should
satisfy the following condition:

mini.no.digits •max.no.digits
If both of mini.no.digits and max.no.digits are omitted, then the default
reading range is 1 to 99 digits. If only max.no.digits is omitted, the BHT can only
read the number of digits specified by mini.no.digits.
CD is a check digit. Specifying a C to CD makes the Interpreter check bar codes with
MOD-43. The check digit is included in the number of digits.

OPEN "BAR:"AS #1 CODE "M:8-12C"

□□□□Code 93 （（（（L））））

Syntax:
L[:[mini.no.digits[-max.no.digits]
[,[mini.no.digits[-max.no.digits]]
[,[mini.no.digits[-max.no.digits]]]

where
mini.no.digits and max.no.digits are the minimum and maximum numbers of
digits for bar codes to be read by the BHT, respectively.
They should be a numeral from 1 to 99, excluding start/stop characters and check
digits. They should satisfy the following condition:

mini.no.digits •max.no.digits
If both of mini.no.digits and max.no.digits are omitted, then the default
reading range is 1 to 99 digits. If only max.no.digits is omitted, the BHT can only
read the number of digits specified by mini.no.digits.

OPEN "BAR:"AS #1 CODE "L:6-12"
Neither start/stop characters nor check digits will be transferred to the barcode buffer.

Chapter 14. Statement Reference

249

□□□□Code 128 （（（（K））））

Syntax :
K[:[mini.no.digits[-max.no.digits]]
[,[mini.no.digits[-max.no.digits]]]
[,[mini.no.digits[-max.no.digits]]]]

where
mini.no.digits and max.no.digits are the minimum and maximum numbers of
digits for bar codes to be read by the BHT, respectively.
They should be a numeral from 1 to 99, excluding start/stop characters and check digit.
They should satisfy the following condition:

mini.no.digits •max.no.digits
If both of mini.no.digits and max.no.digits are omitted, then the default
reading range is 1 to 99 digits. If only max.no.digits is omitted, the BHT can only
read the number of digits specified by mini.no.digits.

OPEN "BAR:"AS #1 CODE "K:6-12"
Neither start/stop characters nor check digits will be transferred to the barcode buffer.
If the BHT reads any bar code consisting of special characters only (such as FNC,
CODEA, CODEB, CODEC and SHIFT characters), it will not transfer the data to the
barcode buffer. The beeper sounds only if it is activated.
FNC characters will be handled as follows:
(1) FNC1

The BHT will not transfer an FNC1 character placed at the first or second character
position immediately following the start character, to the barcode buffer. FNC1
characters in any other positions will be converted to GS characters (1Dh) and then
transferred to the barcode buffer like normal data.
If an FNC1 immediately follows the start character, the bar code will be recognized
as EAN-128 and marked with W instead of K.

(2) FNC2
If the BHT reads a bar code containing an FNC2 character(s), it will not buffer such
data but transfer it excluding the FNC2 character(s).

(3) FNC3
If the BHT reads a bar code containing an FNC3 character(s), it will regard the data
as invalid and transfer no data to the barcode buffer, while it may drive the
indicator LED and beeper (vibrator) if activated with the OPEN statement.

250

(4) FNC4
An FNC4 converts data encoded by the code set A or B into a set of extended
ASCII-encoded data (128 added to each official ASCII code value).
A single FN4 character converts only the subsequent data character into the
extended ASCII-encoded data.
A pair of FNC4 characters placed in successive positions converts all of the
subsequent data characters preceding the next pair of FNC4 characters or the stop
character, into the extended ASCII-encoded data. If a single FNC4 character is
inserted in those data characters, however, it does not convert the subsequent
data character only.
An FNC4 character does not convert any of GS characters converted by an FNC1
character, into the extended ASCII-encoded data.

□□□□Standard 2 of 5 (STF) (H)

Syntax:
H[:[mini.no.digits[-max.no.digits]][CD] [startstop]
[,[mini.no.digits[-max.no.digits]][CD] [startstop]]
[,[mini.no.digits[-max.no.digits]][CD] [startstop]]]

where
mini.no.digits and max.no.digits are the minimum and maximum numbers of
digits for bar codes to be read by the BHT, respectively.
They should be a numeral from 1 to 99, excluding start/stop characters. They should
satisfy the following condition:

mini.no.digits •max.no.digits
If both of mini.no.digits and max.no.digits are omitted, then the default
reading range is from the minimum number of digits specified in System Mode up to 99
digits.
If only max.no.digits is omitted, only the number of digits specified by
mini.no.digits can be read.
CD is a check digit. Specifying a C to CD makes the Interpreter check bar codes with
MOD-10. The check digit is included in the number of digits.
startstop specifies the normal or short format of the start/stop characters.
Specify N for the normal format; specify S for the short format. If startstop is
omitted, start/stop characters can be read in either format.

OPEN "BAR:"AS #1 CODE "H:6-12"

Chapter 14. Statement Reference

251

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error The number of the specified read codes

exceeds eight.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
02h Syntax error

(readcode is missing.)
05h Parameter out of the range

(readcode is not correct.)
37h File already open

3Ah File number out of the range

45h Device files prohibited from opening concurrently
(You attempted to open the bar code device file and IrDA interface
of the communications device file concurrently.)

252

__
File I/O statement

OPEN "COM: "
Opens a communications device file.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (For the direct-connect interface):

OPEN "COMn:[baud][,[parity][,[charalength][,[stopbit][,[RS/CS]
[,[timeout]]]]]] "AS [#] filenumber

Syntax 2 (For the IrDA interface):
OPEN "COMn: [baud] "AS [#] filenumber

Parameter:Parameter:Parameter:Parameter:
baud

For the IrDA interface
115200, 57600, 38400, 19200, 9600, or 2400
For the direct-connect interface
115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200, 600, or 300

parity
N, E, or O

charalength
8 or 7

stopbit
1 or 2

RS/CS
0, 1, 2, 3 or 4

timeout
An integer numeral from 0 to 255.

filenumber
A numeric expression which returns a value from 1 to 16.

Chapter 14. Statement Reference

253

Description:Description:Description:Description:
OPEN "COM:" opens a communications device file and associates it with filenumber for
allowing input/output activities using the communications interface.

• If optional parameters enclosed with brackets are omitted, the most recently specified
values or the defaults become active.

Listed below are the defaults:

Baud rate 9600 bps

Parity check No parity

Character length 8 bits

Stop bit 1 bit

RS/CS control 0 (No control)

Timeout 3 seconds

����COMn
COMn is a communications device file name.
The BHT supports both the IrDA and direct-connect interfaces but cannot open them
concurrently. If you attempt to open both interfaces concurrently, a runtime error will occur.

Interface Communications device file name

IrDA interface "COM1 :"

Direct-connect interface "COM2 :"

Default interface *1 "COM :"
 *1 The default interface refers to an interface which is selected on the SET COMMUNICATION menu.

(For details, refer to the BHT User’s Manual.)
COM may be in lowercase as shown below.

OPEN "com :"AS #8

The BHT cannot open the IrDA interface and the bar code device file concurrently. If you
attempt to open them concurrently, a run-time error will occur.
The BHT cannot open the Bluetooth communications device file concurrently with the IrDA
interface or direct-connect interface. If you attempt to open them concurrently, a run-time
error will occur.

����baud
When the IrDA interface is used, baud is one of the baud rates: 115200, 57600, 38400,
19200, 9600 (default), and 2400. When the direct-connect interface is used, it is one of the
baud rates: 115200, 57600, ,38400, 19200, 9600 (default), 4800, 2400, 1200, 600, and 300.

����parity
parity is a parity check. It should be N (default), E, or O, which corresponds to None, Even,
or Odd parity, respectively.

254

����charalength
charalength is a character length or the number of data bits. It should be 8(default) or 7
bits.

����stopbit
stopbit is the number of stop bits. It should be 1 (default) or 2 bits.

NOTE

The IrDA interface is compliant with the IrDA physical layer
(IrDA-SIR1.2), so the vertical parity, character length, and stop bit length
are fixed to none, 8 bits, and 1 bit, respectively. If selected, those
parameters will be ignored.

����RS/CS
RS/CS enables or disables the RS/CS control. It should be 0 (default), 1, 2, 3, or 4, which
corresponds to the following function:

Value of RS/CS IrDA I/F Direct-connect I/F
0

(default) Ignored
1 Ignored

2 Ignored High RD will be regarded as a
high CS.

3 Ignored Low RD will be regarded as high
CS.

4 Ignored CS control disabled(RD will be
used as an input port.)

As listed above, you can specify RS/CS option for the direct-connect interface.
If you specify it for the IrDA interface, it will be ignored resulting in no run-time error.
RS/CS option is also applicable to Busy control when the direct-connect inter-face is used. To
do so, interface cable connection should be modified. For details, refer to the BHT User’s
Manual.
Shown below is a coding sample for enabling the RS/CS control.

OPEN "COM :,,,,1"AS #16

����timeouttimeouttimeouttimeout
timeout is a maximum waiting time length until the CS signal goes ON after the BHT
becomes ready to send data. It should be 0 to 255 in increment of 100ms.
Specification of zero (0) causes no timeout.
To make the direct-connect interface support timeout, the RS/CS option should be set to "2"
or "3" so that the RD signal is regarded as CS. If any of "0," "1,"and "4" has been set to the
RS/CS option, the value of the timeout option will be modified.
The IrDA interface does not support timeout. If specified, the timeout option will be ignored
resulting in no run-time error.

Chapter 14. Statement Reference

255

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error filenumber is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
02h Syntax error

(The x in "COM:x" contains an invalid parameter.)
37h File already open

3Ah File number out of the range

45h File already open
(You attempted to open the bar code device file and the IrDA
interface of the communications device file concurrently.)
(You attempted to concurrently open the two types of
communications device files -- IrDA interface and Bluetooth
interface, or direct-connect interface and Bluetooth interface.)

256

__
I/O statement

OUT
Sends a data byte to an output port.
__

Syntax:Syntax:Syntax:Syntax:
OUT portnumber,data

Parameter:Parameter:Parameter:Parameter:
portnumber

A numeric expression.
data

A numeric expression which returns a value from 0 to 255.

Description:Description:Description:Description:
OUT sends a data byte designated by data to a port specified by portnumber.

• portnumber is not an actual hardware port number on the BHT but a logical one which
the Interpreter assigns. (Refer to Appendix D, "I/O Ports.")

• If bits not assigned a hardware resource are specified to portnumber or data, they will
be ignored.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • portnumber is missing.

• data is missing.

Chapter 14. Statement Reference

257

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(portnumber or data is out of the range.)

Example:Example:Example:Example:
OUT 3,7

The above example sets the LCD contrast to the maximum.

Reference:Reference:Reference:Reference:
Statements: WAIT
Functions: INP

258

__
I/O statement

POWER
Controls the automatic power-off facility.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Turning off the power according to the power-off counter):

POWER counter
Syntax 2 (Turning off the power immediately):

POWER {OFF •0 }
Syntax 3 (Disabling the automatic power-off facility):

POWER CONT
Parameter:Parameter:Parameter:Parameter:

counter
A numeric expression which returns a value from 0 to 32767.

Description:Description:Description:Description:
�Turning off the power according to the power-off counter
POWER counter turns off the power after the length of time specified by counter from
execution of the POWER statement.

• counter is a setting value of the power-off counter in seconds. Shown below is a
sample program for turning off the power after 4800 seconds from execution of POWER
statement.

POWER 4800
• If no POWER statement is issued, the default counter value is 180 seconds.

• If any of the following operations and events happens while the power-off counter is
counting, the counter will be reset to the preset value and start counting again:

- Any key is pressed.

- The trigger switch is pressed.

- The BHT sends or receives data via a communications device file. (If a communications
device file is closed, this operation does not reset the power-off counter.)

Chapter 14. Statement Reference

259

�Turning off the power immediately
Execution of POWER OFF or POWER 0 immediately turns off the power.

• The execution of POWER OFF or POWER 0 deactivates the resume function if preset.
�Disabling the automatic power-off facility
POWER CONT disables the automatic power-off facility.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(counter is out of the range.)

260

__
I/O statement

PRINT
Displays data on the LCD screen.
__

Syntax:Syntax:Syntax:Syntax:
PRINT [data[CR/LFcontrol...]]

Parameter:Parameter:Parameter:Parameter:
data

A numeric or string expression.
CR/LFcontrol

A comma (,) or a semicolon (;).

Description:Description:Description:Description:
PRINT displays a number or a character string specified by data at the current cursor
position on the LCD screen (To position the cursor, use a LOCATE statement.) and then
repositions the cursor according to CR/LFcontrol.
�data

• data may be displayed according to the current display mode and character attributes.
You need to select the display mode with a SCREEN statement before execution of the
PRINT statement.

• If you omit data option, a blank line is outputted. That is, the cursor moves to the first
column of the next screen line.

• Positive numbers and zero automatically display with a leading space.

• Control codes (08h to 1Fh) appear as a space, except for BS (08h), CR (0Dh) and C
(18h) codes.

BS (08h) deletes a character immediately preceding the cursor so that the cursor
moves backwards by one column.

PRINT CHR$(8);
CR (0Dh) causes a carriage return so that the cursor moves to the first column of the
next screen line.

PRINT CHR$(&h0D);
C (18h) clears the LCD screen so that the cursor moves to its home position in the top
left corner, just like the CLS statement.

PRINT CHR$(&h18);

Chapter 14. Statement Reference

261

�CR/LFcontrol
CR/LFcontrol determines where the cursor is to be positioned after the PRINT
statement executes.

• If CR/LFcontrol is a comma (,), the cursor moves to the column position of a least
multiple of 8 plus one following the last character output.

Statement example: PRINT 123,
Output:

123 _

(is a space.)

• If CR/LFcontrol is a semicolon (;), the cursor moves to the column position

immediately following the last character output.
Statement example: PRINT 123;
Output:

123 _

• If neither a comma (,) nor semicolon (;) is specified to CR/LFcontrol, the cursor
moves to the first column on the next screen line.

Statement example: PRINT 123
Output:

123
_

In any of the above cases, the screen automatically scrolls up so that the cursor
always positions in view on the LCD screen.
To extend one program line to more than 512 characters in a single PRINT statement,
you should use an underline (_) preceding a CR code, not a comma (,) pre-ceding a
CR code.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error data contains a comma (,) or semicolon(;).

Reference:Reference:Reference:Reference:

Statements: LOCATE, PRINT USING, and SCREEN

]]]]]

]

262

__
File I/O statement

PRINT #
Outputs data to a communications device file.
__

Syntax:Syntax:Syntax:Syntax:
PRINT #filenumber[,data[CR/LFcontrol...]]

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
data

A numeric or string expression.
CR/LFcontrol

A comma (,) or a semicolon (;).

Description:Description:Description:Description:
PRINT # outputs a numeric value or a character string specified by data to a
communications device file specified by filenumber.
�filenumber

• filenumber is a communications device file number assigned when the file is opened.

�CR/LFcontrol

• If CR/LFcontrol is a comma (,), the PRINT # statement pads data with spaces so that
the number of data bytes becomes a least multiple of 8, before outputting the data.

Statement example: PRINT #1,"ABC","123"
Output: ABC_ _ _ _ _123 CR LF ("_" denotes a space.)

Chapter 14. Statement Reference

263

• If CR/LFcontrol is a semicolon (;), the PRINT # statement outputs data without adding
spaces or control codes.

Statement example: PRINT #1,"ABC";"123";
Output: ABC123

• If neither a comma (,) nor semicolon (;) is specified to CR/LFcontrol, the PRINT #
statement adds a CR and LF codes.

Statement example: PRINT #1,"ABC123"
Output: ABC123 CR LF

To extend one program line to more than 512 characters in a single PRINT # statement,
you should use an underline (_) preceding a CR code, not a comma (,) preceding CR
code.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • filenumber is missing.

• data contains a comma (,) or semicolon (;).

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a file other than communications
device files.)

3Ah File number out of the range

Reference:Reference:Reference:Reference:
Statements: OPEN

264

__
I/O statement

PRINT USING
Displays data on the LCD screen under formatting control.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Displaying numbers):

PRINT USING "numericformat";expression [CR/Lfcontrol
 [expression]...]

Syntax 2 (Displaying strings):
PRINT USING "stringformat";stringexpression [CR/Lfcontrol
[stringexpression]...]

Parameter:Parameter:Parameter:Parameter:
numericformat

#, a decimal point (.), and/or +.
stringformat

!, @, and/or &
CR/LFcontrol

A comma (,) or a semicolon (;).

Description:Description:Description:Description:
PRINT USING displays a number or a character string specified by expression or
stringexpression on the LCD according to a format specified by numericformat or
stringformat, respectively.

• To extend one program line to more than 512 characters in a single PRINT USING
statement, you should use an underline (_) preceding a CR code, not a comma (,)
preceding a CR code.

Chapter 14. Statement Reference

265

�numericformat
numericformat is a formatting string consisting of #, decimal point (.), and/or +,each of
which causes a special printing effect as described below.

Represents a digit position.
If the number specified by expression has fewer digits than the number of digit
positions specified by #, then it is padded with spaces and right-justified.

Statement example: PRINT USING "#####";123
Output:

123

(is a space.)
If the number specified by expression has more digits than the number of digit
positions specified by #, the extra digits before the decimal point are truncated and
those after the decimal point are rounded.

Statement example: PRINT USING "###.#";1234.56
Output:

234.6

. Specifies the position of the decimal point.
If the number specified by expression has fewer digits than the number of digit
positions specified by # after the decimal point, then the insufficient digits appear
as zeros.

Statement example: PRINT USING "####.###";123
Output:

123.000

+ Displays the sign of the number.
If + is at the beginning of the format string, the sign appears before the number
specified by expression; if + is at the end of the format string, the sign appears
after the number. If the number specified by expression is a positive number or
zero, it is preceded or followed by a space instead of a sign. (+)

Statement example: PRINT USING "+#####";-123
Output:

-123

]

]]

]
]]

266

�stringformat
stringformat is a formatting string consisting of !, @, and/or &&, each of which causes
a special printing effect as described below.

! Displays the first character of the stringexpression.
Statement example: PRINT USING "!";"ABC"
Output:

A

@ Displays the entire stringexpression.
Statement example: PRINT USING "@";"ABC"
Output:

ABC

&& Displays the first n+2 characters of the stringexpression, where n is the
number of spaces between the ampersands (&&).

If the format field specified by stringformat is longer than the
stringexpression, the string is left-justified and padded with space; if it is
shorter, the extra characters are truncated.
Statement example: PRINT USING "&&";"ABCDE"
Output:

ABCDE

Below are statement examples containing incorrect formatting strings.
Example: PRINT USING "Answer=###";a
Example: PRINT USING "####.# ######";a,b

�expression or stringexpression
If more than one number or string is specified, the PRINT USING statement displays each
of them according to numericformat or stringformat, respectively.

PRINT USING "###";a,b,c

Chapter 14. Statement Reference

267

�CR/LFcontrol
CR/LFcontrol determines where the cursor is to be positioned after the PRINT USING
statement executes. For details, refer to the CR/LFcontrol in the PRINT statement.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • numericformat is not correct.

• expression or stringexpression
contains a comma (,) or semicolon (;).

error 86: ’;’ missing No semicolon (;) follows "numericformat" or
"stringformat".

268

__
Declarative statement

PRIVATE
Declares one or more work variables or register variables defined in a file, to be private
(aslocal variables).
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

PRIVATE varname [,varname...]
Syntax 2:

PRIVATE DEFREG registerdefinition [,registerdefinition...]
Parameter:Parameter:Parameter:Parameter:

varname
numericvar [(subscript)]
stringvar [(subscript)[[stringlength]]]

registerdefinition
non-arraynumericvar [=numericconstant]
arraynumericvar(subscript) [=numericinitialvaluedefinition]
non-arraystringvar[[stringlength]][=stringconstant]
arraystringvar(subscript)[[stringlength]][=stringinitialvaluedef
inition]
numericinitialvaluedefinition

For one-dimensional:
{numericconstant[,numericconstant...]}
For two-dimensional:
{{numericconstant[,numericconstant...]},
{numericconstant[,numericconstant...]} ...}

stringinitialvaluedefinition
For one-dimensional:
{stringconstant[,stringconstant...]}
For two-dimensional:
{{stringconstant[,stringconstant...]},
{stringconstant[,stringconstant...]} ...}

Chapter 14. Statement Reference

269

subscript
For one-dimensional: integerconstant
For two-dimensional: integerconstant,integerconstant
Where integerconstant is a numeric expression which returns a value from
0 to 254.

stringlength
An integer constant from 1 to 255 which indicates the number of characters.

Description:Description:Description:Description:
PRIVATE defines variables declared by varname or registerdefinition as local
variables which can be referred to or updated in that file.

• Inside one PRIVATE statement, up to 30 variables can be declared to varname or
registerdefinition.

• You may declare non-array variables and array variables together to varname.

• For details about registerdefinition, refer to DEFREG statement.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 7: Variable name redefinition The array declared with PRIVATE had

been already declared with DEFREG.

error 71: Syntax error • stringlength is out of the range.

• stringlength is not an integer
constant.

error 72: Variable name
redefinition

• A same variable name is double
declared inside a same PRIVATE
statement.

• A same variable name is used for a
non-
array variable and array variable.

error 78: Array symbols exceed 30 for
one DIM, PRIVATE, or
GLOBAL statement

More than 30 variables are declared
inside one PRIVATE statement.

270

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

07h Insufficient memory space
(The variable area has run out.)

0Ah Duplicate definition
(An array is double declared.)

Reference:Reference:Reference:Reference:
Statements: DEFREG, DIM, and GLOBAL

Chapter 14. Statement Reference

271

__
File I/O statement

PUT
Writes a record from a field variable to a data file.
__

Syntax:Syntax:Syntax:Syntax:
PUT [#]filenumber[,recordnumber]

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
recordnumber

A numeric expression which returns a value from 1 to 32767.

Description:Description:Description:Description:
PUT writes a record from a field variable(s) declared by the FIELD statement to a data file
specified by filenumber.

• filenumber is the number of a data file opened by the OPEN statement.

• recordnumber is the record number where the data is to be placed in a data file.
It should be within the range from 1 to the maximum number of registrable records
(filelength) specified by the OPEN statement (when a new data file is created).

• If recordnumber option is omitted, the default record number is one more than the last
record written.

• Record numbers to be specified do not have to be continuous. If you specify record
number 10 when records 1 through 7 have been written, for example, then the PUT
statement automatically creates records 8 and 9 filled with spaces and then writes data
to record 10.

• If the actual data length of a field variable is longer than the field width specified by the
FIELD statement, then the excess is truncated from the right end column.

• Since data in a data file is treated as text data (ASCII strings), numeric data should be
converted into the proper string form with the STR$ function before being assigned to a
field variable.

• The PUT statement cannot write data to files opened as read-only by specifying drive B
in the OPEN statement.

272

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error filenumber is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(• filenumber is out of the range.)
(• recordnumber is out of the range.)

07h Insufficient memory space

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than data files.)

3Ah Filenumber out of the range

3Eh A PUT or GET statement executed without a FIELD statement.

41h File damaged

42h File write error (You attempted to write onto a read-only file.)

43h Not allowed to access data in drive B

Reference:Reference:Reference:Reference:
Statements: GET and OPEN

Chapter 14. Statement Reference

273

__
I/O statement

READ
Reads data defined by DATA statement(s) and assigns them to variables.
__

Syntax:Syntax:Syntax:Syntax:
READ variable[,variable...]

Parameter:Parameter:Parameter:Parameter:
variable

A numeric or string variable.

Description:Description:Description:Description:
READ reads as many data values as necessary in turn from data stored by DATA
statement and assigns them, one by one, to each variable in the READ statement.

• If the data type of a read value does not match that of the corresponding variable, the
following operations take place so that no run-time error occurs:

- Assigning a numeric data to a string variable:
The READ statement converts the numeric data into the string data type and then
assigns it to the string variable.
Statement example: DATA 123

READ a$
PRINT a$

Output:
123

- Assigning a string data to a numeric variable:
If the string data is valid as numeric data, the READ statement converts the string data
into the numeric data type and then assigns it to the numeric variable.
Statement example: DATA "123"

READ b
P PRINT b

Output:
123

274

If the string data is invalid as numeric data, the READ statement assigns the value 0 to
the numeric variable.
Statement example: DATA "ABC"

READ c
PRINT c

Output:
0

• The number of data values stored by the DATA statement must be equal to or greater
than that of variables specified by the READ statement. If not, a run-time error occurs.

• To specify the desired DATA statement location where the READ statement should start
reading data, you use the RESTORE statement.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
04h Out of DATA

(No DATA values remain to be read by the READ statement.)

Reference:Reference:Reference:Reference:
Statement example: DATA and RESTORE

Chapter 14. Statement Reference

275

__
Declarative statement

REM
Declares the rest of a program line to be remarks or comments.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

REM comment
Syntax 2:

’ comment

Description:Description:Description:Description:
REM causes the rest of a program line to be treated as a programmer’s remark or
comment for the sake of the program readability and future program maintenance.
The remark statements are non-executable.

• Difference in description between syntax 1 and syntax 2:
The keyword REM cannot begin in the first column of a program line. When fol-lowing
any other statement, REM should be separated from it with a colon (:).
An apostrophe ('), which may be replaced for keyword REM, can begin in the first
column. When following any other statement, an apostrophe (') requires no colon (:) as
a delimiter.

• You can branch to a REM statement labeled by the GOTO or GOSUB statement. The
control is transferred to the first executable statement following the REM statement.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 2: Improper label name

(redefinition, or
variable name/reserved
wordused)

REM begins in the first column of a program line.

Reference:Reference:Reference:Reference:
Statements: $INCLUDE

276

__
I/O statement

RESTORE
Specifies a DATA statement location where the READ statement should start reading data.
__

Syntax:Syntax:Syntax:Syntax:
RESTORE [label]

Description:Description:Description:Description:
RESTORE specifies a DATA statement location where the READ statement should start
reading data, according to label designating the DATA statement.

• You can specify DATA statements in included files.

• If label option is omitted, the default label is a DATA statement appearing first in the
user program.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 81: Must be DATA

statement label
label is not a DATA statement label.

Reference:Reference:Reference:Reference:
Statements: DATA and READ

Chapter 14. Statement Reference

277

__
Error control statement

RESUME
Causes program execution to resume at a specified location after control is transferred to an
error-handling routine.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

RESUME [0]
Syntax 2:

RESUME NEXT
Syntax 3:

RESUME label
Description:Description:Description:Description:

RESUME returns control from the error-handling routine to a specified location of the main
program to resume program execution.

• The RESUME statement has three forms as listed below. The form determines where
execution resumes.

RESUME or RESUME 0 Resumes program execution with the statement that

caused the error.

RESUME NEXT Resumes program execution with the statement
immediately following the one that caused the error.

RESUME label Resumes program execution with the statement
designated by label.

• The RESUME statement should be put inside the error-handling routine.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error label has not been defined.

278

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
14h RESUME without error

(RESUME statement occurs outside of an error-handling routine.)

Reference:Reference:Reference:Reference:
Statements: ON ERROR GOTO
Functions: ERL and ERR

Chapter 14. Statement Reference

279

__
Flow control statement

RETURN
Returns control from a subroutine or an event-handling routine (for keystroke interrupt).
__

Syntax:Syntax:Syntax:Syntax:
RETURN

Description:Description:Description:Description:
RETURN statement in a subroutine returns control to the statement immediately following
the GOSUB that called the subroutine.
RETURN statement in an event-handling routine for keystroke interrupt returns control to
the program location immediately following the one where the keystroke trap occurred.

• No label designating a return location should be specified in a RETURN statement.

• You may specify more than one RETURN statement in a subroutine or an event-
handling routine.

Reference:Reference:Reference:Reference:
Statements: GOSUB and ON KEY ..GOSUB

280

__
I/O statement

SCREEN
Sets the display mode (screen mode, and font size) and character attributes (character
enlargement and font reverse attributes).
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

SCREEN displaymode[,charaattribute]
Syntax 2:

SCREEN ,charaattribute
Parameter:Parameter:Parameter:Parameter:

displaymode and charaattribute
A numeric expression which returns a value from 0 to 3.

Description:Description:Description:Description:
displaymode in the SCREEN statement sets screen mode and font size as listed below.

Screen mode SCREEN displaymode

ANK mode SCREEN 0

Kanji mode SCREEN 1

charaattribute sets the character enlargement, and font reverse attributes as listed
below.

Character enlarge-

ment attribute Font reverse attribute SCREEN ,charaattri
bute

Regular Normal SCREEN ,0
 Reversed (Highlighted) SCREEN ,1

Double-width Normal SCREEN ,2

 Reversed (Highlighted) SCREEN ,3

Chapter 14. Statement Reference

281

• At the start of program execution, the following settings apply:

Screen mode ANK mode

Font size Standard-size

Character enlargement attribute Regular

Font reverse attribute Normal

• If displaymode or charaattribute parameter is omitted, the associated parameter
value will not change.

• In the two-byte Kanji mode, characters can be displayed in either the full-width (16 dots
wide by 16 dots high) or the half-width (8 dots wide by 16 dots high). If a small-size font
is selected, those character sizes will become 12 dots wide by 12 dots high or 6 dots
wide by 12 dots high, respectively.

• You may switch the font size by using the OUT statement (port &h6080). Refer to
Chapter 14, OUT and Appendix D, "I/O Ports."

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

05h Parameter out of the range

282

__
Flow control statement

SELECT…CASE…END SELECT
Conditionally executes one of statement blocks depending upon the value of an expression.
__

Syntax:Syntax:Syntax:Syntax:
SELECT conditionalexpression

CASE test1
[statementblock]

[CASE test2
[statementblock]]...

[CASE ELSE
[statementblock]]

END SELECT
Parameter:Parameter:Parameter:Parameter:

conditionalexpression, test1, and test2
A numeric or string expression.

Description:Description:Description:Description:
This statement executes one of statementblocks depending upon the value of
conditionalexpression according to the steps below.

(1) SELECT evaluates conditionalexpression and compares it with tests
sequentially to look for a match.

(2) When a match is found, the associated statementblock executes and then control
passes to the first statement following the END SELECT.

If no match is found, the statementblock following the CASE ELSE executes and
then control passes to the first statement following the END SELECT.
If you include no CASE ELSE, control passes to the first statement following the END
SELECT.

• If the SELECT statement block includes more than one CASE statement containing the
same value of test, only the first CASE statement executes and then control passes to
the first statement following the END SELECT.

• If a CASE followed by no executable statement is encountered, control passes to the first
statement following the END SELECT.

• conditionalexpression (numeric or string) and tests must agree in type.

Chapter 14. Statement Reference

283

• You can nest the SELECT…CASE…END SELECT statements to a maximum of 10 levels.
SELECT a

CASE 1
SELECT b

CASE 3
PRINT "a=1,b=3"

END SELECT
CASE 2

PRINT "a=2"
END SELECT

• When using the SELECT statement block together with block-structured statements
(DEF FN ..END DEF, FOR ..NEXT, FUNCTION ..END

FUNCTION,IF ..THEN ..ELSE ..END IF, SELECT ..CASE ..END SELECT,

SUB ..END SUB and WHILE ..WEND), you can nest them to a maximum of 30 levels.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 26 : Too deep nesting.

error 55: Incorrect use of
SELECT... CASE...END
SELECT

CASE, CASE ELSE, or END SELECT statement
appears outside of the SELECT statement
block.

error 56: Incomplete control
structure

No END SELECT corresponds to SELECT.

error 71: Syntax error conditionalexpression and tests do not
agree in type.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
0Ch CASE and END SELECT without SELECT

10h Expression too long or complex
(The program nesting by SELECT statement block is too deep.)

284

__
User-defined function statement

SUB…END SUB
Names and defines user-defined function SUB.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Defining a numeric function):

SUB subname [(dummyparameter[,dummyparameter]...)]
Syntax 2 (Exiting from the function block prematurely):

EXIT SUB
Syntax 3 (Ending the function block):

END SUB
Syntax 4 (Calling a function):

[CALL] subname[(realparameter[,realparameter]...)]
Parameter:Parameter:Parameter:Parameter:

subname
Real function name

dummyparameter
A non-array integer variable, a non-array real variable, or a non-array string variable.

realparameter
A numeric or string expression.

Chapter 14. Statement Reference

285

Description:Description:Description:Description:
�Creating a user-defined function
SUB...END SUB creates a user-defined function. The function definition block between
SUB and END SUB is a set of some statements and functions.

• You cannot make double definition to a same function name.

• This statement block should not be defined in the block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ...ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB,
and WHILE ..WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

• SUB...END SUB functions can be recursive.

• dummyparameter, which corresponds to the variable having the same name in the
function definition block, is a local variable valid only in that block. Therefore, if a
variable having the same name as dummyparameter is used outside SUB...END SUB
statement block or used as a dummyparameter of any other function in the same
program, then it will be independently treated.

• In user-defined functions, you can call other user-defined functions. You can nest
SUB...END SUB statements to a maximum of 10 levels.

• When using the SUB...END SUB together with block-structured statements (DEF
FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ...ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB,
and WHILE ..WEND), you can nest them to a maximum of 30 levels.

• If variables other than dummyparameter(s) are specified in the function definition block,
they will be treated as local variables whose current values are available only in that
function definition block, unless PRIVATE or GLOBAL statement is used.

• EXIT SUB exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

• Unlike other user-defined functions, SUB function cannot assign a return value.

�Calling a user-defined function
CALL statement and subname call a user-defined function. CALL can be omitted.

• The number of realparameters should be equal to that of dummyparameters, and
the types of the corresponding variables used in those parameters should be identical.

• If you specify a global variable in realparameter when calling a user-defined function,
the user-defined function cannot update the value of the global variable.

This is because all realparameters are passed not by address but by value.
(So called "Call-by-value")

286

Syntax errors:Syntax errors:Syntax errors:Syntax errors:
�When defining a user function
Error code and message Meaning
error 64: Function redefinition You made double definition to a same

function name.

error 71: Syntax error • The string length is out of the range.

• The string length is not an integer
constant.

error 92: Incorrect use of SUB,
EXIT SUB or END SUB

• The EXIT SUB statement is specified
outside the function definition block.

• The END SUB statement is specified
outside the function definition block.

error 93: Incomplete control
structure(SUB ..END
 SUB)

END SUB is missing.

error 94: Cannot use SUB in control
structure

The SUB...END SUB statement is defined in
other block-structured statements such as
FOR and IF statement blocks.

�When calling a user-defined function

Error code and message Meaning
error 68: Mismatch argument

type or number
• The number of the real parameters is not

equal to that of the dummy parameters.

• dummyparameter was an integer variable
in defining a function, but realparameter
is a real type in calling the function.
(If dummyparameter was a real variable in
defining a function and realparameter is
an integer type, then no error occurs.)

error 69: Function undefined Calling of a user-defined function precedes
the definition of the user-defined function.

Chapter 14. Statement Reference

287

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
07h Insufficient memory space

(You nested SUB statements to more than 10 levels.)
0Fh String length out of the range

(The returned value of the string length exceeds the allowable
range.)

Reference:Reference:Reference:Reference:
Statements: DECLARE

Example:Example:Example:Example:
File 1
DECLARE
A=1:B=2
PRINT "TEST"
add(A,B)

File 2
SUB add(X,Y)
PRINT X+Y
END SUB

TEST
3

288

__
I/O statement

WAIT
Pauses program execution until a designated input port presents a given bit pattern.
__

Syntax:Syntax:Syntax:Syntax:
WAIT portnumber,ANDbyte[,XORbyte]

Parameter:Parameter:Parameter:Parameter:
portnumber

A numeric expression.
ANDbyte and XORbyte

A numeric expression which returns a value from 0 to 255.

Description:Description:Description:Description:
WAIT suspends a user program while monitoring the input port designated by
portnumber until the port presents the bit pattern given by ANDbyte and
XORbyte.(Refer to Appendix D, "I/O Ports.")
ANDbyte is a bit pattern in which bits to be checked should be set to 1. XORbyte is a bit
pattern in which the same bit positions as ones set to 1 in ANDbyte should be set to the
values to be picked out.
The byte at the input port is first XORed with the XORbyte parameter. Next, the result is
ANDed with the value of ANDbyte parameter.
If the final result is zero (0), the WAIT statement rereads the input port and continues the
same process. If it is nonzero, control passes to the statement following the WAIT.

• If XORbyte option is omitted, the WAIT statement uses a value of zero (0).
WAIT 1,x ’=WAIT 1,x,0

• If an invalid port number or bit data is specified, then it will be assumed as zero (0) so
that the WAIT statement may fall into an infinite loop.

Chapter 14. Statement Reference

289

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 71: Syntax error • portnumber is missing.

• ANDbyte is missing.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

05h Parameter out of the range

Example:Example:Example:Example:
WAIT 0,&H03
The above statement suspends a user program until any data is inputted from the
keyboard or the bar code reader.

Reference:Reference:Reference:Reference:
Statements: OUT
Functions: INP

290

__
Flow control statement

WHILE…WEND
Continues to execute a statement block as long as the conditional expression is true.
__

Syntax:Syntax:Syntax:Syntax:
WHILE conditionalexpression

[statementblock]
WEND

Description:Description:Description:Description:
A WHILE ..WEND continues to execute statementblock as long as the
conditionalexpression is true (not zero) according to the steps below.

(1) The conditionalexpression in the WHILE statement is evaluated.

(2) If the condition is false (zero), the statementblock is bypassed and control passes to
the first statement following the WEND.

If the condition is true (not zero), the statementblock is executed. When WEND
statement is encountered, control returns to the WHILE statement. (Go back to step (1)
to be repeated.)

• The WHILE and WEND cannot be written on a same program line.

• If no WEND is written corresponding to the WHILE, a syntax error occurs.

• The BHT-BASIC does not support a DO..LOOP statement block.

• You can nest the WHILE ..END statements to a maximum of 10 levels.

• When using the WHILE ..WEND statement together with block-structured statements
(DEF FN ..END DEF, FOR ..NEXT, FUNCTION ..END FUNCTION,

IF ..THEN ..ELSE ..END IF, SELECT ..CASE ..END SELECT, SUB ..END SUB,
and WHILE ..WEND), you can nest them to a maximum of 30 levels.

WHILE a
WHILE b

WHILE c
 •
 •
 •

WEND
WEND

WEND

Chapter 14. Statement Reference

291

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 26 : Too deep nesting.

error 57: Incorrect use of
WHILE ..WEND

WEND appears outside of the WHILE statement
block.

error 58: Incomplete control
structure

No WEND corresponds to WHILE.

Reference:Reference:Reference:Reference:
Statements: FOR..NEXT

292

__
I/O statement

XFILE
Transmits a designated file according to the specified communications protocol.
__

Syntax:Syntax:Syntax:Syntax:
XFILE "[drivename:]filename"[,"protocolspec"]

Parameter:Parameter:Parameter:Parameter:
"[drivename:]filename" and "protocolspec"

String expressions.

DesDesDesDescription:cription:cription:cription:
XFILE transmits a data file designated by "[drivename:]filename" between the BHT
and host computer or between BHTs according to the communi-cations protocol specified
by "protocolspec." (For the BHT-protocol and BHT-Ir protocol, refer to the BHT User’s
Manual.)
�"[drivename:]filename"
filename is a data file name. For the format of data file names, refer to the OPEN
statement.

• [drivename:] is used in conventional BHT series. In the BHT-8000 series, it is merely
for the compatibility with their specifications. The drivename may be A: or B:, but it will
be ignored.
�"protocolspec"
"protocolspec" parameter can specify the following protocol specifications:

Specifications BHT-protocol BHT-Ir protocol

Transmission direction ✓ ✓
Serial number ✓
Horizontal parity checking
(BCC) ✓

Transmission monitoring ✓ ✓
Handling of trailing space
codes in a data field during
file transmission

✓ ✓

Timeout length when a link
will be established ✓ ✓

Checking whether filenames
are identical ✓ ✓

Chapter 14. Statement Reference

293

- Transmission direction

Parameter omitted (default) Transmits a file from the BHT.

R or r Receives a file from the host computer or any other
BHT.

Example: XFILE "d2.dat","R"
"filename" cannot be omitted even in file reception.

- Serial number

Parameter omitted (default) No serial number setting.
S or s Adds a serial number to every transmission block.

Example: XFILE "d2.dat","S"
A serial number immediately follows a text control character heading each
transmission block. It is a 5-digit decimal number. When it is less than five digits, the
upper digits having no value are filled with zeros.

- Horizontal parity checking (BCC)

Parameter omitted (default) No horizontal parity checking.
P or p Suffixes a BCC to every transmission block.

Example: XFILE "d2.dat","P"
A block check character (BCC) immediately follows a terminator of each transmission
block. The horizontal parity checking checks all bits except for headers(SOH and
STX).

- Transmission monitoring

Parameter omitted (default) No serial number indication.

M or m Displays a serial number of the transmission block
during file transmission.

Example: XFILE "d2.dat","M"
A serial number will appear in the 5-digit decimal format at the current cursor position
before execution of the XFILE statement.

- Handling of trailing space codes in a data field during file transmission

Parameter omitted (default) Trims space codes.
T or t Handles space codes as data.

Example: XFILE "d2.dat","T"
Each of space codes placed in the tail of a data field will be handled as 20h in file
reception.

294

- Timeout length when a link will be established
Specify the timeout length by 1 to 9.

Uploading Set value Downloading BHT-protocol BHT-Ir protocol
1 30 sec. Retries of ENQ, 10 times Retries of ENQ, 60 times
2 60 sec. Retries of ENQ, 20 times Retries of ENQ, 120 times
3 90 sec. Retries of ENQ, 30 times Retries of ENQ, 180 times
4 120 sec. Retries of ENQ, 40 times Retries of ENQ, 240 times
5 150 sec. Retries of ENQ, 50 times Retries of ENQ, 300 times
6 180 sec. Retries of ENQ, 60 times Retries of ENQ, 360 times
7 210 sec. Retries of ENQ, 70 times Retries of ENQ, 420 times
8 240 sec. Retries of ENQ, 80 times Retries of ENQ, 480 times
9 No timeout No timeout No timeout

Example: XFILE "d2.dat","2"
In file reception, the timeout length is 60 seconds; in file transmission, the maximum
number of ENQ retries is 20 (when the BHT-protocol is used.)

- Checking whether filenames are identical
This option can apply only to file reception (that is, when the transmission direction is
specified with R or r).
Parameter omitted
(default)

Receives only a data file having the same name
as specified by filename. The "filename"
should be the same as that used in the sending
station.

N or n No checking whether filenames are identical. The
BHT may receive a data file with a different name
(given in the sending station) from that specified
by filename.
That is, the received file is renamed as specified
by filename. If filename is omitted (only "" is
specified), the BHT receives a data file with the
name as is in the sending station.

Example: If a file is named "TEST.DAT" in the sending station
Sample 1. XFILE "TEST2.DAT","RN" ’Receives TEST.DAT as

’TEST2.DAT.

Sample 2. XFILE "","RN" ’Receives the file with the
’same name as used in the
’sending station.

Chapter 14. Statement Reference

295

• A communications device file should be opened before execution of the XFILE
statement. (For the file opening, refer to the OPEN "COM:" statement.)

• The XFILE statement uses the interface specified by the OPEN "COM:" statement.

• A data file to be transmitted should be closed beforehand.

• To transfer a file by using the BHT-Ir protocol , set the BHT's ID to any of 1 to FFFFh.
Specifying zero (0) to the ID will result in a run-time error.

• Undefined letters, if specified in protocolspec, will be ignored. The specifications
below, therefore, produce the same operation. The last one of the timeout values goes
active.

"RSPMT1"
"R,S,P,M,T,1"
"r,s,p,m,t,1"
"ABCDEFGHIJKLMNOPQRSTUVXYZ1"

"2"
"3462"
"22"

• If you transmit a data file having the same name as that already used in the receiving
station:

- the newly transmitted file replaces the old one when the field structure is matched.
- a run-time error occurs when the field structure is not matched.
To receive a data file having the same name at the BHT but having a different
structure, therefore, it is necessary to delete that old file.

• Pressing the Clear key during file transmission aborts the execution of the XFILE
statement by issuing an EOT code and displays a run-time error.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Error code and message Meaning
error 3: ’"’ missing No double quote precedes or follows

[drivename:]filename.
error 71: Syntax error [drivename:]filename is not enclosed in

double quotes.

296

RunRunRunRun----time errors:time errors:time errors:time errors:
Error code Meaning
02h Syntax error

([drivename:]filename is not correct.)
07h Insufficient memory space

(During file reception, the memory runs out.)
32h File type mismatch

(The received file is not a data file.)
33h Received text format not correct
34h Bad file name or number

(You specified filename of an unopened file.)
35h File not found
37h File already open
38h The file name is different from that in the receive header.
3Bh The number of the records is greater than the defined maximum value.

3Eh FIELD statement not executed yet
40h ID not set
46h Communications error

(A communications protocol error has occurred.)
47h Abnormal end of communications or termination of communications by

the Clear key(The Clear key has aborted the file transmission.)
48h Device timeout

49h Received program file not correct

Example:Example:Example:Example:
The sample below transmits a data file by adding a serial number and horizontal parity
checking, and then displays the serial number at the 1st line of the screen.

CLOSE
OPEN "d0.dat"AS #1
FIELD #1,10 AS A$,20 AS B$
L%=LOF(1)
CLOSE
LOCATE 1,1
PRINT "00000/";RIGHT$("00000"+MID$(STR$(L%),2),5)
LOCATE 1,1
OPEN "COM:19200,N,8,1"AS #8
XFILE "d0.dat","SPM"
CLOSE #8
Before file transmission After file transmission
00000/00100

→ 00100/00100

Reference:Reference:Reference:Reference:
Statements: OPEN and OPEN "COM:"

Chapter 14. Statement Reference

297

__
File I/O statement

$INCLUDE
Specifies an included file.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1:

REM $INCLUDE:’filename’
Syntax 2:

’$INCLUDE:’filename’
Description:Description:Description:Description:

$INCLUDE reads a source program specified by ’filename’ into the program line
immediately following the $INCLUDE line in compilation.
Storing definitions of variables, subroutines, user-defined functions, and other data to be
shared by source programs into the included files will promote application of valuable
program resources.
If this statement is placed at the beginning of source programs, then same user-defined
functions or subroutines may be shared by those source programs.

• filename is a file to be included.

• If the specified filename does not exist in compiling a source program, a fatal error
occurs and the compilation terminates.

• No characters including space should be put between $ and INCLUDE and between
single quotes (') and filename.

• As shown below, if any character except for space or tab codes is placed between REM
and $INCLUDE in syntax 1 or between a single quote (') and $INCLUDE in syntax 2, the
program line will be regarded as a comment line so that the $INCLUDE statement will
not execute.

REM xxx $INCLUDE ：’mdlprg1.SRC ’

• Before specifying included files, it is necessary to debug them carefully.

• $INCLUDE statements cannot be nested.

• The program lines in included files will not be outputted to the compile list.
If a compilation error occurs in an included file, the error message shows the line
number where the $INCLUDE statement is described.
Symbols defined in included files will not be outputted to the symbol list.

• If a program line in an included file refers to a variable, user-defined function, or others
defined outside the included file, then the program line number where the $INCLUDE
statement is described will be outputted to the cross reference list, as the referred-to
line.

298

Fatal Error:Fatal Error:Fatal Error:Fatal Error:

Error code and message Meaning
fatal error 30: Cannot find include

file "XXX"
No included file is found.

fatal error 31: Cannot nest include
file

Included files are nested.

Chapter 14. Statement Reference

299

Additional Explanation for Statements

�Effective range of labels
Labels are effective only in a file.
�Definition of common variables (by COMMON statement)
In an object to be executed first (that is, in a main object), you should define all common
variables to be accessed. In any other objects, declare common variables required only in
each object. If a first executed object is linked with an object where an undefined common
variable(s) is newly defined, then an error will result.
�Definition and initialization of register variables (by DEFREG statement)
As for work variables, you should declare required register variables in each object. You
may specify an initial value to a register variable in each object; however, giving different
initial values to a same register variable in more than one object will result in an error in
linking process.

300

Chapter 15
Function Reference

CONTENTSCONTENTSCONTENTSCONTENTS

ABS ..301
ASC ..302
BCC$..303
CHKDGT$..305
CHR$..309
COUNTRY$..311
CSRLIN ..313
DATE$..314
EOF ..316
ERL ..317
ERR..318
ETX$..319
FRE ..320
HEX$..321
INKEY$...322
INP ...323
INPUT$...324
INSTR...326

INT ...328
LEFT$..329
LEN..330
LOC..331
LOF ..333
MARK$...334
MID$..335
POS ...337
RIGHT$..338
SEARCH ..339
SOH$...341
STR$..342
STX$..343
TIME$..344
TIMEA/TIMEB/TIMEC346
VAL ..347

Chapter 15. Function Reference

301

__
ABSolute Numeric function

ABS
Returns the absolute value of a numeric expression.
__

Syntax:Syntax:Syntax:Syntax:
ABS(numericexpression)

Description:Description:Description:Description:
ABS returns the absolute value of numericexpression. The absolute value is the
magnitude of numericexpression without regard to sign. For example, both ABS
(-12.34) and ABS (12.34) are equal to 12.34.

• If you give a real number, this function returns a real number; if an integer number, this
function returns an integer number.

302

__
ASCii code String function

ASC
Returns the ASCII code value of a given character.
__

Syntax:Syntax:Syntax:Syntax:
ASC(stringexpression)

Description:Description:Description:Description:
ASC returns the ASCII code value of the first character of stringexpression, which is
an integer from 0 to 255. (For the ASCII character codes, refer to Appendix C, "Character
Sets.")

• If stringexpression is a null string, this function returns the value 0.

• If given a two-byte Kanji character, this function cannot return the two-byte Kanji code.

Reference:Reference:Reference:Reference:
Functions: CHR$

Chapter 15. Function Reference

303

__
Block Check Character String function

BCC$
Returns a block check character (BCC) of a data block.
__

Syntax:Syntax:Syntax:Syntax:
BCC$(datablock,checktype)

Parameter:Parameter:Parameter:Parameter:
datablock

A string expression.
checktype

A numeric expression which returns a value from 0 to 2.

Description:Description:Description:Description:
BCC$ calculates a block check character (BCC) of datablock according to the block
checking method specified by checktype, and returns the BCC.

• checktype is 0, 1, or 2 which specifies SUM, XOR, or CRC-16, respectively, as
described below.

checktype Block checking
method

No. of
charas for

BCC
BCC Generative

polynomial
0 SUM 1 Lowest one byte of the

sum of all character
codes contained in a
datablock.

1 XOR 1 One byte gained by
XORing all character
codes contained in a
datablock.

2 CRC-16 2 * Two bytes gained from
the cyclic redundancy
check operation
applied to bit series of
all
characters in
datablock with the bit
order in each byte
inverted.

X 16 +X 15 +X 2 +1

* The upper byte and the lower byte of the operation result will be set to the 1st and 2nd
characters, respectively.

• A common use for BCC$ is to perform block checking or to generate a BCC for a data
block.

304

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(checktype is out of the range.)

Chapter 15. Function Reference

305

__
CHecK DiGiT String function

CHKDGT$
Returns a check digit of bar code data.
__

Syntax:Syntax:Syntax:Syntax:
CHKDGT$(barcodedata,CDtype)

Parameter:Parameter:Parameter:Parameter:
barcodedata and CDtype

String expressions.

Description:Description:Description:Description:
CHKDGT$ calculates a check digit (CD) of barcodedata according to the calculation
method specified by CDtype, and then returns it as one-character string.

• CDtype is A, H, I, M or N, which specifies the bar code type and the corresponding
calculation method as listed below.

CDtype Bar Code Type Calculation Method
A EAN, UPC MOD-10 (Modulo arithmetic-10)
H STF (Standard 2 of 5) MOD-10 (Modulo arithmetic-10)
I ITF (Interleaved 2 of 5) MOD-10 (Modulo arithmetic-10)
M Code 39 MOD-43 (Modulo arithmetic-43)
N Codabar (NW-7) MOD-16 (Modulo arithmetic-16)

CDtype may be in lowercase.

• If barcodedata contains a character(s) out of the specification of the bar code type
specified by CDtype, then CHKDGT$ returns a null string. However, if only the CD
position character in barcodedata is out of the specification, CHKDGT$ calculates the
correct CD and returns it as one-character string.

Sample coding 1: CD.Data$=CHKDGT$("494AB4458","A")
"A" and "B" are out of the specification of EAN or UPC, so
CD.Data$ will become a null string.

Sample coding 2: CD.Data$=CHKDGT$("4940045X","A")
"X" is a CD position character, so CHKDGT$ calculates the correct
CD and CD.Data$ will become "8."

Sample coding 3: CD.Data$=CHKDGT$("a0ef3-a","N")
"e" and "f" are out of the specification of Codabar (NW-7), so
CD.Data$ will become a null string.

306

Sample coding 1: CD.Data$=CHKDGT$("a123Qa","N")

"Q" is a CD position character, so CHKDGT$ calculates the correct
CD and CD.Data$ will become "-."

�When CDtype is A (EAN or UPC), CHKDGT$ identifies the EAN or UPC of
barcodedata depending upon the data length (number of digits) as listed below.

Data length of barcodedata Universal Product Codes

13 digits EAN-13 or UPC-A

8 digits EAN-8

7 digits UPC-E
If the data length is a value other than 13, 8, and 7, this function returns a null string.
- To check that the CD is correct:
Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the returned
value is equal to the CD, the CD data is suitable for the barcodedata.
Sample coding: IF CHKDGT$("49400458","A")="8"

THEN ...
- To add a CD to barcode data:
Pass barcodedata followed by a dummy character to a CHKDGT$ as shown below.
The returned value will become the CD to be replaced with the dummy character.
Sample coding: PRINT"4940045"+CHKDGT$("4940045"+"0","A")

49400458

�When CDtype is H (STF)*, the length of barcodedata must be two or more digits.
If not, CHKDGT$ returns a null string.

- To check that the CD is correct:
Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the returned
value is equal to the CD, the CD data is suitable for the barcodedata.
Sample coding: IF CHKDGT$("12345678905","H")="5"

THEN ...

- To add a CD to barcode data:
Pass barcodedata followed by a dummy character to a CHKDGT$ as shown below.
The returned value will become the CD to be replaced with the dummy character.
Sample coding:

PRINT"1234567890"+CHKDGT$("1234567890"+"0"."H")

12345678905

Chapter 15. Function Reference

307

�When CDtype is I (ITF), the length of barcodedata must be an even number of two
or more digits. If not, CHKDGT$ returns a null string.
- To check that the CD is correct:
Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the returned
value is equal to the CD, the CD data is suitable for the barcodedata.
Sample coding: IF CHKDGT$("123457","I")="7"

THEN ...
- To add a CD to barcode data:
Pass barcodedata followed by a dummy character to a CHKDGT$ as shown below.
The returned value will become the CD to be replaced with the dummy character.
Sample coding: PRINT "12345"+CHKDGT$("12345"+"0","I")

123457

�When CDtype is M (Code 39), the length of barcodedata must be two or more
digits except for start and stop characters. If not, CHKDGT$ returns a null string.
- To check that the CD is correct:
Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the returned
value is equal to the CD, the CD data is suitable for the barcodedata.
Sample coding: IF CHKDGT$("CODE39W","M")="W"

THEN ...

- To add a CD to barcode data:
Pass barcodedata followed by a dummy character to a CHKDGT$ as shown below.
The returned value will become the CD to be replaced with the dummy character.
Sample coding: PRINT "CODE39"+CHKDGT$("CODE39"+"0","M")

CODE39W

308

�When CDtype is N (Codabar), the length of barcodedata must be three digits or
more including start and stop characters. If not, CHKDGT$ returns a null string.
- To check that the CD is correct:
Pass a CD-suffixed barcodedata to a CHKDGT$ as shown below. If the returned
value is equal to the CD, the CD data is suitable for the barcodedata.
Sample coding: IF CHKDGT$("a0123-a","N")="-"

THEN ...
- To add a CD to barcode data:
Pass barcodedata followed by a dummy character and enclosed with start and stop
characters, to a CHKDGT$ as shown below. The returned value will become the CD to
be replaced with the dummy character.
Sample coding: ld%=LEN("a0123a")

PRINT LEFT$("a0123a",ld%-1)+CHKDGT$
("a01230a","N")+RIGHT$("a0123a",1)

a0123-a

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(CDtype is out of the range.)

Reference:Reference:Reference:Reference:
Statements: OPEN "BAR:"

Chapter 15. Function Reference

309

__
CHaRacter code String function

CHR$
Returns the character corresponding to a given ASCII code.
__

Syntax:Syntax:Syntax:Syntax:
CHR$(characode)

Parameter:Parameter:Parameter:Parameter:
characode

A numeric expression which returns a value from 0 to 255.

Description:Description:Description:Description:
CHR$ converts a numerical ASCII code specified by characode into the equivalent
single-byte character. This function is used to send control codes (e.g., ENQ and ACK) to
a communications device file or to display a double quotation mark or other characters
having special meanings in the BHT-BASIC.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(characode is out of the range.)

Example:Example:Example:Example:
• To output an ACK code to a communications device file, use CHR$(&H06). The ASCII

value for the ACK code is &H06.
PRINT #1,CHR$(&H06);

• To display control codes from 8 (08h) to 31 (1Fh), refer to the program examples shown
in the PRINT statement.

• To display double quotation marks around a string, use CHR$(34) as shown below.
The ASCII value for a double quotation mark is 34 (22h).

PRINT CHR$(34);"Barcode";CHR$(&H22)

"Barcode"

310

• To display a Kanji code, use a shift JIS code as shown below. The shift JIS code for 漢

is 8ABFh.
SCREEN 1
PRINT CHR$(&h8A);CHR$(&hBF)

漢

Reference:Reference:Reference:Reference:
Statements: PRINT
Functions: ASC

Chapter 15. Function Reference

311

__
COUNTRY I/O function

COUNTRY$
Sets a national character set or returns a current country code.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Setting a national character set):

COUNTRY$="countrycode"
Syntax 2 (Returning a country code):

COUNTRY$

Parameter:Parameter:Parameter:Parameter:
countrycode

A string expression which returns any of A, D, E, F, G, I, J, N, S, and W.

Description:Description:Description:Description:
�Syntax 1
COUNTRY$ sets a national character set specified by "countrycode". The national
character set is assigned to codes from 32 (20h) to 127 (7Fh). (Refer to Appendix C2,
"National Character Sets.")

• "countrycode" specifies one of the following national character sets:

countrycode National character set
A America (default)
D Denmark
E England
F France
G Germany
I Italy
J Japan (default)
N Norway
S Spain
W Sweden

• If "countrycode" is omitted, the default national character set is America (code A) or
Japan (code J) when you have selected the English or Japanese message version on
the SET DISPLAY menu in System Mode, respectively.

312

• After setting a national character set, you may display national characters assigned to
32 (20h) to 127 (7Fh), on the LCD.

• "countrycode" set by this function remains effective in the programs chained by
CHAIN statements.

• If "countrycode" has more than one character, only the first one takes effect.

• If "countrycode" is an invalid letter other than those listed above, the function is
ignored.

• "countrycode" may be in lowercase.
COUNTRY$="j"

�Syntax 2
COUNTRY$ returns a current country code as an uppercase alphabetic letter.

Chapter 15. Function Reference

313

__
CurSoR LINe I/O function

CSRLIN
Returns the current row number of the cursor.
__

Syntax:Syntax:Syntax:Syntax:
CSRLIN

Description:Description:Description:Description:
CSRLIN returns the current row number of the cursor as an integer in the current display
mode specified by a SCREEN statement.

Screen mode Font size Row number

Single-byte ANK mode Standard-size
Small-size

1 to 8
1 to 10

Two-byte Kanji mode Standard-size
Small-size

1 to 7
1 to 9

• Even if the cursor is invisible (by a LOCATE statement), the CSRLIN function operates.

• For the current column number of the cursor, refer to the POS function.

Reference:Reference:Reference:Reference:
Statements: LOCATE and SCREEN
Functions: POS

314

__
DATE I/O function

DATE$
Returns the current system date or sets a specified system date.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Retrieving the current system date):

DATE$
Syntax 2 (Setting the current system date):

DATE$="date"
Parameter:Parameter:Parameter:Parameter:

date
A string expression.

Description:Description:Description:Description:
�Syntax 1
DATE$ returns the current system date as an 8-byte string. The string has the format
below.

yy/mm/dd
where yy is the lower two digits of the year from 00 to 99, mm is the month from 01 to 12,
and dd is the day from 01 to 31.
00 to 99 of yy is equal to 2000 to 2099.
�Syntax 2
DATE$ sets the system date specified by "date". The format of "date" is the same as that
in syntax 1.

Example: date$="00/10/12"

• The year yy must be the lower two digits of the year: otherwise, the system does not
compensate for leap years automatically.
00 to 99 of yy is equal to 2000 to 2099.

• The calendar clock is backed up by the battery. (For the system time, refer to the
TIME$ function.)

Chapter 15. Function Reference

315

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(date is out of the range.)

Reference:Reference:Reference:Reference:
Functions: TIME$

316

__
End Of File File I/O function

EOF
Tests whether the end of a device I/O file has been reached.
__

Syntax:Syntax:Syntax:Syntax:
EOF([#]filenumber)

ParParParParameter:ameter:ameter:ameter:
filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:
EOF tests for an end of a device I/O file designated by filenumber. Then it returns -1
(true) if no data remains; it returns 0 (false) if any data remains, as listed below.

File Type Returned

Value End-of-file Condition

Communications device file -1 (true) No data remains in the receive buffer.

 0 (false) Any data remains in the receive buffer.

Barcode device file -1 (true) No data remains in the barcode buffer
 0 (false) Any data remains in the barcode buffer.

• filenumber should be the file number of an opened device file.

• The EOF function cannot be used for data files. Specifying a data file number for
filenumber causes a run-time error.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a data file.)
3Ah File number out of the range

Reference:Reference:Reference:Reference:
Statements: INPUT#, LINE INPUT#, OPEN "BAR:", and OPEN "COM:"
Functions: INPUT$, LOC, and LOF

Chapter 15. Function Reference

317

__
ERror Line Error-handling function

ERL
Returns the current statement location of the program where a run-time error occurred.
__

Syntax:Syntax:Syntax:Syntax:
ERL

Description:Description:Description:Description:
ERL returns the current statement location of the program where a run-time error occurred
most recently.

• The ERL function works only with line numbers and not with labels.

• The returned value is in decimals, so it may be necessary to use the HEX$ function for
decimal-to-hexadecimal conversion when using the ERL function in error-handling
routines.

• If converted from decimals to hexadecimals with the HEX$ function, addresses which the
ERL returns correspond to ones that are outputted to the left end of the address-source
list in hexadecimal (which may be printed out if a +L option is specified in compilation).

• Since the ERL function returns a significant value only when a run-time error occurs, you
should use this function in error-handling routines where you can check the error type
for effective error recovery.

Reference:Reference:Reference:Reference:
Statements: ON ERROR GOTO and RESUME
Functions: ERR and HEX$

318

__
ERRor code Error-handling function

ERR
Returns the error code of the most recent run-time error.
__

Syntax:Syntax:Syntax:Syntax:
ERR

Description:Description:Description:Description:
ERR returns the code of a run-time error that invoked the error-handling routine.

• The returned value is in decimals, so it may be necessary to use the HEX$ function for
decimal-to-hexadecimal conversion when using the ERR function in error-handling
routines.

• If converted from decimals to hexadecimals with the HEX$ function, codes which the
ERR returns correspond to ones that are listed in Appendix A1, "Run-time Errors."

• Since the ERR function returns a significant value only when a run-time error occurs, you
should use this function in error-handling routines where you can check the error type
for effective error recovery.

Reference:Reference:Reference:Reference:
Statements: ON ERROR GOTO and RESUME
Functions: ERL and HEX$

Chapter 15. Function Reference

319

__
End of TeXt I/O function

ETX$
Modifies the value of a terminator (ETX) for the BHT-protocol; also returns the
current value of a terminator.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Changing the value of a terminator):

ETX$=stringexpression
Syntax 2 (Returning the current value of a terminator):

ETX$
Parameter:Parameter:Parameter:Parameter:

stringexpression
A string expression which returns a single-byte character.

DescrDescrDescrDescription:iption:iption:iption:
�Syntax 1
ETX$ modifies the value of a terminator (one of the text control characters) which
indicates the end of a data text in the BHT-protocol when the data file is transmitted by an
XFILE statement. (For the BHT-protocol, refer to the BHT User’s Manual.)

• ETX$ is called a protocol function.

• The initial value of a terminator (ETX) is 03h.
�Syntax 2
ETX$ returns the current value of a terminator.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(stringexpression is a null string.)
0Fh String length out of the range

(stringexpression is more than a single byte.)

Reference:Reference:Reference:Reference:
Statements: OPEN "COM:" and XFILE
Functions: SOH$ and STX$

320

__
FREe area Memory management function

FRE
Returns the number of bytes available in a specified area of the memory.
__

Syntax:Syntax:Syntax:Syntax:
FRE(areaspec)

Parameter:Parameter:Parameter:Parameter:
areaspec

A numeric expression which returns a value from 0 to 3.

Description:Description:Description:Description:
FRE returns the number of bytes left unused in a memory area specified by areaspec
listed below.

areaspec Memory area

0 Array work variable area

1 File area

2 Operation stack area for the Interpreter

• The file area will be allocated to data files and program files in cluster units. The FRE
function returns the total number of bytes of non-allocated clusters. (For details about a
cluster, refer to Appendix F, "Memory Area.")

• The operation stack area for the Interpreter is mainly used for numeric operations, string
operations, and for calling user-defined functions.

• A returned value of this function is a decimal number.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(areaspec is out of the range.)

Chapter 15. Function Reference

321

__
HEXadecimal String function

HEX$
Converts a decimal number into the equivalent hexadecimal string.
__

Syntax:Syntax:Syntax:Syntax:
HEX$(numericexpression)

Parameter:Parameter:Parameter:Parameter:
numericexpression

A numeric expression which returns a value from -32768 to 32767.

Description:Description:Description:Description:
HEX$ function converts a decimal number from -32768 to 32767 into the equivalent
hexadecimal string which is expressed with 0 to 9 and A to F.
Listed below are conversion examples.

numericexpression Returned value

-32768 8000
-1 FFFF
0 0
1 1

32767 7FFF

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
06h The operation result is out of the allowable range.

322

__
INput KEYboard I/O function

INKEY$
Returns a character read from the keyboard.
__

Syntax:Syntax:Syntax:Syntax:
INKEY$

Description:Description:Description:Description:
INKEY$ reads from the keyboard to see whether a key has been pressed, and returns
one character read. If no key has been pressed, INKEY$ returns a null string. (For the
character codes, refer to Appendix C. For the key number assignment, refer to Appendix
E.)

• INKEY$ does not echo back a read character on the LCD screen.

• A common use for INKEY$ is to monitor a keystroke while the BHT is ready for bar code
reading or other events.

• If any key previously specified for keystroke trapping is pressed, INKEY$ cannot return
the typed data since the INKEY$ has lower priority than keystroke trapping.

• To display the cursor, you use the LOCATE and CURSOR statements as shown below.
LOCATE ,,1:CURSOR ON
k$=INKEY$
IF k$=""THEN ...

Reference:Reference:Reference:Reference:
Statements: CURSOR, KEY OFF, KEY ON, and LOCATE
Functions: ASC and INPUT$

Chapter 15. Function Reference

323

__
INPort data I/O function

INP
Returns a byte read from a specified input port.
__

Syntax:Syntax:Syntax:Syntax:
INP(portnumber)

Parameter:Parameter:Parameter:Parameter:
portnumber

A numeric expression which returns a value from 0 to 32767.

Description:Description:Description:Description:
INP reads one-byte data from an input port specified by portnumber and returns the
value. (For the input port numbers, refer to Appendix D, "I/O Ports.")

• If you specify an invalid value to portnumber, INP returns an indeterminate value.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(portnumber is out of the range.)

Reference:Reference:Reference:Reference:
Statements: OUT and WAIT

324

__
INPUT File I/O function

INPUT$
Returns a specified number of characters read from the keyboard or from a device file.
__

SyntSyntSyntSyntax:ax:ax:ax:
Syntax 1 (Reading from the keyboard):

INPUT$(numcharas)
Syntax 2 (Reading from a device file):

INPUT$(numcharas,[#]filenumber)
Parameter:Parameter:Parameter:Parameter:

numcharas
A numeric expression which returns a value from 1 to 255.

filenumber
A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:
INPUT$ reads the number of characters specified by numcharas from the keyboard or
from a device file specified by filenumber, then returns the resulting string.
�Syntax 1 (without specification of filenumber)
INPUT$ reads a string or control codes from the keyboard.

• INPUT$ does not echo back read characters on the LCD screen.

• The cursor shape (invisible, underlined, or full block) depends upon the specification
selected by the LOCATE statement.

• The cursor size depends upon the screen mode (single-byte ANK mode or two-byte
Kanji mode), the screen font size (standard-size or small-size), and the character
enlargement attribute (regular-size or double-width). For details about the cursor, refer
to Chapter 7, Subsection 7.1.3.

• If any key previously specified for keystroke trapping is pressed during execution of the
INPUT$, then the keyboard input will be ignored; that is, neither typed data is read by
INPUT$ nor keystroke is trapped.
�Syntax 2 (with specification of filenumber)
INPUT$ reads from a device file (the bar code device file or any of the communications
device files).

• The number of characters in a device file can be indicated by using a LOC function.

Chapter 15. Function Reference

325

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(numcharas is out of the range.)
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a data file.)
3Ah File number out the range

Reference:Reference:Reference:Reference:
Statements: CURSOR, INPUT, LINE INPUT, LOCATE,OPEN "BAR:", and OPEN

"COM:"
Functions: EOF, INKEY$, LOC, and LOF

326

__
IN STRing String function

INSTR
Searches a specified target string for a specified search string, and then returns the position
where the search string is found.
__

Syntax:Syntax:Syntax:Syntax:
INSTR([startposition,]targetstring,searchstring)

Parameter:Parameter:Parameter:Parameter:
startposition

A numeric expression which returns a value from 1 to 32767.
targetstring and searchstring

A string expression.

Description:Description:Description:Description:
INSTR searches a target string specified by targetstring to check whether a search
string specified by searchstring is present in it, and then returns the first character
position of the search string first found.

• startposition is the character position where the search is to begin in
targetstring. If you omit startposition option, the search begins at the first
character of targetstring.

• targetstring is the string being searched.

• searchstring is the string you are looking for.

NOTE

Do not mistake the description order of targetstring and searchstring.

Chapter 15. Function Reference

327

• A returned value of INSTR is a decimal number from 0 to 255, depending upon the
conditions as listed below.

Conditions Returned value

If searchstring is found within
targetstring:

First character position of the search
string first found.

If startposition is greater than the
length of targetstring or 255:

0

If targetstring is a null string: 0

If searchstring is not found: 0

If searchstring is a null string: Value of startposition.
1 if startposition option is
omitted.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code code Meaning
05h Parameter out of the range

(startposition is out of the range.)

Reference:Reference:Reference:Reference:
Functions: LEN

328

__
INTeger Numeric operation function

INT
Returns the largest whole number less than or equal to the value of a given numeric
expression
__

Syntax:Syntax:Syntax:Syntax:
INT(numericexpression)

Parameter:Parameter:Parameter:Parameter:
numericexpression

A real expression.

Description:Description:Description:Description:
INT returns the largest whole number less than or equal to the value of
numericexpression by stripping off the fractional part.

• You use INT as shown below to round off the fractional part of a real number.
INT(realnumber+0.5)

Example: dat=1.5
PRINT INT(dat+0.5)

2

• If numericexpression is negative, this function operates as shown below.
PRINT INT(-0.5)
PRINT INT(-0.2)

-2
-1

Chapter 15. Function Reference

329

__
LEFT String function

LEFT$
Returns the specified number of leftmost characters from a given string expression.
__

Syntax:Syntax:Syntax:Syntax:
LEFT$(stringexpression,stringlength)

Parameter:Parameter:Parameter:Parameter:
stringlength

A numeric expression which returns a value from 0 to 255.

Description:Description:Description:Description:
LEFT$ extracts a portion of a string specified by stringexpression by the number of
characters specified by stringlength, starting at the left side of the string.

• If stringlength is zero, LEFT$ returns a null string.

• If stringlength is greater than the length of stringexpression, the whole
stringexpression will be returned.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(stringlength is out of the range.)

Reference:Reference:Reference:Reference:
Functions: LEN, MID$, and RIGHT$

330

__
LENgth String function

LEN
Returns the length (number of bytes) of a given string.
__

Syntax:Syntax:Syntax:Syntax:
LEN(stringexpression)

Description:Description:Description:Description:
LEN returns the length of stringexpression, that is, the number of bytes in the range
from 0 to 255.

• If stringexpression is a null string, LEN returns the value 0.

• LEN counts a full-width Kanji (in the two-byte code mode) as two characters.
PRINT LEN(" ")

4

Chapter 15. Function Reference

331

__
LOcation Counter of file File I/O function

LOC
Returns the current position within a specified file.
__

Syntax:Syntax:Syntax:Syntax:
LOC([#]filenumber)

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:
LOC returns the current position within a file (a data file, communications device file, or bar
code device file) specified by filenumber.

• Depending upon the file type, the content of the returned value differs as listed below.

File type Returned value
Data file Record number following the number of the

last record read by a GET statement
Communications device file Number of characters contained in the

receive buffer
(0 if no data is present in the receive buffer.)

Bar code device file Number of characters contained in the
bar-code buffer*
(0 if the BHT is waiting for bar code reading.)

* The size of the barcode buffer is 99 bytes for bar codes.

• If LOC is used before execution of the first GET statement after a data file is opened, it
returns 1 or 0 when the data file has any or no data, respectively.

332

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
34h Bad file name or number

(You specified filenumber of an unopened file.)
3Ah File number out of the range

3Eh A PUT or GET statement executed without a FIELD statement.
(No FIELD statement is found.)

Reference:Reference:Reference:Reference:
Statements: OPEN
Functions: EOF and LOF

Chapter 15. Function Reference

333

__
Location Of File File I/O function

LOF
Returns the length of a specified file.
__

Syntax:Syntax:Syntax:Syntax:
LOF([#]filenumber)

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:
LOF returns the length of a data file or communications device file specified by
filenumber.

• Depending upon the file type, the content of the returned value differs as listed below.

File type Returned value
Data file Number of written records

Communications device file Number of bytes of unoccupied area in the
receive buffer

• If you specify the bar code device file, a run-time error will occur.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Error code
34h Bad file name or number

(You specified filenumber of an unopened file.)
36h Improper file type

(You specified filenumber of a bar code device file.)
3Ah File number out of the range

Reference:Reference:Reference:Reference:
Statements: GET, INPUT, LINE INPUT, OPEN, and OPEN "COM:"
Functions: EOF, INPUT$, and LOC

334

__
code MARK I/O function

MARK$
Returns the bar code type and the number of digits of a read bar code.

__

Syntax:Syntax:Syntax:Syntax:
MARK$

Description:Description:Description:Description:
MARK$ returns a 3-byte string which consists of the first one byte representing the bar
code type and the remaining two bytes indicating the number of digits of a read bar code.

• The first one byte of a returned value contains one of the following letters representing

code types:

Code type First one byte of a returned value
EAN-13 , UPC-A A

EAN-8 B

UPC-E C

ITF (Interleaved 2 of 5) I

STF (Standard 2 of 5) H

Codabar (NW-7) N

Code 39 M

Code 93 L

Code 128 K

EAN-128 W
• The remaining two bytes of a returned value indicate the number of digits of the bar

code in decimal notation.

• MARK$ returns a null string until bar code reading takes place first after start of the
program.

Chapter 15. Function Reference

335

__
MIDdle String function

MID$
Returns a portion of a given string expression from anywhere in the string.
__

Syntax:Syntax:Syntax:Syntax:
MID$(stringexpression,startposition[,stringlength])

Parameter:Parameter:Parameter:Parameter:
startposition

A numeric expression which returns a value from 1 to 255.
stringlength

A numeric expression which returns a value from 0 to 255.

Description:Description:Description:Description:
Starting from a position specified by startposition, MID$ extracts a portion of a string
specified by stringexpression, by the number of characters specified by
stringlength.

• A returned value of MID$ depends upon the conditions as listed below.

Conditions Returned value
If stringlength
option is omitted:

All characters from startposition to the
end of the string
Example: PRINT MID$("ABC123",3)

C123

If stringlength is greater than the
number of characters contained
between startposition and the end
of the string:

All characters from startposition to the
end of the string
Example: PRINT MID$("ABC123",3,10)

C123

If startposition is greater than the
length of stringexpression:

Null string
Example: PRINT MID$("ABC123",10,1)

NOTE

BHT-BASIC does not support such MID$ function that replaces a part of a
string variable.

336

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

05h Parameter out of the range

Reference:Reference:Reference:Reference:
Functions: LEFT$, LEN, and RIGHT$

Chapter 15. Function Reference

337

__
POSition I/O function

POS
Returns the current column number of the cursor.
__

Syntax:Syntax:Syntax:Syntax:
POS(0)

Description:Description:Description:Description:
POS returns the current column number of the cursor in the current display mode selected
by a SCREEN statement, as an integer.

Screen mode Font size Column number
Single-byte ANK mode Standard-size 1 to 22
 Small-size 1 to 22
Two-byte Kanji mode Standard-size 1 to 17
 Small-size 1 to 22

• Even if the cursor is invisible (by a LOCATE statement), the POS function operates.

• If the maximum value in the current screen mode is returned, it means that the cursor
stays outside of the rightmost column.

• (0) is a dummy parameter that can have any value or expression, but generally it is 0.

• The range of the column numbers does not differ between the regular-size and
double-width characters.

• For the current row number of the cursor, refer to the CSRLIN function.

Reference:Reference:Reference:Reference:
Statements: LOCATE and SCREEN
Functions: CSRLIN

338

__
RIGHT String function

RIGHT$
Returns the specified number of rightmost characters from a given string expression.
__

Syntax:Syntax:Syntax:Syntax:
RIGHT$(stringexpression,stringlength)

Parameter:Parameter:Parameter:Parameter:
stringlength

A numeric expression which returns a value from 0 to 255.

Description:Description:Description:Description:
Starting at the right side of the string, RIGHT$ extracts a portion of a string specified by
stringexpression by the number of characters specified by stringlength.

• If stringlength is zero, RIGHT$ returns a null string.

• If stringlength is greater than the length of stringexpression, the whole
stringexpression will be returned.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(stringlength is out of the range.)

Reference:Reference:Reference:Reference:
Functions: LEFT$, LEN, and MID$

Chapter 15. Function Reference

339

__
SEARCH File I/O function

SEARCH
Searches a specified data file for specified data, and then returns the record
number where the search data is found.
__

Syntax:Syntax:Syntax:Syntax:
SEARCH([#]filenumber,fieldvariable,searchdata [,startrecord])

Parameter:Parameter:Parameter:Parameter:
filenumber

A numeric expression which returns a value from 1 to 16.
fieldvariable

A non-array string variable.
searchdata

A string expression.
startrecord

A numeric expression which returns a value from 1 to 32767.

Description:Description:Description:Description:
SEARCH searches a target field specified by fieldvariable in a data file specified by
filenumber for data specified by searchdata, starting from a record specified by
startrecord, and then returns the record number where the search data is found.

• fieldvariable is a string variable defined by a FIELD statement.

• searchdata is the data you are looking for.

• startrecord is a record number where the search is to begin in a data file. The
search ends when all of the written records have been searched.

 If you omit startrecord option, the search begins at the first record (record #1) of the
data file.

• If the search data is not found, SEARCH returns the value 0.

• A convenient use for SEARCH is, for example, to search for a particular product name,
unit price, or stock quantity in a product master file by specifying a bar code data to
searchdata.

• Since the search begins at a record specified by startrecord in a data file and
finishes at the last record, sorting records in the data file in the order of frequency of use
before execution of this function will increase the searching speed.

340

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

34h Bad file name or number
(You specified filenumber of an unopened file.)

36h Improper file type
(You specified filenumber of a file other than data files.)

3Ah File number out of the range

3Eh A PUT or GET statement executed without a FIELD statement.
(No FIELD statement is found.)

Reference:Reference:Reference:Reference:
Statements: FIELD, GET, and OPEN
Functions: LOF

Chapter 15. Function Reference

341

__
Start Of Heading I/O function

SOH$
Modifies the value of a header (SOH) for the BHT-protocol; also returns the
current value of a header.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Changing the value of a header):

SOH$=stringexpression
Syntax 2 (Returning the current value of a header):

SOH$
Parameter:Parameter:Parameter:Parameter:

stringexpression
A string expression which returns a single-byte character.

Description:Description:Description:Description:
�Syntax 1
SOH$ modifies the value of a header (one of the text control characters) which indicates
the start of heading text in the BHT-protocol when a data file is transmitted by an XFILE
statement. (For the BHT-protocol, refer to the BHT User’s Manual.)

• SOH$ is called a protocol function.

• The initial value of a header (SOH) is 01h.
�Syntax 2
SOH$ returns the current value of a header.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
0Fh String length out of the range

(stringexpression is more than a single byte.)

Reference:Reference:Reference:Reference:
Statements: OPEN "COM:" and XFILE
Functions: ETX$ and STX$

342

__
STRing String function

STR$
Converts the value of a numeric expression into a string.
__

Syntax:Syntax:Syntax:Syntax:
STR$(numericexpression)

Parameter:Parameter:Parameter:Parameter:
numericexpression

A numeric expression.

Description:Description:Description:Description:
STR$ converts the value of numericexpression into a string.

• If numericexpression is 0 or positive, then STR$ automatically adds a leading space
(meaning + sign) as shown below.

PRINT STR$(123);LEN(STR$(123))
123 4

 To delete the leading space, you should use the MID$ function as shown below.
PRINT MID$(STR$(123),2);LEN(STR$(123))
123 4

• If numericexpression is negative, STR$ adds a minus sign as shown below.
PRINT STR$(-456);LEN(STR$(-456))
-456 4

• A common use for STR$ is to write numeric data into a data file.

• The VAL function has the opposite capability to STR$.

Reference:Reference:Reference:Reference:
Functions: VAL

]

Chapter 15. Function Reference

343

__
Start of TeXt I/O function

STX$
Modifies the value of a header (STX) for the BHT-protocol; also returns the current
value of a header.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Changing the value of a header):

STX$=stringexpression
Syntax 2 (Returning the current value of a header):

STX$
Parameter:Parameter:Parameter:Parameter:

stringexpression

A string expression which returns a single-byte character.

Description:Description:Description:Description:
�Syntax 1
STX$ modifies the value of a header (one of the text control characters) which indicates
the start of data text in the BHT-protocol when a data file is transmitted by an XFILE
statement. (For the BHT-protocol, refer to the BHT User’s Manual.)

• STX$ is called a protocol function.

• The initial value of a header (STX) is 02h.
�Syntax 2
STX$ returns the current value of a header.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
0Fh String length out of the range

(stringexpression is more than a single byte.)

Reference:Reference:Reference:Reference:
Statements: OPEN "COM:" and XFILE
Functions: ETX$ and SOH$

344

__
TIME I/O function

TIME$
Returns the current system time or wakeup time, or sets a specified system time or wakeup
time.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Retrieving the current system time or wakeup time):

TIME$
Syntax 2 (Setting the current system time or wakeup time):

TIME$="time"
Parameter:Parameter:Parameter:Parameter:

time

A string expression.

Description:Description:Description:Description:
�Syntax 1
Retrieving the current system time
TIME$ returns the current system time as an 8-byte string. The string has the format
below.

hh:mm:ss
where hh is the hour from 00 to 23 in 24-hour format, mm is the minute from 00 to 59, and
ss is the second from 00 to 59.
Example: CLS

PRINT TIME$
Retrieving the wakeup time
TIME$ returns the wakeup time as a 5-byte string. The string has the format below.

hh:mm

Chapter 15. Function Reference

345

�Syntax 2
Setting the system time
TIME$ sets the system time specified by "time." The format of "time" is the same as that
in syntax 1.
Example: TIME$="13:35:45"
Setting the wakeup time
TIME$ sets the wakeup time specified by "time." The format of "time" is the same as
that in syntax 1.

• The calendar clock is backed up by the battery. (For the system date, refer to the
DATE$ function.)

• For returning the current wakeup time or setting a specified wakeup time, bit 2 of port 8
should be set to 1 with the OUT statement before execution of this function.

• For the wakeup function, refer to Chapter 12, Section 12.3, "Wakeup Function."

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(time is out of the range.)

Reference:Reference:Reference:Reference:
Functions: DATE$

346

__
TIMER-A/TIMER-B/TIMER-C I/O function

TIMEA/TIMEB/TIMEC
Returns the current value of a specified timer or sets a specified timer.
__

Syntax:Syntax:Syntax:Syntax:
Syntax 1 (Retrieving the current value of a specified timer):

TIMEA
TIMEB
TIMEC

Syntax 2 (Setting a specified timer):
TIMEA=count
TIMEB=count
TIMEC=count

Parameter:Parameter:Parameter:Parameter:
count

A numeric expression which returns a value from 0 to 32767.

Description:Description:Description:Description:
�Syntax 1
TIMEA, TIMEB, or TIMEC returns the current value of timer-A, -B, or -C, respectively, as
a 2-byte integer.
�Syntax 2
TIMEA, TIMEB, or TIMEC sets the count time specified by count.

• count is a numeric value in units of 100 ms.

• Upon execution of this function, the Interpreter starts a specified timer counting down in
decrements of 100 ms (equivalent to -1) until the timer value becomes 0.

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning
05h Parameter out of the range

(count is a negative value.)
06h The operation result is out of the allowable range.

(count is greater than 32767.)

Chapter 15. Function Reference

347

__
VALue String function

VAL
Converts a string into a numeric value.
__

Syntax:Syntax:Syntax:Syntax:
VAL(stringexpression)

Parameter:Parameter:Parameter:Parameter:
stringexpression

A string expression which represents a decimal number.

Description:Description:Description:Description:
VAL converts the string specified by stringexpression into a numeric value.

• If stringexpression is nonnumeric, VAL returns the value 0.
PRINT VAL("ABC")
0

• If stringexpression contains a nonnumeric in midstream, VAL converts the string
until it reaches the first character that cannot be interpreted as a numeric.

PRINT VAL("1.2E-3ABC")
1.200000000E-03

• The STR$ function has the opposite capability to VAL.

Reference:Reference:Reference:Reference:

Functions: ASC and STR$

348

Chapter 16
Extended Functions

CONTENTSCONTENTSCONTENTSCONTENTS

16.1 Overview..349

16.2 Reading or writing system settings from/to the memory (SYSTEM.FN3)350
16.2.1 Function Number List of SYSTEM.FN3 ...350
16.2.2 Detailed Function Specifications..351

16.3 Controlling system files(SYSMDFY.FN3)...356
16.3.1 Function Number List of SYSMDFY.FN3 ...356
16.3.2 Detailed Function Specifications ..356

16.4 Calculating a CRC (CRC.FN3) ..358
16.4.1 Function Number List of CRC.FN3 ..358
16.4.2 Detailed Function Specifications..358

Chapter 16. Extended Functions

349

16.1 Overview
In addition to the BHT-BASIC statements and functions, the BHT-8000 series supports the
following extended functions which can be invoked by the CALL statement.

Extended
functions Used to: Remarks

SYSTEM.FN3 Read or write system settings from/to the
memory.

SYSMDFY.FN3 Reconfigure BHT system or get/set system
reconfig file information.

CRC.FN3 Calculate a CRC.

SOCKET.FN3
Implement a subset of the TCP/IP socket
application program interface (API). (For
details, refer to Chapter 17.)

(Integrated in models
equipped with the
Bluetooth device)

FTP.FN3
Implement FTP client services for file transfer
to/from FTP servers. (For details, refer to
Chapter 17.)

(Integrated in models
equipped with the
Bluetooth device)

BT.FN3 Read or write Bluetooth parameters and control
operation. (For details, refer to Chapter 18.)

(Integrated in models
equipped with the
Bluetooth device)

350

16.2 Reading or writing system
settings from/to the memory
(SYSTEM.FN3)

16.2.1 Function Number List of SYSTEM.FN3

The SYSTEM.FN3 may read or write system settings depending upon the function number
specified, as listed below.

Function number Used to:
.fcSysIGet 1 Read numeric data from System Mode settings
.fcSysISet 2 Write numeric data to System Mode settings
.fcSysSGet 3 Read string data from System Mode settings
.fcSysSSet 4 Write string data to System Mode settings
.fcFontInf 5 Get font information

Chapter 16. Extended Functions

351

16.2.2 Detailed Function Specifications

.fcSysIGet(=1) Read numeric data from System Mode settings
Syntax: CALL "SYSTEM.FN3" .fcSysIGet PARA%,DATA%
Description: This function reads numeric data (DATA%) from the system menu item

specified by PARA%.
Parameter: PARA% Item number of the system menu
Returned value: DATA% Numeric data read from the specified system menu item
System menu items list:
Item number

(PARA%) System menu item Attribute
*1

DATA%, numeric data of
the system menu item

Initial
value

.sySFNlock 0 Nonlock .sySFMode 1 Shift key mode R/W

.sySF1time 1 Onetime
0

.syMkyNone 0 None

.syMkyEnt 1 Enter key

.syMkyTrg 2 Trigger switch

.syMkySF 3 Shift key

.syMkyBL 4 Backlight on/off
function key

.syM1key 2 Assignment to M1
key

R/W

- 5 (Reserved for
system)

0

.syM2key 3 Assignment to M2
key

R/W Same as above 0

.syM3key 4 Assignment to M3
key

R/W Same as above 2

.syM4key 5 Assignment to M4
key

R/W Same as above 2

.syInvtOff 0 OFF .syBarInvt 6 Black-and-white
inverted label reading
function

R/W

.syInvtOn 1 ON

0

- 7 (Reserved for
system)

-

.syDecdLvl 8 Decode level R/W 1 to 9 4

.syITFMin 9 Minimum number of
digits to be read for
ITF

R/W 2 to 20 4

.sySTFMin 10 Minimum number of
digits to be read for
STF

R/W 1 to 20 3

.syNW7Min 11 Minimum number of
digits to be read for
Codabar

R/W 3 to 20 4

R/W: Read and write possible

*1

352

Item number

(PARA%) System menu item Attribute
*1

DATA%, numeric data of
the system menu item

Initial
value

.syCmifOpt 0 IrDA interface .syCmifApl 12 Default interface to be
used for user
programs

R/W
.syCmifCon 1 Direct-connect

interface

0

.syCmifOpt 0 IrDA interface .syCmifSys 13 Default interface to be
used for System
Mode

R/W
.syCmifCon 1 Direct-connect

interface

0

.syOp24 0 2400bps

.syOp96 1 9600bps

.syOp192 2 19200bps

.syOp384 3 38400bps

.syOp576 4 57600bps

.syTrSpdOp 14 Transmission speed
for IrDA interface

R/W

.syOp1152 5 115200bps

5

- 15 (Reserved for
system)

-

- 16 (Reserved for
system)

-

- 17 (Reserved for
system)

-

.syCn3 0 300bps

.syCn6 1 600bps

.syCn12 2 1200bps

.syCn24 3 2400bps

.syCn48 4 4800bps

.syCn96 5 9600bps

.syCn192 6 19200bps

.syCn384 7 38400bps

.syCn576 8 57600bps

.syTrSpdCn 18 Transmission speed
for direct-connect
interface

R/W

.syCn1152 9 115200bps

9

.syVPrtyN 0 None

.syVPrtyO 1 Odd
.syVPrtyCn 19 Vertical parity for

direct-connect
interface

R/W

.syVPrtyE 2 Even

0

syDatLen7 0 7 bits .syDatLnCn 20 Character length for
direct-connect
interface

R/W
.syDatLen8 1 8 bits

1

.syStpLen1 0 1 bit .syStpLnCn 21 Stop bit length for
direct-connect inter
face

R/W
.syStpLen2 1 2 bits

0

.sySNoOff 0 No numbers (OFF) .sySNoOp 22 Serial numbers for
IrDA interface

R/W
.sySNoOn 1 Add numbers (ON)

1

R/W: Read and write possible

*1

Chapter 16. Extended Functions

353

Item number

(PARA%) System menu item Attribute
*1

DATA%, numeric data of
the system menu item

Initial
value

.syHPtyOff 0 No parity (OFF) .syHPrtyOp 23 Horizontal parity for
IrDA interface

R/W
.syHPtyOn 1 Add (ON)

1

.syLnkT0 0 No timeout

.syLnkT30 1 30 sec

.syLnkT60 2 60 sec

.syLnkT90 3 90 sec

.syLnkTmOp 24 Timeout for data
link establishment
for IrDA interface

R/W

.syLnkT120 4 120 sec

1

.sySpIgnr 0 Ignore (Trim) .syFldSpOp 25 Trailing spaces in a
data field for IrDA
interface

R/W

.sySpData 1 Handle as data

0

.sySNoOff 0 No numbers (OFF) .sySNoCn 26 Serial numbers for
direct-connect
interface

R/W

.sySNoOn 1 Add numbers (ON)

1

.syHPtyOff 0 No parity (OFF) .syHPrtyCn 27 Horizontal parity for
direct-connect
interface

R/W

.syHPtyOn 1 Add (ON)

1

.syLnkT0 0 No timeout

.syLnkT30 1 30 sec

.syLnkT60 2 60 sec

.syLnkT90 3 90 sec

.syLnkTmCn 28 Timeout for data
link establishment
for direct-connect
interface

R/W

.syLnkT120 4 120 sec

1

.sySpIgnr 0 Ignore (Trim) .syFldSpCn 29 Trailing spaces in a
data field for
direct-connect
interface

R/W

.sySpData 1 Handle as data

0

.syCPBHT 0 BHT protocol .syCmPrtcl 30 Communications
protocol type

R/W
.syCPBHTIr 2 BHT-Ir protocol

2

.syResmOff 0 OFF .syResm 31 Resume function R/W

.syResmOn 1 ON
1*2

- 32 (Reserved for
system) -

- 33 (Reserved for
system) -

- 34 (Reserved for
system) -

.syRamSize 35 RAM size RO 512/1024/2048 (kilobytes) *3

.syRomSize 36 ROM size RO 2048/4096/8192 (kilobytes) *3

.syClstSize 37 Cluster size RO 4096 (bytes)

R/W: Read and write possible
RO: Read only

The resume function setting made here is effective also in
user programs downloaded to the BHT.

These values will vary depending upon the hardware type.

*1

*2

*3

354

.fcSysISet(=2) Write numeric data to System Mode settings
Syntax: CALL "SYSTEM.FN3" .fcSysISet PARA%,DATA%
Description: This function writes numeric data (DATA%) to the system menu item

specified by PARA%.
Parameter: PARA% Item number of the system menu

DATA% Numeric data to be specified
(See the system menu items list given in Function #1.)

Returned value: (None)
System menu items list: Refer to the System menu items list given in Function #1.

.fcSysSGet(=3) Read string data from System Mode settings
Syntax: CALL "SYSTEM.FN3" .fcSysSGet PARA%,DATA$
Description: This function reads string data (DATA$) from the system menu item

specified by PARA%.
Parameter: PARA% Item number of the system menu
Returned value: DATA% String data read from the specified system menu item
System menu items list:
Item number

(PARA%) System menu item Attribute DATA$, numeric data of the
system menu item

.syVersion 1 System version RO "X.XX" fixed to 4 characters
― 2 (Reserved for system) -

.syModel 3 Model name RO Max. of 8 characters
(e.g., "BHT75")

.syPrdctNo 4 Product number
assigned to the BHT

RO Fixed to 16 characters
(e.g., "496310….")

.syBHTSNo 5 Serial number assigned
to the BHT

R/W Fixed to 6 characters

.syExePrg 6 Execution program R/W R/W Filename.xxx
(Filename followed by period and extension)

If not selected, a null string

Chapter 16. Extended Functions

355

.fcSysSSet(=4) Write string data to System Mode settings
Syntax: CALL "SYSTEM.FN3" .fcSysSSet PARA%,DATA$
Description: This function writes string data (DATA$) to the system menu item specified

by PARA%.
Parameter: PARA% Item number of the system menu

DATA% String data to be specified
(See the System menu items list given in Function #3.)

Returned value: (None)
System menu items list: Refer to the System menu items list given in Function #3.

.fcFontInf(=5) Get font information
Syntax: CALL "SYSTEM.FN3" .fcFontInf N.FONT%,VERSION$()
Description: This function returns font information--the number of downloaded fonts, font

name, font size, and font version.
Parameter: (None)
Returned value: N.FONT% Number of fonts

VERSION$ Sets of the font name, font size, and font version in the
following
 format

Font name Font size Font version

Note: If the number of elements of VERSION$ is less than the number of fonts,
then the SYSTEM.FN3 returns the sets of the font information by the number
of elements.

8 bytes 2 bytes 8 bytes

356

16.3 Controlling system
files(SYSMDFY.FN3)

16.3.1 Function Number List of SYSMDFY.FN3

The SYSMDFY.FN3 may reconfigure the BHT system , as well as getting/setting system
reconfig file information, depending upon the function number specified, as listed below.

Function number Used to:
.fcMdBVGet 1 Get version of BHT system reconfig file
.fcMdBDo 2 Reconfigure BHT system

.fcMdBNGet 3 Get filename of BHT system reconfig file

.fcMdBNSet 4 Set filename of BHT system reconfig file

16.3.2 Detailed Function Specifications

.fcMdBVGet(=1) Get version of BHT system reconfig file
Syntax: CALL "SYSMDFY.FN3" .fcMdBVGet FILE$, VERSION$
Description: This function returns the version (VERSION$) of the BHT system reconfig

file specified by FILE$.
Parameter: FILE$ Filename
Returned value: VERSION$ Version, 4 characters fixed

RunRunRunRun----time errors:time errors:time errors:time errors:
Error code Meaning
32h File type mismatch

Chapter 16. Extended Functions

357

.fcMdBDo(=2) Reconfigure BHT system
Syntax: CALL "SYSMDFY.FN3" .fcMdBDo FILE$, OPT%
Description: This function automatically reconfigures the BHT system by using the

BHT system reconfig file specified by FILE$.
Parameter: FILE$ Filename

OPT% Task after system reconfiguration
.smPwOff 0 Power off
.smReset 1 Reset the system software

Returned value: (None)

RunRunRunRun----time errors:time errors:time errors:time errors:
Error code Meaning
32h File type mismatch

.fcMdBNGet(=3) Get filename of BHT system reconfig file
Syntax: CALL "SYSMDFY.FN3" .fcMdBNGet FILE$
Description: This function returns the filename of the BHT system reconfig file to be

used in System Mode, in FILE$.
Parameter: FILE$ Filename consisting of drive name and file name, max. 14

characters (No drive name might be returned.)
Returned value: (None)

.fcMdBNSet(=4) Set filename of BHT system reconfig file
Syntax: CALL "SYSMDFY.FN3" .fcMdBNSet FILE$
Description: This function sets the filename (specified by FILE$) of the BHT system

reconfig file to be used in System Mode.
Parameter: FILE$ Filename consisting of drive name and file name, max. 14

characters (Drive name omissible)
Returned value: (None)

358

16.4 Calculating a CRC (CRC.FN3)
16.4.1 Function Number List of CRC.FN3

The CRC.FN3 may calculate a CRC depending upon the function number specified, as listed

below.
Function number Used to:

.fcCcitt 2 Calculate a CRC-CCITT.
.fcCrc16 3 Calculate a CRC-16.

16.4.2 Detailed Function Specifications

.fcCcitt(=2) Calculate a CRC-CCITT
Syntax: CALL "CRC.FN3" .fcCcitt STRING1$, [STRING2$, [...,]] CRC$
Description: This function calculates a CRC of character strings specified by

STRING1$, STRING2$, ...STRING8$ and returns the calculation result
in CRC$.
Up to eight character strings may be specified by assigning them to
non-array string variables.

Parameter: STRING1$, STRING2$, ...STRING8$
Non-array string variables that are operands of CRC gen-eration

Returned value: CRC$ Non-array string variable that stores the calculation result
(2 characters, fixed length. In the 1st character position is
the upper byte of the calculation result.)

.fcCrc16(=3) Calculate a CRC-16
Syntax: CALL "CRC.FN3" .fcCrc16 STRING1$, [STRING2$, [...,]] CRC$
Description: This function calculates a CRC of character strings specified by

STRING1$, STRING2$, ...STRING8$ and returns the calculation result
in CRC$.
Up to eight character strings may be specified by assigning them to
non-array string variables.

Parameter: STRING1$, STRING2$, ...STRING8$
Non-array string variables that are operands of CRC gen-eration

Returned value: CRC$ Non-array string variable that stores the calculation result
(2 characters, fixed length. In the 1st character position is
the upper byte of the calculation result.)

359

Chapter 17
TCP/IP

(BHTs with Bluetooth communications device)

CONTENTSCONTENTSCONTENTSCONTENTS
17.1 Two Sides ..361

17.1.1 BHT ...361
17.1.2 Hosts ...361

17.2 Programming Procedure..362
17.2.1 Bluetooth Communication System...362

[1] Open Bluetooth Communications Device...362
[2] Configure TCP/IP System ..363
[3] Declare TCP/IP Communications Pathway ..364
[4] Connect to TCP/IP Communications Pathway365
[5] Transfer Data or File via Socket Interface ..366
[6] Disconnect TCP/IP Communications Pathway.......................................366
[7] Close Bluetooth Communications Device ..366

17.3 Socket API ...367
17.3.1 Overview ...367
17.3.2 Programming Notes for Socket API ...369

[1] Programming Notes for TCP..369
[2] Programming Notes for UDP..370
[3] Programming Notes for Socket API..372

17.4 FTP Client..376
17.4.1 Overview ...376
17.4.2 File Formats...376

[1] User Programs (*.PD3) ..376
[2] Extension Libraries (*.FN3 and *.EX3) ...378
[3] Data Files ...380

17.4.3 Using FTP Client ...383
[1] Basic Procedure...383
[2] Configuring FTP Client ...383
[3] Calculating Memory Requirements ..384
[4] Optimizing Drive (Recommended) ...385
[5] FTP Transfers ..385

360

17.5 Socket Library (SOCKET.FN3)...386
17.5.1 Overview ...386
17.5.2 Detailed Function Specifications..389

17.6 FTP Library (FTP.FN3)..424
17.6.1 Overview ...424
17.6.2 Detailed Function Specifications..427

Chapter 17. TCP/IP

361

17.1 Two Sides
17.1.1 BHT

The BHT equipped with a spread spectrum communications device or IrDA communications

device includes two built-in libraries providing BHT-BASIC programs with access to a subset

of the TCP/IP family of protocols over the spread spectrum communication system or IrDA

communication system, respectively.

SOCKET.FN3: This library implements a subset of the BSD4.4 socket application program

interface (API).

FTP.FN3: This library implements FTP client services for file transfers to and from FTP

servers.

17.1.2 Hosts

SOCKET.FN3 and FTP.FN3 require a host machine with the equivalent TCP/IP functionality

and running the appropriate server software.

362

17.2 Programming Procedure
17.2.1 Bluetooth Communication System

The following is the procedure for using TCP/IP over a Bluetooth communications device.

For programming details, refer to the sample source program separately provided.

[1] Open Bluetooth Communications Device

Connect to modem with Bluetooth device and establish data link using the modem.

For further details, refer to Section Chapter 18 "Bluetooth (BHTs with Bluetooth

communications device)," Subsection 18.2.3.3.

Chapter 17. TCP/IP

363

[2] Configure TCP/IP System

To connect to the TCP/IP pathway, specify the following system settings by using the

extension library SOCKET.FN3 in a user program:

• IP address

• Subnet mask

• Default gateway

• PPP authentication procedure

• User name for PPP authentication

• Password for PPP authentication

These settings will be used in [4 .]

For the details of the SOCKET.FN3, refer to Section 17.5 "Socket Library (SOCKET.FN3)."

Given below is a setting example with SOCKET.FN3:

my.addr$ = "192.168.0.125" 'IP address of the BHT
subnetmask$ = "255.255.255.0" 'Subnet mask
gateway$ = "0.0.0.0" 'Default gateway
ppp.auth% = .soPPPPAP 'PPP authentication procedure
ppp.usr$ = "USER" 'User name for PPP
ppp.psw$ = "PASSWORD" 'Password for PPP
para% = 1 'Specify IP address (#1)
call "socket.fn3" .fcTSysSet para%, my.addr$
para% = 2 'Specify subnet mask (#2)
call "socket.fn3" .fcTSysSet para%, subnetmask$
para% = 3 'Specify default gateway (#3)
call "socket.fn3" .fcTSysSet para%, gateway$
para% = 4 'Specify PPP authentication (#4)
call "socket.fn3" .fcTSysSet para%, ppp.auth%
para% = 5 'Specify User name for PPP (#5)
call "socket.fn3" .fcTSysSet para%, ppp.usr$
para% = 6 'Specify Password for PPP (#6)
call "socket.fn3" .fcTSysSet para%, ppp.psw$

364

[3] Declare TCP/IP Communications Pathway

Specify the following system settings by using the socket library (SOCKET.FN3):

• Communications device: Bluetooth communications device

• Link layer: PPP

For the setting procedure with the SOCKET.FN3, refer to Section 17.5 "Socket Library

(SOCKET.FN3)."

Given below is a setting example using SOCKET.FN3:

iftype% = .soDvCOM4 'Specify Bluetooth communications device
layermode% = .soLyPPP 'Specify PPP as a link layer
call "socket.fn3" .fcTSetup iftype%, layermode%, interface%
 'Specify communications pathway
 '(SOCKET.FN3 function #40)
 'Returns value in interface%
 '(The returned value will be used in
 '[4] and [6].)

Chapter 17. TCP/IP

365

[4] Connect to TCP/IP Communications Pathway

Use the extension library SOCKET.FN3. Connecting to the TCP/IP communications pathway

requires the following settings (specified in [2]):

• IP address

• Subnet mask

• Default gateway

• PPP authentication procedure

• User name for PPP authentication

• Password for PPP authentication

There are two ways to specify these parameters.

(a) Use the system settings with the extension library SOCKET.FN3. Refer to Section 17.5

"Socket Library (SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

call "socket.fn3" .fcTCnnSys interface% 'Connect to communications pathway
 '(SOCKET.FN3 function #41)
 'Use the returned value of [3] in
 'interface%.

(b) Use user-defined values provided by the application with the extension library

SOCKET.FN3. Refer to Section 17.5 "Socket Library (SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

my.adr$ = "192.168.0.125" 'IP address of the BHT
subnet$ = "255.255.255.0" 'Subnet mask
gw$ = "0.0.0.0" 'Default gateway
auth% = .soPPPPAP 'PPP authentication procedure
usr$ = "USER" 'User name for PPP
psw$ = "PASSWORD" 'Password for PPP
call "socket.fn3" .fcTCnnUsr interface%,my.adr$,subnet$,gw$,auth%,usr$,psw$
 'Connect to communications pathway
 'Use the returned value of [3] in

'interface%.

366

[5] Transfer Data or File via Socket Interface

To transfer data via the socket interface, use the extension library SOCKET.FN3. Refer to 17.3,

"Socket API" and Section 17.5 "Socket Library (SOCKET.FN3)."

To transfer file via the socket interface, refer to Section 17.4.3, "Using FTP Client."

[6] Disconnect TCP/IP Communications Pathway

Use the extension library SOCKET.FN3. Refer to Section 17.5 "Socket Library

(SOCKET.FN3)."

Given below is an example using SOCKET.FN3.

call "socket.fn3" .fcTDiscnn interface% 'Disconnect TCP/IP communications

 'pathway (SOCKET.FN3 function #43)

 'Use the returned value of [3] in

 'interface%.

[7] Close Bluetooth Communications Device

Disconnect data link using a modem.

For further details, refer to Section Chapter 18 "Bluetooth (BHTs with Bluetooth

communications device)," Subsection 18.2.3.3.

Chapter 17. TCP/IP

367

17.3 Socket API
17.3.1 Overview

The SOCKET.FN3 library implements a subset of the BSD4.4 socket application program

interface (API).

The following flowcharts show the BSD4.4 socket API calls for the two communications

protocols required for the TCP/IP transport layer: transmission control protocol (TCP) for

streams and user datagram protocol (UDP) for datagrams.

■ Transmission Control Protocol (TCP)

368

■ User Datagram Protocol (UDP)

Chapter 17. TCP/IP

369

17.3.2 Programming Notes for Socket API

[1] Programming Notes for TCP
(a) Avoid retransmission control in application programs (recommended)

 The TCP has flow control and retransmission control, so incorporating retransmission
control into communication programs using the TCP socket may cause send data to be
double sent or unintended data to be received.

 When using the TCP socket, therefore, do not incorporate retransmission control in
applications.

 If an error occurs in TCP socket communication, close the socket once, then open it and
start communication from the beginning again.

(b) Modify the status retaining period (recommended)

Socket API according to the TCP/IP is restricted by the following specifications. For the
extended function SOCKET.FN3 given below, refer to Section 17.5 "Socket Library
(SOCKET.FN3)."

(1) After closed, the TCP socket will retain data for 60 seconds to keep the current status.
For the 60 seconds, therefore, the socket cannot be used again.

(2) SOCKET.FN3 function #26 may create a maximum of 64 sockets.

(3) The TCP/IP will function from when SOCKET.FN3 function #41 or #42 connects the
TCP/IP communications pathway until SOCKET.FN3 function #43 disconnects it.
Except for this period, timers used in the TCP/IP will stop.

In programming for TCP socket communication, if the period from connection to
disconnection of the TCP/IP communications pathway is too short (approx. 1 second),
then an error may occur. In the sample below, when the 65th socket is created, a run-time
error (error code: &h218h) may occur indicating too many sockets created.

To avoid occurrence of run-time errors, set socket options (SOCKET.FN3 function #24)
following TCP socket creation (SOCKET.FN3 function #26).

optname%=29 'Set status retaining period after
option%=0 'closing TCP socket to 0 second
 '(release immediately)
call "socket.fn3" .fcSSckOpt sockfd%, optname%, option
 'Set socket options
 'Use SOCKET.FN3 function #24.

370

[2] Programming Notes for UDP
The user datagram protocol (UDP) has no flow control, so send/receive data may go missing
due to poor line conditions or difference of communications capabilities between wireless and
Ethernet. To prevent data missing, be sure to incorporate some flow control process into user
programs at both the BHT and host.

Given below are message transmission examples that support retransmission controls at
each of the BHT and host.

� BHT's retransmission control for a transmission errorBHT's retransmission control for a transmission errorBHT's retransmission control for a transmission errorBHT's retransmission control for a transmission error
Assume that the BHT uses the protocol of receiving transmission completion message from
the host after sending a message.

If the BHT times out for waiting a transmission completion message, it will transmit the unsent
message again.

Normal end

Transmission error in a message sent from the BHT

Chapter 17. TCP/IP

371

� Host's retransmission cHost's retransmission cHost's retransmission cHost's retransmission control for a transmission errorontrol for a transmission errorontrol for a transmission errorontrol for a transmission error
Assume that the host uses the protocol of receiving transmission completion message from
the BHT after sending a message.

If the host times out for waiting a transmission completion message, it will transmit the unsent
message again.

Normal end

Transmission error in a message sent from the host

372

[3] Programming Notes for Socket API
If TCP/IP communication becomes no longer possible during data transmission, extended
functions SOCKET.FN3 and FTP.FN3 will return any of the following run-time errors will be
returned. For details about those extended functions, refer to Sections 17.5, "Socket Library
(SOCKET.FN3)" and 17.6, "FTP Library (FTP.FN3):"

RunRunRunRun----timtimtimtime errors:e errors:e errors:e errors:

Error code Meaning

105h Power-off detected. (The BHT has been turned off during data
transmission and then turned on. The communications device
remains off.)

106h An internal error has occurred in the TCP/IP module during data
transmission.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

� Error recovery procedure from runError recovery procedure from runError recovery procedure from runError recovery procedure from run----time errors 105h, 106h, and 108htime errors 105h, 106h, and 108htime errors 105h, 106h, and 108htime errors 105h, 106h, and 108h
(1) Use the ON ERROR GOTO statement for error interrupt (In the error-handling routine, none

of (3) through (5) should be carried out.)

(2) Use the RESUME statement for transferring control to the main program

(3) Close the socket.

(4) Disconnect the TCP/IP communications pathway.

(5) Close the communications device (This step is applicable to error 105h.)

Given below is a sample program for error occurrence. (This sample shows only the skeleton

of communication program and requires modification in actual programming as necessary.)

Chapter 17. TCP/IP

373

(Example)

 STATUS% = 0
 ON ERROR GOTO TCP.ERR 'Prepare for error interrupt (To TCP.ERR
 'at the time of error occurrence)
DEV.OPEN:
'<<<<< Open communications device processing (OPEN "COM1" / OPEN "COM3:") >>>>>

 STATUS% = 1

TCP.CONNECT:
 '<<<<< Connect to TCP/IP Communications pathway processing >>>>>
 '<<<<< (CALL “SOCKET.FN3” 41 / 42) >>>>>
 STATUS% = 2

TCP.SOCKET:
 '<<<<< Create socket processing (CALL “SOCKET.FN3 26) >>>>>
 STATUS% = 3

 '<<<<< Transfer data or file processing via socket interface >>>>>

 '<<<<< Close the socket processing (CALL “SOCKET.FN3 28) >>>>>
 STATUS% = 2

 '<<<<< Disconnect TCP/IP communications pathway processing >>>>>
 '<<<<< (CALL “SOCKET.FN3 43) >>>>>
 STATUS% = 1

 '<<<<< Close communications device processing (CLOSE) >>>>>
 STATUS% = 0
 ON ERROR GOTO 0

 RETURN

'**
' Error-handling routine processing
'**
TCP.ERR:
 WERR = ERR
 RESUME ERRSUB

ERRSUB:
 ON ERROR GOTO ERRSUB2

374

 IF STATUS% > 2 THEN
 '<<<<< Close the socket processing (CALL “SOCKET.FN3 28) >>>>>
 IF (WERR<>&h105) AND (WERR<>&h106) AND (WERR<>&h108) THEN
 STATUS% = 2
 GOTO TCP.SOCKET
 ENDIF
 ENDIF

 IF STATUS% > 1 THEN
 '<<<<< Disconnect TCP/IP communications pathway processing >>>>>
 '<<<<< (CALL “SOCKET.FN3 43) >>>>>

 IF (WERR<>&h105) THEN
 STATUS% = 1
 GOTO TCP.CONNECT
 ENDIF
 ENDIF

 IF STATUS% > 0 THEN
 '<<<<< Close communications device processing (CLOSE) >>>>>
 STATUS% = 0
 GOTO DEV.OPEN
 ENDIF

 ON ERROR GOTO 0
 RETURN

ERRSUB2:
 RESUME NEXT

Chapter 17. TCP/IP

375

� Note for runNote for runNote for runNote for run----time error 105htime error 105htime error 105htime error 105h
Socket close processing (SOCKET.FN3, Function #28) following occurrence of run-time error
105h would not complete immediately. This is because a FIN packet will be transmitted
repeatedly in the socket close processing until the communications device receives any
response from the server independent of the power on/off state of the communications
device.

The socket close processing period may be shortened by changing the retry count that
determines the number of FIN packet retransmission times and is controlled by SOCKET.FN3,
function #24, option #26.

(Example)

Sock.Err: 'Socket error-handling routine
 'processing
 print "ERR:";hex$(err.code%) 'Display error code
 print "ERL:";hex$(err.line%) 'Display error line number
 if sock.stts%>=3 then 'If OK until socket generation,
 optname%=26 'set retry count
 option=0 'No retry (transmit once)
 call "socket.fn3" 24 sockfd%,optname%,option
 call "socket.fn3" 28 sockfd% 'Close socket
 end if
 if sock.stts%>=2 then 'If OK until connection of TCP/IP
 'communications pathway,
 call "socket.fn3" 43 interface% 'Disconnect the pathway
 end if
 if sock.stts%>=1 then 'If OK until opening the spread
 'spectrum communications device,
 close #hCom% 'close the device
 end if
 goto main 'To main program

376

17.4 FTP Client
17.4.1 Overview

The FTP.FN3 library implements FTP client services for file transfers to and from FTP servers.

Note that there are no server capabilities.

This FTP client transfers files between operating systems in image (binary) format. The only

translation support is for line delimiter conversion.

Note that this FTP client does not convert between such double-byte character encodings as

Shift JIS and EUC. Provide your own code conversion if the server uses a different

encoding--for directory and file specifications, in particular.

17.4.2 File Formats

The FTP client classifies files into three types by their extensions: user programs (*.PD3),

extension libraries (*.FN3 and *.EX3), and data files (other extensions).

The following describes each file format in turn, assuming that the line delimiter setting

specifies the CR-LF combination: a carriage return (0Dh) plus a line feed (0Ah).

[1] User Programs (*.PD3)

The FTP client reserves the .PD3 extension for user program files generated by the

BHT-BASIC compiler.

Program files use a fixed record length of 128 bytes for all records except the last. These

records are separated with line delimiters.

Chapter 17. TCP/IP

377

The FTP client automatically pads the last record of a downloaded program file with null

codes (00h) to maintain the fixed-length format. (The number required is 128 less the number

of bytes in the last record).

Aside: To conserve memory and boost performance, the BHT packs a pair of ASCII bytes

into a single byte by converting each byte into a 4-bit hexadecimal number.

378

[2] Extension Libraries (*.FN3 and *.EX3)

The FTP client treats files with extensions .FN3 and .EX3 as extension libraries.

Extension libraries use a fixed record length of 130 bytes for all records except the last. These

records are separated with line delimiters.

The FTP client automatically pads the last record of a downloaded program file with null

codes (00h) to maintain the fixed-length format. (The number required is 130 less the number

of bytes in the last record.)

Chapter 17. TCP/IP

379

Aside: When downloading extension libraries, the BHT uses 128 bytes out of 130 bytes of

record length (the remaining 2 bytes will be used for checking data). To conserve

memory and boost performance, the BHT packs a pair of ASCII bytes into a single

byte by converting each byte into a 4-bit hexadecimal number.

380

[3] Data Files

The FTP client treats files with extensions other than .PD3, .FN3, and .EX3 as data files.

Data file records consist of fields separated with line delimiters. An EOF (1Ah) at the end of

the data file is optional.

Data files are not limited to ASCII characters. They can use all bytes codes from 00h to FFh.

There can be 1 to 16 fields, each 1 to 254 bytes long. The sum of the field lengths and the

number of fields, however, must not exceed 255.

If the actual record length is different from the specified record length

The FTP client discards any excess beyond the specified record length during downloads.

Chapter 17. TCP/IP

381

The treatment of short records is under application control. The default is to delete any trailing

spaces (20h).

Alternatively, the FTP client can pad such short records to the specified record length with

spaces (20h).

382

Line delimiters inside data records

The FTP client can send and receive all codes from 00h to FFh as described above. The

treatment of line delimiters (CR-LF, CR, or LF) inside downloaded data records is under

application control. The default is to split the incoming stream into short records.

Alternatively, the FTP client can ignore any line delimiters inside downloaded data records,

treating them as data. Note, however, that the specified line delimiters must appear in the

specified positions between records. Otherwise, the FTP client cancels the transfer with an

error because a record is either too long or too short.

Chapter 17. TCP/IP

383

17.4.3 Using FTP Client

[1] Basic Procedure

First, set up for using the FTP client, as necessary, with the following steps. All three are

optional, but the last two are highly recommended for downloads.

(1) Configure the FTP client with the extension library FTP.FN3.

(2) Use the FRE function to check whether there is sufficient free memory available to hold

the downloaded file.

(3) Use a BHT-BASIC OUT statement to optimize the drive.

The rest of the procedure is the same as in Section 17.2, "Programming Procedure." The

key step is to use the FTP.FN3 for the file transfers.

[2] Configuring FTP Client

The FTP client requires the following information before it can transfer files.

• IP address for server

• Login (user) name for server

• Password for that login (user) name

FTP.FN3 provides functions #8 and #9 for reading and changing these settings. For further

details on these two functions, Refer to their descriptions in Section 17.6, "FTP Library

(FTP.FN3)," Subsection 17.6.2.

384

[3] Calculating Memory Requirements

The FTP protocol specifications do not provide for checking the amount of BHT memory

available during downloads. If the BHT runs out of memory during a download, the FTP client

cancels the transfer and deletes the partially downloaded file. The user application program

must, therefore, check availability with the FRE function or equivalent method and compare

the result with the BHT file size (BFS) before using the download function. The formula for

calculating the BHT memory requirements (MEM) depends on the file format.

• The line delimiter size (LDS) refers to the number of bytes in each line
delimiter: two for operating systems using the CR-LF combination and
one for those using only LF or CR.

• The number 4096 (4K) is the assumed memory management unit.
Change this to 8192 (8K) if the BHT uses that larger block size.

• HFS = host file size

■ User Programs (*.PD3)

Determine MEM from HFS.

BFS = ROUND_UP (HFS ÷ (128 + LDS)) × 64

MEM = ROUND_UP (BFS ÷ 4096) × 4096

Example: File size of 12,345 bytes on operating system using CR-LF combination

BFS = ROUND_UP (12345 ÷ (128 + 2)) × 64 = ROUND_UP(94.96) × 64 = 6080

MEM = ROUND_UP (6080 ÷ 4096) × 4096 = ROUND_UP(1.48) × 4096 = 8192

Note that 128K of free memory is enough to download even the largest (128K) BASIC

program.

■ Extension Libraries (*.FN3 and *.EX3)

Determine MEM from HFS.

BFS = ROUND_UP (HFS ÷ (130 + LDS)) × 64

MEM = ROUND_UP (BFS ÷ 4096) × 4096

The rest of the procedure is the same as for BASIC program files.

Chapter 17. TCP/IP

385

■ Data Files

Determine MEM from the field lengths and number of records.

BPR = bytes per record = (number of fields) + (sum of field lengths)

RPB = records per block = ROUND_DOWN (4096 ÷ BPR)

MEM = ROUND_UP (records ÷ RPB) × 4096

Example: File with 1000 records with four fields of lengths 13, 12, 6, and 1

BPR = 4 + (13 + 12 + 6 + 1) = 36

RPB = ROUND_DOWN (4096 ÷ 36) = ROUND_DOWN (113.778) = 113

MEM = ROUND_UP (1000 ÷ 113) × 4096 = ROUND_UP (8.850) × 4096

 = 9 × 4096 = 36,864

[4] Optimizing Drive (Recommended)

File system delays can sometimes retard file FTP downloads. The surest way to prevent such

delays is to use a BHT-BASIC OUT statement to optimize the drive.

Another reason for recommending this step is that it reduces air time, the period that the

spread spectrum communications device is open.

[5] FTP Transfers

The following is the basic procedure for transferring files with the FTP.FN3 extended

functions.

(1) Open an FTP client session with function #1 or #2.

(2) Verify the FTP server current directory with function #4 or #5, if necessary.

(3) Download and upload files with functions #6 and #7.

(4) Close the FTP client session with function #3.

386

17.5 Socket Library (SOCKET.FN3)
17.5.1 Overview

■ String Variables

The following are the string variables used by this library together with their memory

requirements.

Description Variable name Size in bytes

Internet address IPADDRESS$ min. 15

Subnet mask SUBNETMASK$ min. 15

Default gateway GATEWAY$ min. 15

Receive buffer RECVBUFF$ 1 to 255

Transmit buffer SENDBUFF$ 1 to 255

Socket identifier set SOCKFDSET$
READFDSET$
WRITEFDSET$
EXCEPTFDSET$

min. 41
min. 41
min. 41
min. 41

■ String Array Variables

The following are the string array variables used by this library together with their memory

requirements.

Description Variable name Size in bytes

Receive buffer RECVBUFF$() 1 to 4096

Transmit buffer SENDBUFF$()

TCP 1 to 4096

UDP 1 to 1472

Chapter 17. TCP/IP

387

■ Function Number List

Number Used to: Corresponding
Socket API Function

.fcAccept 1* –– accept()

.fcBind 2 Assign address to socket bind()

.fcConnect 3 Connect socket connect()

.fcGPName 4* –– getpeername()

.fcGSName 5* –– getsockname()

.fcGSckOpt 6 Get socket option getsockopt()

.fcHToNL 7 Convert host long (4 bytes) to network byte
order

htonl()

.fcHToNS 8 Convert host short (2 bytes) to network byte
order

htons()

.fcINetAdr 9 Convert Internet address from dotted quad
notation to 32-bit integer

inet_addr()

.fcListen 10* –– listen()

.fcNToHL 11 Convert network long (4 bytes) to host byte
order

ntohl()

.fcNToHS 12 Convert network short (2 bytes) to host byte
order

ntohs()

.fcReadv 13* –– readv()

.fcRecv 14 Receive data sent to the specified TCP
socket

recv()

.fcRcvfrom 15 Receive data sent to the specified UDP
socket

recvfrom()

.fcResvPrt 16* –– rresvport()

.fcSelect 17 Monitor socket requests select()

.fcFDZERO 18 Initialize socket identifier set FD_ZERO macro

.fcFDSET 19 Add socket identifier to socket identifier set FD_SET macro

.fcFDCLR 20 Delete socket identifier from socket
identifier set

FD_CLR macro

.fcFDISSET 21 Get socket identifier status from socket
identifier set

FD_ISSET macro

.fcSend 22 Send message to another TCP socket send()

.fcSendto 23 Send message to another UDP socket sendto()

.fcSSckOpt 24 Set socket options setsockopt()

.fcShutdwn 25 Shut down socket shutdown()
* Socket API function not supported by SOCKET.FN3 library.

388

Number Used to: Corresponding
Socket API Function

.fcSocket 26 Create socket socket()

.fcWritev 27* –– writev()

.fcClose 28 Close socket close()

.fcTSetup 40 Specify TCP/IP communications pathway Unique to BHT

.fcTCnnSys 41 Connect TCP/IP communications pathway
with system settings

Unique to BHT

.fcTCnnUsr 42 Connect TCP/IP communications pathway
with user settings

Unique to BHT

.fcTDiscnn 43 Disconnect TCP/IP communications
pathway

Unique to BHT

.fcTSysGet 44 Get TCP/IP system settings Unique to BHT

.fcTSysSet 45 Set TCP/IP system settings Unique to BHT

.fcTStsGet 46 Get TCP socket status Unique to BHT

* Socket API function not supported by SOCKET.FN3 library.

Chapter 17. TCP/IP

389

17.5.2 Detailed Function Specifications

Function #2 .fcBind
Assign address to socket

Syntax: CALL "SOCKET.FN3" .fcBind SOCKFD%, FAMILY%, PORT%,

address

 where address is ADDRESS or IPADDRESS$

Description: This function assigns an address to the specified socket identifier.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API bind() function.

Parameters: SOCKFD% Socket identifier
FAMILY% Protocol family
PORT% Port
ADDRESS IP address
IPADDRESS$ Internet address in dotted quad notation

 The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

.soINet 2 ARPA Internet protocols

 When specifying the value greater than 32767, describe in hexadecimal
notation.

 Example: PORT% = &h8000 ' Specify Port 32768

Return value: (None)

Run-time errors:

Error code Meaning

105h Power-off detected.

209h Socket identifier is invalid.

216h A parameter is invalid, or the socket is already bound.

224h The socket is being assigned an address.

230h The specified IP address is already in use.

390

Function #3 .fcConnect
Connect socket

Syntax: CALL "SOCKET.FN3" .fcConnect SOCKFD%, FAMILY%, PORT%,
address

 where address is ADDRESS or IPADDRESS$

Description: This function connects the specified socket identifier to another socket.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API connect() function.

Parameters: SOCKFD% Socket identifier
FAMILY% Protocol family
PORT% Port
ADDRESS Local address for connection
IPADDRESS$ Internet address in dotted quad notation

 The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

.soINet 2 ARPA Internet protocols

 When specifying the value greater than 32767, describe in hexadecimal
notation.

 Example: PORT% = &h8000 ' Specify Port 32768

Return value: (None)

Chapter 17. TCP/IP

391

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

201h Cannot connect to socket

209h Socket identifier is invalid.

216h A parameter is invalid.

229h The specified socket does not match the connection target
socket.

22Fh The specified address family is invalid for this socket.

230h The specified address is already in use.

231h The specified address is invalid.

238h The specified socket is already connected.

23Ah The specified TCP socket has been closed.

23Ch The connection attempt has timed out.

23Dh Failed to connect

293h The problem occurred on the communication pathway.

241h There is no connection pathway to the host for TCP socket.

392

Function #6 .fcGSckOpt
Get socket option

Syntax: CALL "SOCKET.FN3" .fcGSckOpt SOCKFD%, OPTNAME%, option

 where option is OPTION% or OPTION

Description: This function gets the specified option setting for the specified socket.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API getsockopt() function.

Parameters: SOCKFD% Socket identifier
OPTNAME% Option name

Return value: option Current setting for socket option
(OPTION%/OPTION) of type integer/real

Correspondence tables:
Option Number

(OPTNAME%) Description Values for Option (OPTION%)

.soDisable 0 Disabled .soKepAliv 2 Keep-alive timer enable/disable

.soEnable 1 Enabled

Option Number
(OPTNAME%) Description Values for Option (OPTION)

.soSndBuff 8 Transmit buffer size (byte) 1 to 8192

.soRcvBuff 9 Receive buffer size (byte) 1 to 8192

.soMaxRT 26 Retry count 0 to 32

.soTIMEWAIT 29 Status retaining period after
closing TCP socket (seconds)

0 to 60

.soRTODef 30 Initial round trip time (ms)* 100 to 3000

.soRTOMin 31 Minimum round trip time (ms)* 100 to 1000

.soRTOMax 32 Maximum round trip time (ms)* 100 to 60000

* Shown in units of 100. (e.g., 1 = 100 ms).

Chapter 17. TCP/IP

393

Run-time errors:

Error code Meaning

105h Power-off detected.

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

209h Socket identifier is invalid.

216h A parameter is invalid.

394

Function #7 .fcHToNL
Convert host long (4 bytes) to network byte order

Syntax: CALL "SOCKET.FN3" .fcHToNL HOSTLONG, NETLONG

Description: This function converts a (4-byte) long from host byte order to network byte
order.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API htonl() function.

Parameters: HOSTLONG Long in host byte order

Return value: NETLONG Long in network byte order

Function #8 .fcHToNS
Convert host short (2 bytes) to network byte order

Syntax: CALL "SOCKET.FN3" .fcHToNS HOSTSHORT%, NETSHORT%

Description: This function converts a (2-byte) short from host byte order to network
byte order.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API htons() function.

Parameters: HOSTSHORT% Short in host byte order

Return value: NETSHORT% Short in network byte order

Function #9 .fcINetAdr
Convert Internet address from dotted quad notation to
32-bit integer

Syntax: CALL "SOCKET.FN3" .fcINetAdr IPADDRESS$, ADDRESS

Description: This function converts an Internet address in dotted quad notation to a
4-byte Internet address.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API inet_addr() function.

Parameters: IPADDRESS$ Internet address in dotted quad notation

Return value: ADDRESS 4-byte Internet address

Chapter 17. TCP/IP

395

Function #11 .fcNToHL
Convert network long (4 bytes) to host byte order

Syntax: CALL "SOCKET.FN3" .fcNToHL NETLONG, HOSTLONG

Description: This function converts a (4-byte) long from network byte to host byte
order.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API ntohl() function.

Parameters: NETLONG Long in network byte order

Return value: HOSTLONG Long in host byte order

Function #12 .fcNToHS
Convert network short (2 bytes) to host byte order

Syntax: CALL "SOCKET.FN3" .fcNToHS NETSHORT%, HOSTSHORT%

Description: This function converts a (2-byte) short from network byte order to host
byte order.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API ntohs() function.

Parameters: NETSHORT% Short in network byte order

Return value: HOSTSHORT% Short in host byte order

396

Function #14 .fcRecv
Receive data sent to the specified TCP socket

Syntax: CALL "SOCKET.FN3" .fcRecv SOCKFD%, RECVBUFF$[()],
RECVLEN%, RECVMODE%, RECVSIZE% [,RECVFLAG%]

Description: This function receives data from the IP address and port number
connected to the specified socket identifier into the specified buffer.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API recv() function.

Parameters: SOCKFD% Socket identifier
 RECVBUFF$[()] Receive buffer
 RECVLEN% Maximum number of bytes to receive
 RECVMODE% Receive mode
 RECVFLAG% Storage method (optional)

 The receive buffer (RECVBUFF$) can be either a string non-array or
string array variable. The maximum size for a string is 255 bytes; for a
string array, 4096.

The receive mode (RECVMODE%) must be one of the following values:

.soRvNrm 0 Normal

.soRvOOB 1 Out of band data

.soRvPeek 2 Peek at next message

 The storage method (RECVFLAG%) is required for a string array buffer. It

is ignored for a string variable and new data will be written.

 The storage method (RECVFLAG%) must be one of the following values:

.soRvApend 0 Append data to buffer (default if omitted)

.soRvWrite 1 Overwrite buffer with data

 Note: If RECVFLAG% is 0 or omitted, the user application program must

initialize the receive buffer string array variable before receiving any data.

Return value: RECVSIZE% Number of bytes received

Chapter 17. TCP/IP

397

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

209h Socket identifier is invalid.

216h A parameter is invalid.

228h The maximum number of bytes to receive is too small.

236h An RST from the opposite end has forced disconnection.

237h There is insufficient system area memory.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

398

Example: Append operation

Incoming data: 1024 bytes ("0123456789..........0123")

Receive buffer: 8 elements, 128 characters each for a total of 1024 bytes

• After initializing receive buffer

• After receiving first 512 bytes

• After receiving remaining 512 bytes

Chapter 17. TCP/IP

399

Example: Overwrite operation

Incoming data: 1024 bytes ("0123456789..........0123")

Receive buffer: 8 elements, 128 characters each for a total of 1024 bytes

• After initializing receive buffer

• After receiving first 512 bytes

• After receiving remaining 512 bytes

400

Function #15 .fcRcvfrom
Receive data sent to the specified UDP socket

Syntax: CALL "SOCKET.FN3" .fcRcvfrom SOCKFD%, RECVBUFF$[()],
RECVLEN%, RECVMODE%, FAMILY%, PORT%, address,
RECVSIZE% [,RECVFLAG%]

 where address is ADDRESS or IPADDRESS$

Description: This function receives data sent to the UDP socket specified by the
socket identifier.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API recvfrom() function.

Parameters: SOCKFD% Socket identifier
 RECVBUFF$[()] Receive buffer
 RECVLEN% Maximum number of bytes to receive
 RECVMODE% Receive mode
 RECVFLAG% Storage method (optional)

 The receive buffer (RECVBUFF$) can be either a string non-array or
string array variable. The maximum size for a string non-array is 255
bytes; for a string array, 4096.

 The receive mode (RECVMODE%) must be one of the following values:

.soRvNrm 0 Normal

.soRvPeek 2 Peek at next message

 The protocol family (FAMILY%) must be 2, the value indicating the ARPA

Internet protocols.

.soINet 2 ARPA Internet protocols

 The storage method (RECVFLAG%) is required for a string array buffer. It

is ignored for a string non-array variable and new data will be written.

 The storage method (RECVFLAG%) must be one of the following values:

.soRvApend 0 Append data to buffer (default if omitted)

.soRvWrite 1 Overwrite buffer with data

 Note: If RECVFLAG% is 0 or omitted, the user application program must

initialize the receive buffer string array variable before receiving any data.

Return value: FAMILY% Protocol family of sending station
 PORT% Port number of sending station
 ADDRESS Address of sending station
 IPADDRESS$ Address of sending station in dotted quad notation
 RECVSIZE% Number of bytes received

Chapter 17. TCP/IP

401

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

209h Socket identifier is invalid.

216h A parameter is invalid.

228h The maximum number of bytes to receive is too small.

229h TCP is the wrong protocol here.

237h There is insufficient system area memory.

240h No receiver found.

402

Function #17 .fcSelect
Monitor socket requests

Syntax: CALL "SOCKET.FN3" .fcSelect MAXFD%, READFDSET$,

WRITEFDSET$, EXCEPTFDSET$, TIMEOUT, RESULT%

Description: This function waits for changes in the socket identifier sets (read, write,

and exception conditions) for the specified socket identifiers.

 The only exception condition is out of band data.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API select() function.

Parameters: MAXFD% Number of socket identifiers + 1

 READFDSET$ Socket identifier set to monitor for read

 WRITEFDSET$ Socket identifier set to monitor for write

 EXCEPTFDSET$ Socket identifier set to check for exception conditions

 TIMEOUT Waiting period (in seconds)

 The waiting period (TIMEOUT) must be one of the following values:

.soNoWait -1 No waiting period

.soNotTOut 0 No timeout

Other time interval in seconds

Return value: RESULT% Number of sockets that are ready.

 After a timeout, RESULT% contains 0.

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

209h Socket identifier is invalid.

216h A parameter is invalid.

Chapter 17. TCP/IP

403

Function #18 .fcFDZERO
Initialize socket identifier set

Syntax: CALL "SOCKET.FN3" .fcFDZERO SOCKFDSET$

Description: This function initializes the specified socket identifier set.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API FD_ZERO macro.

Parameters: SOCKFDSET$ Socket identifier set

Return value: (None)

Function #19 .fcFDSET
Add socket identifier to socket identifier set

Syntax: CALL "SOCKET.FN3" .fcFDSET SOCKFD%, SOCKFDSET$

Description: This function adds the specified socket identifier to the specified identifier

set.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API FD_SET macro.

Parameters: SOCKFD% Socket identifier

SOCKFDSET$ Socket identifier set

Return value: (None)

Function #20 .fcFDCLR
Delete socket identifier from socket identifier set

Syntax: CALL "SOCKET.FN3" .fcFDCLR SOCKFD%, SOCKFDSET$

Description: This function deletes the specified socket identifier from the specified

identifier set.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API FD_CLR macro.

404

Parameters: SOCKFD% Socket identifier

SOCKFDSET$ Socket identifier set

Return value: (None)

Chapter 17. TCP/IP

405

Function #21 .fcFDISSET
Get socket identifier status from socket identifier set

Syntax: CALL "SOCKET.FN3" .fcFDISSET SOCKFD%, SOCKFDSET$,

FDISSET%

Description: This function gets the status of the specified socket identifier in the

specified socket identifier set.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API FD_ISSET macro.

Parameters: SOCKFD% Socket identifier

SOCKFDSET$ Socket identifier set

Return value: FDISSET% Socket identifier status

 The socket identifier status (FDISSET%) must be one of the following
values:

.soFDSet 0 No change

.soFDNoSet 1 Change in status

406

Function #22 .fcSend
Send message to another TCP socket

Syntax: CALL "SOCKET.FN3" .fcSend SOCKFD%, SENDBUFF$[()],

SENDLEN%, SENDMODE%, SENDSIZE%

Description: This function transmits data from the specified buffer to the IP address

and port number connected to the specified socket identifier.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API sendto() function.

Parameters: SOCKFD% Socket identifier

 SENDBUFF$[()] Transmit buffer

 SENDLEN% Number of bytes to transmit

 SENDMODE% Transmit mode

 The transmit buffer (SENDBUFF$) can be either a string non-array or

string array variable. The maximum size for a string is 255 bytes; for a

string array, 4096.

 The transmit mode (SENDMODE%) must be one of the following values:

.soSdNrm 0 Normal

.soSdOOB 1 Out of band data

.soSdDnRt 4 Bypass pathway control function

Return value: SENDSIZE% Number of bytes transmitted

Chapter 17. TCP/IP

407

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

209h Socket identifier is invalid.

216h A parameter is invalid.

228h The maximum number of bytes to receive is too small.

237h There is insufficient system area memory.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

241h There is no connection pathway to the host for UDP socket.

408

Function #23 .fcSendto
Send message to another UDP socket

Syntax: CALL "SOCKET.FN3" .fcSendto SOCKFD%, SENDBUFF$[()],

SENDLEN%, SENDMODE%, FAMILY%, PORT%, address,

SENDSIZE%

 where address is ADDRESS or IPADDRESS$

Description: This function transmits data from the specified buffer to the IP address

and port number connected to the specified socket identifier.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API sendto() function.

Parameters: SOCKFD% Socket identifier

 SENDBUFF$[()] Transmit buffer

 SENDLEN% Number of bytes to transmit

 SENDMODE% Transmit mode

 FAMILY% Protocol family

 PORT% Port

 ADDRESS Local address for connection

 IPADDRESS$ Internet address in dotted quad notation

 The transmit buffer (SENDBUFF$) can be either a string non-array or

string array variable. The maximum size for a string non-array is 255

bytes; for a string array, 1472.

 The transmit mode (SENDMODE%) must be one of the following values:

.soSdNrm 0 Normal

.soSdDnRt 4 Bypass pathway control function

 The protocol family (FAMILY%) must be 2, the value indicating the ARPA

Internet protocols.

.soINet 2 ARPA Internet protocols

 When specifying the value greater than 32767, describe in hexadecimal
notation.

 Example: PORT% = &h8000 ' Specify Port 32768

Return value: SENDSIZE% Number of bytes transmitted

Chapter 17. TCP/IP

409

Run-time errors:

Error code Meaning

105h Power-off detected

209h Socket identifier is invalid.

216h A parameter is invalid.

228h The maximum number of bytes to receive is too small.

229h TCP is the wrong protocol here.

237h There is insufficient system area memory.

241h There is no connection pathway to the host.

410

Function #24 .fcSSckOpt
Set socket options

Syntax: CALL "SOCKET.FN3" .fcSSckOpt SOCKFD%, OPTNAME%, option

 where option is OPTION% or OPTION

Description: This function sets the specified option for the specified socket to the new
value.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4
socket API setsockopt() function.

Parameters: SOCKFD% Socket identifier
 OPTNAME% Option name
 OPTION%/OPTION New setting for socket option of type integer/real

Return value: (None)

Correspondence tables:
Option Number
(OPTNAME%) Description Values for Option (OPTION%)

.soDisable 0 Disabled .soKepAliv 2 Keep-alive timer enable/disable

.soEnable 1 Enabled

Option Number
(OPTNAME%) Description Values for Option

(OPTION)
Initial

values

.soSndBuff 8 Transmit buffer size (byte) 1 to 8192 8192

.soRcvBuff 9 Receive buffer size (byte) 1 to 8192 8192

.soMaxRT 26 Retry count 0 to 32 12

.soTIMEWAIT 29 Status retaining period after
closing TCP socket (seconds)

0 to 60 60

.soRTODef 30 Initial round trip time (ms)* 100 to 3000 3000

.soRTOMin 31 Minimum round trip time (ms)* 100 to 1000 100

.soRTOMax 32 Maximum round trip time (ms)* 100 to 60000 60000

* To be set in units of 100.

Chapter 17. TCP/IP

411

Run-time errors:

Error code Meaning

105h Power-off detected.

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

201h Cannot set option after connection established

209h Socket identifier is invalid.

216h A parameter is invalid.

412

Function #25 .fcShutdwn
Shut down socket

Syntax: CALL "SOCKET.FN3" .fcShutdwn SOCKFD%, HOWTO%

Description: This function shuts down socket transfers in the specified direction.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API shutdown() function.

Parameters: SOCKFD% Socket identifier

HOWTO% Direction specification

 The direction specification (HOWTO%) must be one of the following values:

.soSdRecv 0 Receive

.soSdSend 1 Transmit

.soSdBoth 2 Both

Return value: (None)

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

209h Socket identifier is invalid.

216h A parameter is invalid.

22Ah This option is not recognized at the specification level.

Chapter 17. TCP/IP

413

Function #26 .fcSocket
Create socket

Syntax: CALL "SOCKET.FN3" .fcSocket FAMILY%, TYPE%,

PROTOCOL%, SOCKFD%

Description: This function creates a socket from the specified protocol family, socket

type, and protocol layer and assigns it to a socket identifier.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API socket() function.

Parameters: FAMILY% Protocol family for the socket

TYPE% Socket type

PROTOCOL% Protocol layer for the socket

 The protocol family (FAMILY%) must be 2, the value indicating the ARPA
Internet protocols.

.soINet 2 ARPA Internet protocols

 The socket type (TYPE%) must be one of the following values:

.soStream 1 Stream socket

.soDGRam 2 Datagram socket

.soSoRaw 3 RAW socket

 The protocol layer (PROTOCOL%) must be one of the following values:

.soICMP 1 ICMP

.soTCP 6 TCP

.soUDP 17 UDP

Return value: SOCKFD% Socket identifier

414

Run-time errors:

Error code Meaning

105h Power-off detected.

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

218h Too many sockets

22Bh This protocol family does not support the specified protocol type
and protocol.

237h There is insufficient system area memory.

Chapter 17. TCP/IP

415

Function #28 .fcClose
Close socket

Syntax: CALL "SOCKET.FN3" .fcClose SOCKFD%

Description: This function closes the specified socket identifier.

 BSD4.4 socket API equivalent: This function is equivalent to the BSD4.4

socket API close() function.

Parameters: SOCKFD% Socket identifier

Return value: (None)

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

209h Socket identifier is invalid.

225h The last close operation for the specified socket is not complete.

23Ah The specified TCP socket has been closed.

23Ch The connection attempt has timed out.

416

Function #40 .fcTSetup
Specify TCP/IP communications pathway

Syntax: CALL "SOCKET.FN3" .fcTSetup IFTYPE%, LAYERMODE%,
INTERFACE%

Description: This function specifies the TCP/IP communications pathway from the
specified communications device and link layer.

Parameters: IFTYPE% Communications device
LAYERMODE% Link layer

 The communications device (IFTYPE%) must be one of the following
values:

- 0 (Reserved for system)

- 2 (Reserved for system)

.soDvCOM4 3 COM4 (Bluetooth communications
device)
For models equipped with a Bluetooth
communications device.

 The link layer (LAYERMODE%) must be one of the following values:

.soLyPPP 0 PPP client

- 2 (Reserved for system)

Return value: INTERFACE% Communications pathway

Run-time errors:

Error code Meaning

100h Cannot specify communications pathway

Chapter 17. TCP/IP

417

Function #41 .fcTCnnSys
Connect TCP/IP communications pathway with system
settings

Syntax: CALL "SOCKET.FN3" .fcTCnnSys INTERFACE%

Description: This function connects the TCP/IP communications pathway based on the

system settings.

Parameters: INTERFACE% Communications pathway

Return value: (None)

Run-time errors:

Error code Meaning

34h Communications device file not open

101h Cannot connect to communications pathway

102h Communications pathway not specified

103h Communications pathway already connected

105h Power-off detected

216h A parameter is invalid.

418

Function #42 .fcTCnnUsr
Connect TCP/IP communications pathway with user
settings

Syntax: CALL "SOCKET.FN3" .fcTCnnUsr INTERFACE%,

IPADDRESS$, SUBNETMASK$, GATEWAY$, PPPMODE%,

USERNAME$, PASSWORD$

Description: This function connects the TCP/IP communications pathway based on the

supplied user settings.

Parameters: INTERFACE% Communications pathway

IPADDRESS$ Internet address in dotted quad notation

SUBNETMASK$ Subnet mask in dotted quad notation

GATEWAY$ Default gateway in dotted quad notation

PPPMODE% PPP authentication procedure

USERNAME$ User name for PPP authentication

PASSWORD$ Password for PPP authentication

 The PPP authentication procedure (PPPMODE%) must be one of the
following values:

.soPPPAuthNo 0 None authentication

.soPPPPAP 1 PAP

.soPPPCHAP 2 CHAP

Return value: (None)

Chapter 17. TCP/IP

419

Run-time errors:

Error code Meaning

34h Communications device file not open

101h Cannot connect to communications pathway

102h Communications pathway not specified

103h Communications pathway already connected

105h Power-off detected

216h A parameter is invalid.

420

Function #43 .fcTDiscnn
Disconnect TCP/IP communications pathway

Syntax: CALL "SOCKET.FN3" .fcTDiscnn INTERFACE%

Description: This function disconnects the specified TCP/IP communications pathway.

Parameters: INTERFACE% Communications pathway

Return value: (None)

Run-time errors:

Error code Meaning

104h Communications pathway already disconnected

105h Power-off detected

216h A parameter is invalid.

Chapter 17. TCP/IP

421

Function #44 .fcTSysGet
Get TCP/IP system settings

Syntax: CALL "SOCKET.FN3" .fcTSysGet PARA%, data

 where data is DATA% or DATA$

Description: This function gets the current setting for the specified TCP/IP system

settings.

Parameters: PARA% Item number

Return value: data Current setting for TCP/IP system settings

(DATA%/DATA$)

Correspondence tables:
Item number (PARA%) Description Values for Setting (DATA%)

.soPPPAuthNo 0 None
authentication

.soPPPAuth 4 PPP authentication
procedure

.soPPPPAP 1 PAP

 .soPPPCHAP 2 CHAP

- 0 (Reserved for
system)

.soDvGet 100 Communications device

- 2 (Reserved for
system)

 .soDvCOM4 3 COM4

.soLyPPP 0 PPP .soLyGet 200 Link layer

- 2 (Reserved for
system)

Item number (PARA%) Description Values for Setting (DATA$)

.soPmIPAdr 1 IP address Character string in dotted quad
notation, maximum 15 bytes

.soPmNtMsk 2 Subnet mask Character string in dotted quad
notation, maximum 15 bytes

.soPmDGWay 3 Default gateway Character string in dotted quad
notation, maximum 15 bytes

.soPPPUser 5 User name for PPP
authentication

Character string, maximum 15 bytes

.soPPPPw 6 Password for PPP
authentication

Character string, maximum 15 bytes

422

Function #45 .fcTSysSet
Set TCP/IP system settings

Syntax: CALL "SOCKET.FN3" .fcTSysSet PARA%, data

 where data is DATA% or DATA$

Description: This function sets the specified TCP/IP system settings to the new value.

Parameters: PARA% Item number

 data New setting for TCP/IP system settings (DATA%/DATA$)

Return value: (None)

Correspondence tables:

 Refer to Table under function #44.

Chapter 17. TCP/IP

423

Function #46 .fcTStsGet
Get TCP socket status

Syntax: CALL "SOCKET.FN3" .fcTStsGet SOCKFD%, PATTERN%,
TIMEOUT%, RESULT%

Description: This function waits until the specified TCP socket is in the specified state
or the specified time elapsed.

Parameters: SOCKFD% Socket identifier
PATTERN% Desired socket state
TIMEOUT% Waiting period (in milliseconds, 100 ms resolution)

 The socket state (PATTERN%) must be &h0020, the value indicating that
the opposite end has sent FIN to close the socket. Only TCP sockets
support this function.

.soStRmtCl &h0020 Close socket from the opposite end
(FIN received)

 Note: Specifying an invalid state sometimes stops processing.

 TIMEOUT% must be one of the following values:

.soNoWait -1 No timeout

.soNotTOut 0 Read current state

1 to 32767 Wait specified time
(timer resolution: 100 ms)

Return value: RESULT% Current socket state

 RESULT% contains the current socket state. After a timeout, RESULT%
contains 0.

Run-time errors:

Error code Meaning

105h Power-off detected

209h Socket identifier is invalid.

216h A parameter is invalid.

424

17.6 FTP Library (FTP.FN3)
17.6.1 Overview

■ String Variables

The following are the string variables used by this library together with their memory

requirements.

Description Variable name Size in bytes

Server IP address SERV.IP 15

Login user name USERNAME$ 0 to 16

Login password PASSWORD$ 0 to 16

Directory names CURDIR$
NEWDIR$

0 to 255
0 to 255

File names SERV.FNAME$ CLNT.
FNAME$ OLD.FNAME$
 NEW.FNAME$

0 to 12
0 to 12
0 to 12
0 to 12

Field lengths FLD$ 1 to 64 (48)

FTP parameter FTP.PARA

Function Number Description FTP
Commands

.fcFTPOpnS 1 Open FTP client session with system settings USER/PASS

.fcFTPOpnU 2 Open FTP client session with user settings USER/PASS

.fcFTPClos 3 Close FTP client session ---

.fcPWD 4 Get current directory on FTP server PWD

.fcCWD 5 Change current directory on FTP server CWD

.fcRETR 6 Download file from FTP server RETR

.fcSTOR 7 Upload file to FTP server STOR/APPE

.fcFSysGet 8 Get FTP system settings ---

.fcFSysSet 9 Change FTP system settings ---

.fcRNFR 10 Change file name on FTP server RNFR/RNTO

.fcPORT 11 Set port number for file transfer PORT

.fcDELE 12 Delete file from FTP server DELE

Refer to also the run-time errors for the FTP.FN3 library.

Chapter 17. TCP/IP

425

■ Reply Codes
The messages that FTP servers send during and after FTP operations vary, but servers
all use the same reply codes. (Refer to Table.) All function numbers therefore supply
these as their return value (REPLY%).

Reply Codes Description

110 Restart marker replay.

120 Service ready in nnn minutes.

125 Data connection already open; transfer starting.

150 File status okay; about to open data connection.

200 Command okay.

202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

212 Directory status.

213 File status.

214 Help message.
On how to use the server or the meaning of a particular non-standard
command. This reply is useful only to the human user.

215 NAME system type.
Where NAME is an official system name from the list in the Assigned
Numbers document.

220 Service ready for new users.

221 Service closing control connection.
Logged out if appropriate.

225 Data connection open; no transfer in progress.

226 Closing data connection.
Requested file action successful (for example, file transfer or file
abort).

227 Entering Passive Mode (h1, h2, h3, h4, p1, p2).

230 User logged in, proceed.

250 Requested file action okay, completed.

257 “PATHNAME” created.

331 User name okay, need password.

350 Requested file action pending further information.

421 Service not available, closing control connection.
This may be a reply to any command if the service knows it must shut
down.

425 Can't open data connection.

426

Reply Codes Description

426 Connection closed; transfer aborted.

450 Requested file action not taken.
File unavailable (e.g., file busy).

451 Requested action aborted: local error in processing.

452 Requested action not taken.
Insufficient storage space in system.

500 Syntax error, command unrecognized.
This may include errors such as command line too long.

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command not implemented for that parameter.

530 Not logged in.

532 Need account for storing files.

550 Requested action not taken.
File unavailable (e.g., file not found, no access).

551 Requested action aborted: page type unknown.

552 Requested file action aborted.
Exceeded storage allocation (for current directory or dataset).

553 Requested action not taken.
File name not allowed.

Chapter 17. TCP/IP

427

17.6.2 Detailed Function Specifications

Function #1 .fcFTPOpnS
Open FTP client session with system settings

Syntax: CALL "FTP.FN3" .fcFTPOpnS FTPHANDLE%, REPLY%

Description: This function opens an FTP client session using the system settings.

Parameters: (None)

Return value: FTPHANDLE% FTP client handle, for use by following functions
REPLY% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

20Dh Attempt to connect to different FTP server without disconnecting

216h The FTP client handle is invalid.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

23Ch The connection attempt has timed out.

293h The problem occurred on the communication pathway.

428

Function #2 .fcFTPOpnU
Open FTP client session with user settings

Syntax: CALL "FTP.FN3" .fcFTPOpnU FTPHANDLE%, SERV.IP$,
USERNAME$, PASSWORD$, REPLY%

Description: This function opens an FTP client session based on the supplied user
settings.

Parameters: SERV.IP$ FTP server IP address in dotted quad notation
USERNAME$ User name for FTP authentication
PASSWORD$ Password for FTP authentication

Return value: FTPHANDLE% FTP client handle, for use by following functions
REPLY% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

20Dh Attempt to connect to different FTP server without disconnecting

216h The FTP client handle is invalid.

239h The specified socket is not connected.

23Ah The specified TCP socket has been closed.

23Ch The connection attempt has timed out.

293h The problem occurred on the communication pathway.

Chapter 17. TCP/IP

429

Function #3 .fcFTPClos
Close FTP client session

Syntax: CALL "FTP.FN3" .fcFTPClos FTPHANDLE%, REPLY%

Description: This function closes the specified FTP client session.

Parameters: FTPHANDLE% FTP client handle

Return value: REPLY% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

216h The FTP client handle is invalid.

239h The specified socket is not connected.

430

Function #4 .fcPWD
Get current directory on FTP server

Syntax: CALL "FTP.FN3" .fcPWD FTPHANDLE%, CURDIR$, REPLY%

Description: This function gets the current directory on the FTP server.

Parameters: FTPHANDLE% FTP client handle

Return value: CURDIR$ FTP server current directory
REPLY% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

Note: The directory specification (CURDIR$) is limited to 255 bytes, so do not

use longer directory names on the server.

Chapter 17. TCP/IP

431

Function #5 .fcCWD
Change current directory on FTP server

Syntax: CALL "FTP.FN3" .fcCWD FTPHANDLE%, NEWDIR$, REPLY%

Description: This function changes the current directory on the FTP server.

Parameters: FTPHANDLE% FTP client handle

NEWDIR$ New directory

Return value: REPLY% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

432

Function #6 .fcRETR
Download file from FTP server

Syntax: CALL "FTP.FN3" .fcRETR FTPHANDLE%, SERV.FNAME$,

CLNT.FNAME$, CRLF.TYPE%, CRLF.MODE%, REPLY% [,FLD$]

[,DISP.MODE%]

Description: This function downloads, from the current directory on the FTP server to

the BHT, the specified file using the specified parameters.

Parameters: FTPHANDLE% FTP client handle

SERV.FNAME$ Name of file to download from FTP server

 CLNT.FNAME$ Name for file on handy terminal. Leaving this

unspecified ("") uses the name in

SERV.FNAME$ instead.

Note: SERV.FNAME$ and CLNT.FNAME$ must have the same type (file

extension): user program (.PD3), extension library (.FN3 or .EX3), or data

file (all other extensions). Otherwise, the run-time error 32h is the result.

CRLF.TYPE% Line delimiter

.ftCRLF 0 CR-LF combination
(Treat CR-LF combinations as delimiters. Use
this value when the data file delimits records
with CR-LF combinations.)

.ftCR 1 LF
(Treat LFs as delimiters. Use this value when
the data file delimits records with LFs.)

.ftLF 2 CR
(Treat CRs as delimiters. Use this value when
the data file delimits records with CRs.)

.ftNONE 3 None
Use this value when the data file does not
delimit records.

CRLF.MODE% Treatment of line delimiters in records and trailing

spaces in fields

 Note: CRLF.MODE% will be ignored for files except data
files.

.ftRcdSepa 0 Treat line delimiters in records as SEPARATORS.

TRIM trailing spaces in fields.

Chapter 17. TCP/IP

433

.ftRcdData 1 Treat line delimiters in records as DATA.
TRIM trailing spaces in fields.

.ftLspDel 10 Treat line delimiters in records as SEPARATORS.
RETAIN trailing spaces in fields.

.ftLspData 11 Treat line delimiters in records as DATA.
RETAIN trailing spaces in fields.

FLD$ Field lengths in bytes. Delimit the field length specifi-

cations with commas (,) or semicolons (;). (This

parameter applies only to downloaded data files.)

 "<field length 1> [,<field length 2>,... <field length n>]"

(n=1 to 16, field length = 1 to 254)

DISP.MODE% Flag controlling a progress display consisting of an
8-digit number giving the number of bytes transferred

.ftNotDisp 0 Disable

.ftDisp 1 Enable

Return value: REPLY% Server response to FTP command

Example: Downloading a data file

 SERV.FNAME$ = "MASTER.DAT" 'File name on server
 CLNT.FNAME$ = "" 'Name for file on the BHT
 'Same as on server
 CRLF.TYPE% = .ftCR 'Server line delimiter: LF
 CRLF.MODE% = .ftRcdSepa 'Data composition
 'There are no line delimiters in the data.
 FLD$ = "3, 2, 1" 'Field lengths: 3, 2, 1
 CALL "FTP.FN3" .fcRETR FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _
 CRLF.MODE%, REPLY%, FLD$

Example: Downloading a program file, with progress display

 SERV.FNAME$ = "SAMPLE.PD3" 'File name on server
 CLNT.FNAME$ = "" 'Name for file on the BHT
 'Same as on server
 CRLF.TYPE% = .ftCRLF 'Server line delimiter: CR-LF combination

434

 CRLF.MODE% = .ftRcdSepa 'Data composition: Will be ignored for
 'files except data files

 DISP.MODE% = .ftDisp 'Enable progress display
 CALL "FTP.FN3" .fcRETR FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _
 CRLF.MODE%, REPLY%, DISP.MODE%

Chapter 17. TCP/IP

435

Run-time errors:

Error code Meaning

02h Syntax error (Incorrect file name)

05h Number of field items or number of digits in a field out of the
range

07h Insufficient memory space

32h Wrong file type

33h Invalid text received

37h File already open

39h Too many files

3Ch Record exceeds 255 bytes.

3Dh Field mismatch error

41h File damaged

47h User break with cancel (C) key

49h Invalid program file received (Invalid program size. Do not
download user programs that have been run through Kanji
conversion utilities.)

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

111h File not closed

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

436

Function #7 .fcSTOR
Upload file to FTP server

Syntax: CALL "FTP.FN3" .fcSTOR FTPHANDLE%, SERV.FNAME$,
CLNT.FNAME$, CRLF.TYPE%, UP.MODE%, REPLY%
[,DISP.MODE%]

Description: This function uploads, from the BHT to the current directory on the FTP
server, the specified file using the specified parameters.

Parameters: FTPHANDLE% FTP client handle
SERV.FNAME$ Name for file on FTP server. Leaving this unspecified

("") uses the name in CLNT.FNAME$ instead.
CLNT.FNAME$ Name of file to upload to FTP server
CRLF.TYPE% Line delimiter (Refer to description under function #6

above.)
UP.MODE% Flag controlling treatment of existing files

.ftUpSTOR 0 Overwrite existing file

.ftUpAPPE 1 Append to existing file. Create new file if
necessary.

DISP.MODE% Flag controlling a progress display consisting of an

8-digit number giving the number of bytes transferred
 Refer to the DISP.MODE% under function #6.

Return value: REPLY% Server response to FTP command

Example: Uploading data file

 CLNT.FNAME$ = "MASTER1.DAT" 'Name of file on BHT
 SERV.FNAME$ = "" 'Name on server
 'Same as on BHT
 CRLF.TYPE% = .ftCRLF 'Server line delimiter: CR-LF combination
 UP.MODE% = .ftUpAPPE 'Upload mode: Append
 CALL "FTP.FN3" .fcSTOR FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _ UP.MODE%,

REPLY%

Chapter 17. TCP/IP

437

Example: Uploading program file, with progress display

 CLNT.FNAME$ = "SAMPLE.PD3" 'Name of file on BHT
 SERV.FNAME$ = "" 'Name on server
 'Same as on BHT
 CRLF.TYPE% = .ftCRLF 'Server line delimiter: CR-LF combination
 UP.MODE% = .ftUpSTOR 'Upload mode: Overwrite
 DISP.MODE% = .ftDisp 'Enable progress display
 CALL "FTP.FN3" .fcSTOR FTPHANDLE%, SERV.FNAME$, CLNT.FNAME$, CRLF.TYPE%, _
 UP.MODE%, REPLY%, DISP.MODE%

Run-time errors:

Error code Meaning

35h File not found

37h File already open

47h User break with cancel (C) key

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

111h File not closed

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

438

Function #8 .fcFSysGet
Get FTP system settings

Syntax: CALL "FTP.FN3" .fcFSysGet PARA%, ftp.para
 where ftp.para is FTP.PARA% or FTP.PARA$

Description: This function gets the current setting for the specified FTP system
settings.

Parameters: PARA% Item number

Return value: ftp.para Current setting for FTP system settings of type
integer/string (FTP.PARA%/FTP.PARA$)

Correspondence tables:

Item number
(PARA%) Description Values for Setting (FTP.PARA%)

.ftCRLFTyp 5 Line delimiter 0 (CR-LF), 1 (LF),
2 (CR), 3 (None)

.ftCRLFMd 6 Treatment of line delimiters
inside records

0 (separators), 1 (data)

.ftUpMd 7 Upload mode 0 (overwrite), 1 (append)

.ftDispMd 8 Progress display 0 (disable), 1 (enable)

Item number
(PARA%) Description Values for Setting (FTP.PARA$)

.ftSrvIP 1 IP address for FTP server Character string in dotted quad
notation, maximum 15 bytes

.ftUsrNm 2 User name for FTP authen-
tication

Character string, maximum of 16
bytes

.ftPswd 3 Password for FTP authenti-
cation

Character string, maximum of 16
bytes

.ftDefDir 4 Initial directory on FTP
server

Character string, maximum of 63
bytes

Chapter 17. TCP/IP

439

Function #9 .fcFSysSet
Change FTP system settings

Syntax: CALL "FTP.FN3" .fcFSysSet PARA%, ftp.para
 where ftp.para is FTP.PARA% or FTP.PARA$

Description: This function changes the specified FTP system settings to the new
value.

Parameters: PARA% Item number
ftp.para New setting for FTP system settings of type

integer/string (FTP.PARA%/FTP.PARA$)

Return value: (None)

Correspondence tables:
 Refer to Table under .fcFSysGet.

440

Function #10 .fcRNFR
Change file name on FTP server

Syntax: CALL "FTP.FN3" .fcRNFR FTPHANDLE%, OLD.FNAME$,
NEW.FNAME$, REPLY%

Description: This function changes the name of a file in the current directory on the
FTP server.

Parameters: FTPHANDLE% FTP client handle
OLD.FNAME$ Name before change
NEW.FNAME$ Name after change

Return value: REPLY% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

Chapter 17. TCP/IP

441

Function #11 .fcPORT
Set port number for file transfer

Syntax: CALL "FTP.FN3" .fcPORT FTPHANDLE%, PORT%

Description: This function sets a port number specified by PORT% for file transfer.

Parameters: FTPHANDLE% FTP client handle
PORT% Port number

 When specifying the value greater than 32767, describe in hexadecimal
notation.

 Example: PORT% = &h8000 ' Specify Port 32768

Return value: (None)

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

442

Function #12 .fcDELE
Delete file from FTP server

Syntax: CALL "FTP.FN3" .fcDELE FTPHANDLE%, SERV.FNAME$, REPLY%

Description: This function deletes a file specified by SERV.FNAME$ from the FTP
server.

Parameters: FTPHANDLE% FTP client handle
SERV.FNAME$ File name to be deleted

Return value: REPLY% Server response to FTP command

Run-time errors:

Error code Meaning

105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.

108h The memory for the TCP/IP module has became insufficient
during data transmission.

110h Response other than 2XX received

216h The FTP client handle is invalid.

239h The specified socket is not connected.

295h There is no user for login request.

443

Chapter 18
Bluetooth (BHTs with Bluetooth
communications device)

CONTENTSCONTENTSCONTENTSCONTENTS

18.1 Bluetooth Communications..444

18.1.1 Introduction..444
18.1.2 System Components ...445

18.2 Programming Overview ...447
18.2.1 Software Components ...447
18.2.2 Statements and Functions Used..448
18.2.3 Programming Procedures..449

18.2.3.1 Discovering Accessible Remote Devices in the Vicinity (Inquiry) ...449
18.2.3.2 Serial Link with Remote Device..451
18.2.3.3 Dial-Up Networking via Remote Device ...454
18.2.3.4 Service Discovery ..458

18.2.4 Programming Notes...460
18.2.4.1 Retransmission control in serial communications...........................460
18.2.4.2 Reading data received in serial communications461
18.2.4.3 Resume Operation ...463
18.2.4.4 Power Supply Control ..464

18.3 Bluetooth Statements and Functions ...466
18.3.1 Overview ...466
18.3.2 Detailed Specifications ..468

18.4 Bluetooth Extended Functions (BT.FN3)...481
18.4.1 Overview ...481
18.4.2 Detailed Specifications ..482

444

18.1 Bluetooth Communications
18.1.1 Introduction

The BHT supports the following profiles based on the BluetoothTM Specification Ver.1.1.

• The Generic Access Profile for discovering accessible Bluetooth devices in the vicinity

• The Serial Port Profile for RS232 (or similar) serial cable emulation through a virtual
serial port

• The Dial-up Networking Profile for accessing the Internet via a modem or other device
supporting dial-up access

• The Service Discovery Application Profile for querying and browsing for services offered
by another Bluetooth device.

Service D
iscovery

C
ordless Telephony

Intercom

D
ial-up N

etw
orking

FA
X

H
eadset

LA
N

A
ccess

O
bject Push

File Transfer

Synchronization

Generic Object
Exchange

Serial Port

Generic Access

XXX The shaded portions indicate the Bluetooth profiles supported.

BluetoothTM Specification Ver.1.1

Bluetooth Profiles Supported

Chapter 18. Bluetooth

445

18.1.2 System Components

The following figures give examples of Bluetooth networks using the BHT. For further details,

refer to the BHT User's Manual.

� Virtual Serial Link with PVirtual Serial Link with PVirtual Serial Link with PVirtual Serial Link with PC or Portable PrinterC or Portable PrinterC or Portable PrinterC or Portable Printer

� Connecting to the Internet via a Cell PhoneConnecting to the Internet via a Cell PhoneConnecting to the Internet via a Cell PhoneConnecting to the Internet via a Cell Phone

BHT
PC

Portable printer

Bluetooth

BHT

Internet

BHT

Cell phone
Bluetooth

Telephone line

446

• The BHT does not support multiple simultaneous links (Piconet.) As
master, the BHT supports only one slave at a time.

• As a slave, however, the BHT can connect to a master supporting

multiple simultaneous links (Piconet.)

Slave

BHT (master)

Available

Slave

BHT (master)

Not Available

BHT (slave)

BHT (slave)

Slave

Master

Slave

Available

Chapter 18. Bluetooth

447

18.2 Programming Overview
18.2.1 Software Components

The BHT system consists of the BHT main system and Bluetooth communications device.

The former executes user programs and the latter performs Bluetooth communications.

User programs use the logical communications device file "COM4" to control the Bluetooth

communications device.

Bluetooth communications device

BHT main system

User program in BHT-BASIC

TCP/IP

PPP

Bluetooth system

Virtual serial port (logical device file "COM4")

SOCKET.FN3,
FTP.FN3

Firmware

BT.FN3

Communications
Settings

TCP/IP
communications

BHT-BASIC statements and functions

OPEN,CLOSE,
PRINT #, etc.

448

18.2.2 Statements and Functions Used

Bluetooth communications uses the following statements and functions.

(1) Statements and functions

Refer to Section 18.3, "Bluetooth Statements and Functions."

(2) Bluetooth communications device control extended function (BT.FN3)

Refer to Section 18.4, "Bluetooth Extended Functions (BT.FN3)."

(3) Socket library for TCP/IP data transfer (SOCKET.FN3)

Refer to Section 17.5, "Socket Library (SOCKET.FN3)."

(4) FTP library for file transfer (FTP.FN3)

Refer to Section 17.6, "FTP Library (FTP.FN3)."

Chapter 18. Bluetooth

449

18.2.3 Programming Procedures

18.2.3.1 Discovering Accessible Remote Devices in the
Vicinity (Inquiry)

The BHT supports the Generic Access Profile for discovering accessible Bluetooth devices in

the vicinity.

Connecting to a remote device as master requires specifying the Bluetooth device address for

that device. If that address is unknown, the BHT must first determine the addresses of

accessible Bluetooth devices in the vicinity. If that address is already known, however, the

user program can skip this step.

The following is the procedure for discovering remote devices.

Remote device discovery has the following parameters.

• Device discovery timeout, in seconds

• Number of devices to discover

Remote device discovery continues until the specified time elapses, the BHT finds the

specified number of remote devices, or the user presses the clear key.

Open Bluetooth communications device file

OPEN "COM4:I" statement

Discover accessible Bluetooth devices in
the vicinity

Read Bluetooth device addresses for those
devices

Extended function BT.FN3 function
number .fcBTInqRes

CLOSE statement Close Bluetooth device file

450

There are two ways to specify the above parameters.

• Use the system settings

• Specify them in the OPEN statement

The user modifies the system settings with the system menu; the user program, with

extended function BT.FN3 function numbers .fcBTSetVal. For further details on the system

menu, refer to the BHT User's Manual.

Specifying a parameter in the OPEN statement does not affect the system settings.

Given below are examples discovering accessible remote devices in the vicinity.

(a) Using the system settings

OPEN "COM4:I" AS #4
(b) Specifying parameters in the OPEN statement

OPEN "COM4:I,20,3" AS #4 ' Device discovery timeout: 20 seconds
' Number of devices to discover: 3

 For further details on the OPEN "COM4:" statement and BT.FN3 extended function, refer to

Sections 18.3 "Bluetooth Statements and Functions" and 18.4 "Bluetooth Extended Functions

(BT.FN3),"respectively.

(Example)

Allow 30 seconds for discovering accessible remote devices in the vicinity. Stop at 5.

DEFREG bdaddr$(4)[12]
' Open Bluetooth communications device file
' Discover remote devices in the vicinity
OPEN "COM4:I,30,5" AS #4 ' Device discovery timeout: 30 seconds

' Number of devices to discover: 5
CALL "BT.FN3" .fcBTInqRes num%,bdaddr$()' Read discovery results
' Close Bluetooth communications device file
CLOSE #4

Chapter 18. Bluetooth

451

18.2.3.2 Serial Link with Remote Device
The BHT supports the Serial Port Profile for RS232 (or similar) serial cable emulation through

a virtual serial port.

The BHT establishes a connection to an emulated serial port (or equivalent) in a remote

device for serial communications. After connection, the interface is similar to the IrDA and

direct-connect interfaces, using, for example, BHT-BASIC PRINT # statements for output and

INPUT$ function calls for input.

The following is the procedure for using such a serial link.

Remote device connections have the following parameters.

• Bluetooth device address for remote device (if BHT is master)

• Bluetooth passkey for master (or slave)

• Connection timeout, in seconds, for master (or slave)

• Security mode for master (or slave)

The BHT specifies master or slave operation when it opens the connection.

If it specifies master operation, the Bluetooth communications device automatically connects

Open Bluetooth communications device file

OPEN "COM4:M,SPP" or

OPEN "COM4:S,SPP" statement

Use serial communications facilities PRINT #, XFILE statements, INPUT$,
EOF, LOC functions, etc.

Disconnect remote device

CLOSE statement

Close Bluetooth communications device
file

Establish virtual serial connection to
remote device

452

to the specified slave device. Otherwise, the Bluetooth communications device waits for a call

from a master before connecting.

For further details on parameters, refer to the BHT User's Manual.

There are two ways to specify the above parameters.

• Use the system settings

• Specify them in the OPEN statement

The user modifies the system settings with the system menu; the user program, with

extended function BT.FN3 function numbers .fcBTSetVal and .fcBTSetStr. For further

details on the system menu, refer to the BHT User's Manual.

Specifying a parameter in the OPEN statement does not affect the system settings.

Given below are examples connecting to the remote device as master.

(a) Using the system settings

OPEN "COM4:M,SPP" AS #4
(b) Specifying parameters in the OPEN statement

OPEN "COM4:M,SPP,112233AABBCC,BHT,30,2" AS #4
 ' Address for remote device:

' "11:22:33:AA:BB:CC"
' Bluetooth passkey: BHT
' Connection timeout: 30 seconds
' Security mode: service level

For further details on OPEN "COM4:" statements, refer to Section 18.3 "Bluetooth Statements

and Functions."

(Example)

Connect as master via virtual serial port to the remote device and transfer data in both

directions.

DIM sendbuff$[255] ' Allocate transmit buffer
DIM recvbuff$[255] ' Allocate receive buffer
' Create data to transmit
sendbuff$ = "ABCDEFG" ' Data to transmit = "ABCDEFG"
sendbuff$ = sendbuff$ + BCC$(sendbuff$,2)
 ' Add block check character
' Open Bluetooth communications device file
' Connect to remote device at address "11:22:33:AA:BB:CC"

Chapter 18. Bluetooth

453

OPEN "COM4:M,SPP,112233AABBCC" AS #4 ' Address for remote device:
' 11:22:33:AA:BB:CC"

' Use serial communications facilities
PRINT #4,sendbuff$; ' Transmit data

' Read data received
' For details about reading data received,
' refer to Section 18.2.4.2 "Reading data received in serial communications."

' Disconnect remote device
' Close Bluetooth communications device file
CLOSE #4

454

18.2.3.3 Dial-Up Networking via Remote Device
The BHT supports the Dial-up Networking Profile for accessing the Internet via a modem or

other device supporting dial-up access. The BHT uses a Bluetooth connection to control

dial-up Internet access by the modem inside a cell phone, base station, or other suitably

equipped device.

The following is the procedure for connecting to the Internet with such a modem and using

TCP/IP communications.

Open Bluetooth communications device file

OPEN "COM4:M,DUN" statement

Establish Bluetooth connection to modem

Use modem to establish data link by
dialing provider and logging in

PRINT # statement, INPUT$ function, etc.

Specify TCP/IP communications pathway
(Bluetooth device and PPP layer) Extended function SOCKET.FN3 function

number .fcTSetup

Connect TCP/IP communications pathway
(PPP layer)

Extended function SOCKET.FN3 function
number .fcTCnnSys or .fcTCnnUsr

Transfer data and files over socket
interface

Extended function SOCKET.FN3 or
FTP.FN3

Chapter 18. Bluetooth

455

Dial-up networking connections have the following parameters.

• Bluetooth device address for remote device

• Master Bluetooth passkey

• Master connection timeout in seconds

• Master security mode

For further details on parameters, refer to the BHT User's Manual.

There are two ways to specify the above parameters.

• Use the system settings

• Specify them in the OPEN statement

The user modifies the system settings with the system menu; the user program, with

extended function BT.FN3 function numbers .fcBTSetVal and .fcBTSetStr. For further

details on the system menu, refer to the BHT User's Manual.

Specifying a parameter in the OPEN statement does not affect the system settings.

Given below are examples connecting to the Internet using a cell phone.

(a) Using the system settings

Use modem to break data link PRINT # statement, INPUT$ function, etc.

Disconnect TCP/IP communications
pathway (PPP layer)

Extended function SOCKET.FN3 function
number .fcTDiscnn

Break Bluetooth connection to modem

CLOSE statement

Close Bluetooth communications device
file

456

OPEN "COM4:M,DUN" AS #4
(b) Specifying parameters in the OPEN statement

OPEN "COM4:M,DUN,112233AABBCC,BHT,30,2" AS #4
 ' Address for remote device:

' 11:22:33:AA:BB:CC"
' Bluetooth passkey: BHT
' Connection timeout: 30 seconds
' Security mode: service level

For further details on OPEN "COM4:" statement, refer to Section 18.3 "Bluetooth Statements

and Functions."

(Example)

Connect to the Internet using a cell phone and transfer data and files over socket interface.

The cell phone has the following specifications.

Dial command : "ATDT" + telephone number
Connect message : "CONNECT"
Escape command : "+++"
Disconnect command : "ATH"
Reply message : "OK"

' Open Bluetooth communications device file
' Connect to cell phone with Bluetooth device at address "11:22:33:AA:BB:CC"
 OPEN "COM4:M,DUN,112233AABBCC" AS #4 ' Address for remote device:

' "11:22:33:AA:BB:CC"
' Establish data link
 PRINT #4, "ATDT1234567890" ' Dial provider (123-456-7890)
' Wait for "CONNECT"
' For details about the reading data received,
' refer to Section 18.2.4.2 "Reading data received in serial communications."

' Specify TCP/IP communications pathway
 iftype% = .soDvCOM4 ' Communications device: Bluetooth
 layermode% = .soLyPPP ' Link layer: PPP
 CALL "SOCKET.FN3" .fcTSetup iftype%,layermode%,Interface%
 ' Specify TCP/IP communications pathway
' Connect TCP/IP communications pathway
 ip$ = "192.168.0.125" ' IP address for the BHT
 msk$ = "255.255.255.0" ' Subnet mask
 gw$ = "0.0.0.0" ' Default gateway

Chapter 18. Bluetooth

457

 auh% = .soPPPPAP ' PPP authentication procedure: PAP
 usr$ = "USER" ' User name for PPP authentication
 psw$ = "PASSWORD" ' Password for PPP authentication
 CALL "SOCKET.FN3" .fcTCnnUsr Interface%,ip$,msk$,gw$,auh%,usr$,psw$

' Data and file transfers over socket interface
 'Omitted

' Disconnect TCP/IP communications pathway
 CALL "SOCKET.FN3" .fcTDiscnn Interface%

' Disconnect data link
 PRINT #4, "+++" ' Transmit escape command "+++"
 ' Wait for "OK"
 ' For details about the reading data received,
 ' refer to Section 18.2.4.2 "Reading data received in serial communications."
 PRINT #4, "ATH" ' Transmit disconnect command "ATH"
 ' Wait for "OK"
 ' For details about the reading data received,
 ' refer to Section 18.2.4.2 "Reading data received in serial communications."
' Disconnect modem and close Bluetooth communications device file
 CLOSE #4
 END

• The above procedure assumes that the modem uses standard AT
commands and response messages. Consult the modem's User's
Manual for the strings used.

• This Dial-up Networking Profile does not support slave (GW) operation
because the BHT does not have a built-in modem.

458

18.2.3.4 Service Discovery
The BHT supports the Service Discovery Application Profile for querying and browsing for

services offered by another Bluetooth device.

The following is the procedure.

Service discovery has the following parameters.

• Bluetooth device address for remote device

• Master Bluetooth passkey

• Master connection (service discovery) timeout in seconds

For further details on parameters, refer to the BHT User's Manual.

There are two ways to specify the above parameters.

• Use the system settings

• Specify them in the OPEN statement

The user modifies the system settings with the system menu; the user program, with

extended function BT.FN3 function numbers .fcBTSetVal and .fcBTSetStr. For further

details on the system menu, refer to the BHT User's Manual.

Specifying a parameter in the OPEN statement does not affect the system settings.

Given below are examples querying and browsing for services.

Open Bluetooth communications device file

OPEN "COM4:M,SDAP" statement

Query and browse for services by specified
remote device

Acquire service information
Extended function BT.FN3 function
number .fcBTGetSvc

CLOSE statement Close Bluetooth communications device
file

Chapter 18. Bluetooth

459

(a) Using the system settings

OPEN "COM4:M,SDAP" as #4
(b) Specifying parameters in the OPEN statement

OPEN "COM4:M,SDAP,112233AABBCC,BHT,60" as #4
 ' Address for remote device:

' 11:22:33:AA:BB:CC"
' Bluetooth passkey: BHT
' Service discovery timeout: 60 seconds

For further details on the OPEN "COM4:" statement and BT.FN3 extended function, refer to

Sections 18.3 "Bluetooth Statements and Functions" and 18.4 "Bluetooth Extended Functions

(BT.FN3)," respectively.

(Example)

Query and browse for services offered by Bluetooth device at address "11:22:33:AA:BB:CC."

DIM sclass%(8)
DIM sname$(8)
' Open Bluetooth communications device file
' Query and browse for services offered by another Bluetooth device
' at address"11:22:33:AA:BB:CC"
OPEN "COM4:M,SDAP,112233AABBCC" as #4 ' Address for remote device:

' "11:22:33:AA:BB:CC"
CALL "BT.FN3" .fcBTGetSvc num%, sclass%(), sname$()
 ' Acquire service discovery results
' Close Bluetooth communications device file
CLOSE #4

460

18.2.4 Programming Notes

18.2.4.1 Retransmission control in serial communications
Any system design using wireless communications must assume data losses due to line

quality deterioration and data duplication due to delays during transmission. If the user

program does not use the BHT protocol, the BHT-Ir protocol, or TCP/IP, it must implement its

own protocol providing retransmission and flow control.

The following gives an example of such retransmission control for a user program.

The frequency of such communications errors varies considerably with the operating

environment and usage conditions, so base the retransmission count and other parameters

on thorough testing in a worst-case environment.

Extended function BT.FN3 function number .fcBTChkSnd allows the user program to check

whether all data messages transmitted actually reached the other end.

BHT

Data message (SN = 2)

Transmission
completion message

Error

Data message (SN = 2)

(sent again)

Same SN means data duplication

Data message (SN = 1)

Transmission
completion message

Error in transmission
completion message

SN = sequence number

Transmission

completion message

Disconnect and close

Retransmission

Other end

Chapter 18. Bluetooth

461

18.2.4.2 Reading data received in serial communications
We recommend that user programs always follow the approach shown below, setting a

timeout and only reading data with INPUT$ functions and the like when there is actual data in

the receive buffer because there is every possibility of the direct approach hanging, waiting

for data, due to disconnection of the remote device or motion out of communications range.

Note that extended function BT.FN3 function number .fcBTGetStt is available for reading

the connection status for the remote device.

(Example)

Connect via virtual serial port to the remote device and receive.

DIM recvbuff$[255] ' Allocate receive buffer
OPEN "COM4:M,SPP" AS #4 ' Open Bluetooth communications device file
recvbuff$ = "" ' Clear receive buffer
TIMEA = 50 ' Receive wait timer: 5 seconds
WAIT 0,&h18 ' Wait for data or timeout
IF LOC(#4) > 0 THEN ' If data received,
 WHILE LOC(#4) > 0 ' read data received
 recvbuff$ = recvbuff$ + INPUT$(LOC(#4), #4)
 TIMEA = 5 : WAIT 0,&h10 ' Consider 500 ms with no input

' as indicating end of receive operation
 WEND
 PRINT "Receive ";recvbuff$ ' Display data received
ELSE ' If no data received,
 PRINT "Receive timeout" ' timeout
 CALL "BT.FN3" .fcBTGetStt STATUS% ' Check current connection status
 IF STATUS%=2 OR STATUS%=3 THEN ' If connected, receive again
 ' Retry receive
 ELSE ' If disconnected, close and connect again
 CLOSE #4
 ' Retry open and connect to remote device
 ENDIF
ENDIF
CLOSE #4

462

Do not use INPUT# or LINE INPUT# statement for reading data
received. The INPUT# or LINE INPUT# statement waits for reception of
CR (0Dh) or comma (,), so it cannot terminate in the case of data missing
due to communications line error or disconnection of the communications
line.

Chapter 18. Bluetooth

463

18.2.4.3 Resume Operation
Bluetooth communications does not support resume operation.

If the BHT shuts itself down due to low battery, etc, when the Bluetooth communications

device file is opened, the results of Bluetooth-related statements and functions executed

during shutdown are not assured so that coincidence between transmitted and received data

is not assured. The solution is to use the BHT-protocol, BHT-Ir protocol, or TCP/IP or create

protocols in user programs.

Extended function BT.FN3 function number .fcBTGetStt allows the user program to check

whether the BHT is turned off. If the current status is "Not connected. BHT power off," close

the Bluetooth communications device file once and then open it.

For further details on extended function BT.FN3, refer to Section 18.4 "Bluetooth Extended

Functions (BT.FN3)."

464

18.2.4.4 Power Supply Control
� Power supply control of Power supply control of Power supply control of Power supply control of Bluetooth communicationsBluetooth communicationsBluetooth communicationsBluetooth communications device device device device
Closing the Bluetooth communications device file or switching to the power-saving mode

while the Bluetooth communications device is not in use reduces the power consumption and

extends the time that the BHT can be used between recharges.

Note, however, that the response is late because it takes several seconds to open the

Bluetooth communications device file, connect to a remote device, and reach the state where

communications is possible. The power-saving mode also introduces data communications

delays. The developer must therefore tailor the use of these two approaches to match the

intended application.

� PowerPowerPowerPower----saving modesaving modesaving modesaving mode
The BHT offers a power-saving mode with the following operation.

A request for shift to the power-saving mode in the user program shifts the BHT to the HOLD

mode which suspends real-time transmission of any data and buffers the transmit data.

At the end of the HOLD interval specified by the user program, the BHT temporarily leaves

the HOLD mode to check for data in the transmit buffer and for requests to leave the

power-saving mode. If it finds neither, it immediately returns to the HOLD mode.

If there is data in the transmit buffer, the BHT sends all data in the transmit buffer and then

returns to the HOLD mode. If the BHT finds a request to leave the power-saving mode, it

goes out of the mode.

Power-saving mode control uses extended function BT.FN3. For further details, refer to

Section 18.4 "Bluetooth Extended Functions (BT.FN3)."

Chapter 18. Bluetooth

465

• Power-saving mode introduces delays.
For operations involving real-time communications, we recommend
that the power-saving mode be disabled. For operations using protocols
for file transfer, etc., also disable the power-saving mode or set the
HOLD mode interval that does not affect those transfer protocols.
Otherwise, delays of data may cause protocol errors, resulting in
communications errors.

• Note that the other end can also automatically enter HOLD mode
during the HOLD mode interval, and that this end has no means to
force it out of that mode.

• If the other end does not support the HOLD mode, there is no
transition.

HOLD mode interval

Data transfer Request to leave
power-saving mode

BHT buffers transmit data
in HOLD mode.

BHT sends data at
the end of the current
HOLD mode interval

User Program

Power-saving mode operation

Request for shift to
power-saving mode

466

18.3 Bluetooth Statements and
Functions

18.3.1 Overview

The following statements and functions are available for use with the Bluetooth

communications device.

Statement or Function Used to:

OPEN "COM4:I" Open the Bluetooth communications device file in inquiry mode,
discovering accessible remote devices in the vicinity

OPEN "COM4:M" Open the Bluetooth communications device file with the BHT as
master and connect to a slave

OPEN "COM4:S" Open the Bluetooth communications device file with the BHT as a
slave and wait for a master

CLOSE Close the Bluetooth communications device file

INPUT # Read data from the Bluetooth communications device file into
specified variables

LINE INPUT # Read data from the Bluetooth communications device file into a string
variable

PRINT # Write data to the Bluetooth communications device file

WAIT Wait for a change in Bluetooth communications device file receive
buffer status

XFILE Transfer file using the specified communications protocol

Chapter 18. Bluetooth

467

Statement or Function Used to:

EOF Read whether there is data in the Bluetooth communications device
file receive buffer

LOC Read the number of bytes in the Bluetooth communications device
file receive buffer

LOF Read the number of bytes free in the Bluetooth communications
device file receive buffer

INPUT$ Read data from the Bluetooth communications device file into a
variable

INP Read the status of Bluetooth communications device file receive
buffer

468

18.3.2 Detailed Specifications
OPEN "COM4:I"
 Open the Bluetooth communications device file in

inquiry mode, discovering accessible remote devices in
the vicinity

Syntax:Syntax:Syntax:Syntax:
OPEN "COM4:I[, [discoverytime][,[no.of.devices]]]" AS
[#]filenumber

Parameter:Parameter:Parameter:Parameter:
discoverytime

Integer from 0 to 255.

no.of.devices

Integer from 0 to 8.

filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:

This statement opens the Bluetooth communications device file in inquiry mode,

discovering accessible remote devices in the vicinity.

Discovery continues until one of the following conditions is met.

• The BHT finds the specified number of devices.

• The specified time elapses.

• The user presses the clear key.

Note that the OPEN statement does not terminate until discovery is complete.

The extended function BT.FN3 provides access to the discovery results--including

any partial results obtained before the operation timed out or the user pressed the

clear key.

Chapter 18. Bluetooth

469

■ COM4
This indicates the Bluetooth interface. Note that the BHT cannot open this

communications device file concurrently with the IrDA interface or

direct-connect interface.

■ I
This specifies opening in inquiry mode.

■ discoverytime
This specifies the maximum interval to wait for responses from accessible

remote devices. The unit is seconds; the range, 0 to 255. Note, however, that

any value above 62 is rounded downward to produce a maximum discovery

time of 62 seconds.

Specifying 0 opens the Bluetooth communications device file and skips device

discovery.

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

■ no.of.devices
This specifies an upper limit on the number of devices discovered. The OPEN

statement terminates when it reaches this limit, regardless of the discovery time

specified.

The range is 0 to 8. Specifying 0 sets the number to the maximum supported

(8).

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Refer to Chapter 14, "Statement Reference."

470

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

105h Power-off detected

600h Failed to open a Bluetooth communications device file.

For error codes other than the above, refer to Chapter 14 "Statement Reference."

Chapter 18. Bluetooth

471

OPEN "COM4:M"
 Open the Bluetooth communications device file with the

BHT as master and connect to a slave

Syntax:Syntax:Syntax:Syntax:
OPEN "COM4:M, serviceprofile [, [deviceaddress][,
[passkey][, [timeout][, [securitymode]]]]]" AS
[#]filenumber

Parameter:Parameter:Parameter:Parameter:
serviceprofile

SDAP, SPP, or DUN.

deviceaddress

String of 12 hexadecimal digits.

passkey

Character string, Max. 16 bytes.

timeout

Integer from 1 to 255.

securitymode

Integer from 1 to 3.

filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:

This statement opens the Bluetooth communications device file with the BHT as

master and connects to a slave. (page)

All subsequent I/O and other operations involving the Bluetooth interface use the

filenumber.

472

■ COM4
This indicates the Bluetooth interface. Note that the BHT cannot open this

communications device file concurrently with the IrDA interface or

direct-connect interface.

■ M
This specifies opening in master mode.

■ serviceprofile
This specifies the service profile for the Bluetooth interface connection.

SDAP

Service Discovery Application Profile

The extended function BT.FN3 then provides access to the discovery

results.

SPP

Serial Port Profile

DUN

Dial-up Networking Profile

■ deviceaddress
This specifies the Bluetooth device address for the remote device as a string of

12 hexadecimal digits.

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

■ passkey
This specifies the Bluetooth passkey (Bluetooth PIN), character string, Max. 16

bytes, for authentication between Bluetooth devices.

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

Chapter 18. Bluetooth

473

■ timeout
This specifies a time limit for completing the operation. The unit is seconds; the

range, 1 to 255.

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

■ securitymode
This specifies the security mode for the connection, one of the following values.

Setting Security Mode

1 Security mode 1 (nonsecure)

2 Security mode 2 (service level enforced security)

3 Security mode 3 (link level enforced security)

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

For further details on Bluetooth device address, Bluetooth passkey, and

security mode, refer to the BHT User's Manual.

Pressing the clear key aborts the operation with run-time error
47h.
The operation aborts with run-time error 601h (630h for SDAP)
if the specified device does not exist, if it is not able to accept
the connection, or the Bluetooth passkey is incorrect. Check the
remote device's status and the parameters and try again.
Service profile SDAP ignores the security mode setting and
always uses 1, the " nonsecure" setting.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Refer to Chapter 14, "Statement Reference."

474

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

47h Abnormal end of communications or termination of
communications by the Clear key

105h Power-off detected

600h Failed to open a Bluetooth communications device file.

601h Failed to connect.

602h Connection timed out.

630h No services found.

631h Service discovery timed out.

For error codes other than the above, refer to Chapter 14, "Statement Reference."

Chapter 18. Bluetooth

475

OPEN "COM4:S"
 Open the Bluetooth communications device file with the

BHT as a slave and wait for a master

Syntax:Syntax:Syntax:Syntax:

OPEN "COM4:S, serviceprofile [, [passkey][, [timeout][,

[securitymode]]]]" AS [#]filenumber

Parameter:Parameter:Parameter:Parameter:
serviceprofile

SPP

passkey

Character string, Max. 16 bytes.

timeout

Integer from 1 to 255.

securitymode

Integer from 1 to 3.

filenumber

A numeric expression which returns a value from 1 to 16.

Description:Description:Description:Description:

This statement opens the Bluetooth communications device file with the BHT as a

slave and wait for inquiries and connection requests from masters. (Inquiry Scan

Enable and Page Scan Enable)

All subsequent I/O and other operations involving the Bluetooth interface use the

filenumber.

476

■ COM4
This indicates the Bluetooth interface. Note that the BHT cannot open this

communications device file concurrently with the IrDA interface or

direct-connect interface.

■ S
This specifies opening in slave mode.

■ serviceprofile
This specifies the service profile for the Bluetooth interface connection.

SPP

Serial Port Profile

■ passkey
This specifies the Bluetooth passkey (Bluetooth PIN), character string, Max. 16

bytes, for authentication between Bluetooth devices.

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

■ timeout
This specifies a time limit for completing the operation. The unit is seconds; the

range, 1 to 255.

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

■ securitymode
This specifies the security mode for the connection, one of the following values.

Setting Security Mode

1 Security mode 1 (nonsecure)

2 Security mode 2 (service level enforced security)

3 Security mode 3 (link level enforced security)

Chapter 18. Bluetooth

477

Leaving this parameter blank specifies the use of the system setting.

Specifying a parameter does not affect the system setting.

For further details on Bluetooth device address, Bluetooth passkey, and

security mode, refer to the BHT User's Manual.

Pressing the clear key aborts the operation with run-time error
47h.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Refer to Chapter 14, "Statement Reference."

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

47h Abnormal end of communications or termination of
communications by the Clear key

105h Power-off detected

600h Failed to open a Bluetooth communications device file.

602h Connection timed out.

For error codes other than the above, refer to Chapter 14, "Statement Reference."

478

CLOSE Close the Bluetooth communications device file
Refer to Chapter 14, "Statement Reference."

INPUT # Read data from the Bluetooth communications device
file into specified variables

Refer to Chapter 14, "Statement Reference."

LINE INPUT # Read data from the Bluetooth communications device
file into a string variable

Refer to Chapter 14, "Statement Reference."

Chapter 18. Bluetooth

479

PRINT # Write data to the Bluetooth communications device file

Syntax:Syntax:Syntax:Syntax:

Refer to Chapter 14, "Statement Reference."

Parameter:Parameter:Parameter:Parameter:

Refer to Chapter 14, "Statement Reference."

Description:Description:Description:Description:

Refer to Chapter 14, "Statement Reference."

A PRINT # statement ends with the write of the data to the
Bluetooth communications device file. It provides no guarantee
that the data actually reached the other end. The user program
must use either extended function BT.FN3 function
number .fcBTChkSnd or receive a confirmation message from
the other end.

Syntax errors:Syntax errors:Syntax errors:Syntax errors:

Refer to Chapter 14, "Statement Reference."

RunRunRunRun----time errors:time errors:time errors:time errors:

Error code Meaning

610h Bluetooth data link already disconnected.

622h No response from Bluetooth interface.

For error codes other than the above, refer to Chapter 14, "Statement Reference."

480

WAIT Wait for a change in Bluetooth communications device
file receive buffer status

Refer to Chapter 14, "Statement Reference."

XFILE Transfer file using the specified communications
protocol

Refer to Chapter 14, "Statement Reference."

EOF Read whether there is data in the Bluetooth
communications device file receive buffer

Refer to Chapter 14, "Statement Reference."

LOC Read the number of bytes in the Bluetooth
communications device file receive buffer

Refer to Chapter 14, "Statement Reference."

LOF Read the number of bytes free in the Bluetooth
communications device file receive buffer

Refer to Chapter 14, "Statement Reference."

INPUT$ Read data from the Bluetooth communications device
file into a variable

Refer to Chapter 14, "Statement Reference."

INP Read the status of Bluetooth communications device
file receive buffer

Refer to Chapter 14, "Statement Reference."

Chapter 18. Bluetooth

481

18.4 Bluetooth Extended Functions
(BT.FN3)

18.4.1 Overview

The Bluetooth extended functions (BT.FN3) used in a BHT-BASIC CALL statement reads or

writes Bluetooth parameters and controls operation.

If Bluetooth communications device becomes no longer possible, a run-time error 105h may

occur. In such a case, close the device file and then open again.

■ Function Number List of Function Number List of Function Number List of Function Number List of BT.FN3

Function number Used to:

.fcBTGetVal 1 Read Bluetooth integer setting

.fcBTSetVal 2 Write Bluetooth integer setting

.fcBTGetStr 3 Read Bluetooth string setting

.fcBTSetStr 4 Write Bluetooth string setting

.fcBTSysVer 7 Read Bluetooth system version

.fcBTDevInf 8 Read Bluetooth device information

.fcBTRmtNam 9 Get remote device name

.fcBTInqRes 10 Read remote device discovery results

.fcBTRmtInf 11 Get Bluetooth device address for remote device

.fcBTGetStt 12 Read connection status

.fcBTGetLnk 13 Read authenticated Bluetooth device addresses

.fcBTClrLnk 14 Erase authenticated Bluetooth device addresses

.fcBTHold 15 Control power-saving mode

.fcBTChkSnd 20 Check data transmit result

.fcBTGetSvc 21 Read service discovery results

482

18.4.2 Detailed Specifications
Function #1 .fcBTGetVal

Read Bluetooth integer setting

Syntax: CALL "BT.FN3" .fcBTGetVal PARA%,DATA%

Description: This function reads the specified Bluetooth setting into the specified

integer variable.

Parameters: PARA% Item number

Returned value: DATA% Integer read from the specified Bluetooth setting

Correspondence table:

Item number
(PARA%)

parameter

Attribute*1 Parameter value
(DATA%)

Initial
value

.btTTOInq 1 Device discovery timeout R/W 0 to 255
(unit: seconds)

10

.btNumInq 2 Number of devices to
discover

R/W 0 to 8 0

.btTOMst 3 Master connection
timeout

R/W 1 to 255
(unit: seconds)

30

.btTOSlv 4 Slave connection timeout R/W 1 to 255
(unit: seconds)

255

.btSecMst 5 Master security mode R/W 1
2
3

Nonsecure
Service level
Link level

1

.btSecSlv 6 Slave security mode R/W 1
2
3

Nonsecure
Service level
Link level

1

*1 R/W: Read and write possible

Run-time errors:

Error code Meaning

05h Parameter out of the range

F0h Mismatch parameter number

F1h Mismatch parameter type

Chapter 18. Bluetooth

483

Function #2 .fcBTSetVal
Write Bluetooth integer setting

Syntax: CALL "BT.FN3" .fcBTSetVal PARA%,DATA%

Description: This function writes the specified value to the specified Bluetooth integer

setting.

Parameters: PARA% Item number

 DATA% New setting

Returned value: (None)

Correspondence table:

 Refer to the correspondence table given in Function .fcBTGetVal.

Note: The new setting takes effect the next time that the Bluetooth

communications device file is opened.

Run-time errors:

Error code Meaning

05h Parameter out of the range

F0h Mismatch parameter number

F1h Mismatch parameter type

484

Function #3 .fcBTGetStr

Read Bluetooth string setting

Syntax: CALL "BT.FN3" .fcBTGetStr PARA%,DATA$

Description: This function reads the specified Bluetooth string setting into the specified

string variable.

Parameters: PARA% Item number

Returned value: DATA$ String read from the specified Bluetooth setting

Correspondence table:

Item number
(PARA%)

parameter

Attribute*1 Parameter value
(DATA$) Initial value

.btLocNam 1 Bluetooth device
name

WO Character string,
Max. 16 bytes

DENSO-BHT

.btRmtAdr 2 Bluetooth device
address for
remote device

R/W String of 12
hexadecimal
digits

0000000000
00

.btKeyMst 3 Master Bluetooth
passkey

R/W Character string,
Max. 16 bytes

0000000000
000000

.btKeySlv 4 Slave Bluetooth
passkey

R/W Character string,
Max. 16 bytes

0000000000
000000

*1 WO: Write only
R/W: Read and write possible

Note: Function number .fcBTDevInf is available for reading the Bluetooth

device name.

 The Bluetooth passkey distinguishes between upper and lower case.

Chapter 18. Bluetooth

485

Run-time errors:

Error code Meaning

05h Parameter out of the range

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Out of string variable space

486

Function #4 .fcBTSetStr
Write Bluetooth string setting

Syntax: CALL "BT.FN3" .fcBTSetStr PARA%,DATA$

Description: This function writes the specified value to the specified Bluetooth string

setting.

Parameters: PARA% Item number

 DATA$ New setting

Returned value: (None)

Correspondence table:

 Refer to the correspondence table given in Function .fcBTGetStr.

Note: The new setting takes effect the next time that the Bluetooth

communications device file is opened.

Run-time errors:

Error code Meaning

05h Parameter out of the range

F0h Mismatch parameter number

F1h Mismatch parameter type

Chapter 18. Bluetooth

487

Function #7 .fcBTSysVer
Read Bluetooth system version

Syntax: CALL "BT.FN3" .fcBTSysVer BTSYSVER$

Description: This function reads the Bluetooth system version.

Parameters: (None)

Returned value: BTSYSVER$ Bluetooth system version (fixed at 4 characters)

The user program must allocate at least 4 bytes to BTSYSVER$.

Run-time errors:

Error code Meaning

05h Parameter out of the range

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Out of string variable space

488

Function #8 .fcBTDevInf
Read Bluetooth device information

Syntax: CALL "BT.FN3" .fcBTDevInf PARA%,DATA$

Description: This function reads Bluetooth device information.

Parameters: PARA% Item number

Returned value: DATA$ Current Bluetooth information setting

Correspondence table:

Item number
(PARA%)

parameter

Attribute*1 Parameter value
(DATA$)

.btFWVer 1 Bluetooth device firmware
version

RO Character string, Max.
9 bytes

.btDevAdr 2 Bluetooth device address RO String of 12
hexadecimal digits

.btDevNam 3 Bluetooth device name RO Character string, Max.
16 bytes

*1 RO: Read only

Note: The function should be executed after execution of OPEN "COM4:"

statement.

 Function number .fcBTSetStr is available for setting the Bluetooth

device name.

Chapter 18. Bluetooth

489

Run-time errors:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number. (The Bluetooth communications device
file is not opened)

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Out of string variable space

105h Power-off detected.

622h No response from Bluetooth interface

Example:
Read and display Bluetooth device address.

OPEN "COM4:I,0" AS #4 ' Open Bluetooth communications device file
PARA% = .btDevAdr
CALL "BT.FN3" .fcBTDevInf PARA%,DATA$
 ' Read Bluetooth device address
PRINT DATA$ ' Display Bluetooth device address
CLOSE #4 ' Close Bluetooth communications device file

490

Function #9 .fcBTRmtNam
Get remote device name

Syntax: CALL "BT.FN3" .fcBTRmtNam BDADDR$,BDNAME$

Description: This function gets the Bluetooth device name for the remote device at the

specified Bluetooth address.

Parameters: BDADDR$ Bluetooth device address (string of 12 hexadecimal digits)

Returned value: BDNAME$ Device name (character string, Max. 248 bytes)

If the name is longer than the string length of BDADDR$, the interface

discards the excess bytes.

Note: The function should be executed after execution of OPEN "COM4:"

statement.

 The operation aborts with run-time error 621h if the specified device does

not exist or it is not able to accept the connection. Check the remote

device's status and try again.

Chapter 18. Bluetooth

491

Run-time errors:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number. (The Bluetooth communications device
file is not opened)

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Out of string variable space

105h Power-off detected.

621h Failed to get remote device name.

622h No response from Bluetooth interface

Example:

Get and display remote device name.

OPEN "COM4:I,0" AS #4 ' Open Bluetooth communications device file
BDADDR$ = "112233AABBCC" ' Address for remote device:

' "11:22:33:AA:BB:CC"
CALL "BT.FN3" .fcBTRmtNam BDADDR$,BDNAME$
 ' Get remote device name
PRINT BDADDR$,BDNAME$ ' Display Bluetooth device address and name
CLOSE #4 ' Close Bluetooth communications device file

492

Function #10 .fcBTInqRes
Read remote device discovery results

Syntax: CALL "BT.FN3" .fcBTInqRes NUM%,BDADDR$[()]

Description: This function reads results of remote device discovery with a OPEN
"COM4:I" statement.

Parameters: (NONE)

Returned value: NUM% Number of remote devices discovered (0 to 8)

 BDADDR$[()]

Bluetooth device addresses (strings of 12 hexadecimal digits

each) for remote device discovered.

NUM% gives the number of valid addresses in the array BDADDR$.

The user program must allocate at least 12 bytes to BDADDR$.

If NUM% is greater than 1, treat BDADDR$ as an array variable.

If the number of devices discovered exceeds the number of

BDADDR$ entries, the interface stops when the array is full.

Note: The function should be executed after execution of OPEN "COM4:I"

statement.

Chapter 18. Bluetooth

493

Run-time errors:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number. (The Bluetooth communications device
file is not opened)

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Out of string variable space

105h Power-off detected.

622h No response from Bluetooth interface

Example:

Discover remote devices and display results

DIM BDADDR$(7)[12] ' Allocate space for 8 devices
OPEN "COM4:I,30,0" AS #4 ' Discover remote devices
CALL "BT.FN3" .fcBTInqRes NUM%,BDADDR$()
 ' Read discovery results
CLOSE #4 ' Close Bluetooth communications device file
FOR I%=0 TO NUM%-1

PRINT BDADDR$(I%) ' Display device address
NEXT

494

Function #11 .fcBTRmtInf

Get Bluetooth device address for remote device
Syntax: CALL "BT.FN3" .fcBTRmtInf BDADDR$

Description: This function gets the Bluetooth device address for the connected remote

device.

Parameters: (None)

Returned value: BDADDR$ Bluetooth device address (string of 12 hexadecimal digits)

for connected remote device

The user program must allocate at least 12 bytes to BDADDR$.

Note: The function should be executed after execution of OPEN "COM4:M" or

OPEN "COM4:S" statement.

Run-time errors:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number. (The Bluetooth communications device
file is not opened)

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Out of string variable space

105h Power-off detected.

620h Not connected to a remote device

Chapter 18. Bluetooth

495

Function #12 .fcBTGetStt

Read connection status
Syntax: CALL "BT.FN3" .fcBTGetStt STATUS%

Description: This function reads the current connection status.

Parameters: (None)

Returned value: STATUS% Current connection status

STATUS% Current Connection Status

0 Not connected.

1 Not connected.
Connection broken by the other end.

2 Connected.

3 Connected (in power-saving mode.)

4 Not connected. BHT power off.

Note: If the BHT in connection with a remote device is disconnected by the

device, "1" (Not connected. Connection broken by the other end) is

returned to STATUS%. If the BHT is turned off, "4" (Not connected. BHT

power off) is returned. In either of these cases, close the Bluetooth

communications device file once and then open it.

Run-time errors:

Error code Meaning

F0h Mismatch parameter number

F1h Mismatch parameter type

496

Function #13 .fcBTGetLnk

Read authenticated Bluetooth device addresses
Syntax: CALL "BT.FN3" .fcBTGetLnk NUM%,BDADDR$[()]

Description: This function reads the Bluetooth device addresses of authenticated

remote devices.

Parameters: (NONE)

Returned value: NUM% Number of authenticated remote devices (0 to 3)

 BDADDR$[()]

Bluetooth device addresses (strings of 12 hexadecimal digits

each) for authenticated remote devices.

NUM% gives the number of valid addresses in the array BDADDR$.

The user program must allocate at least 12 bytes to BDADDR$.

If NUM% is greater than 1, treat BDADDR$ as an array variable.

If the number of devices detected exceeds the number of

BDADDR$ entries, the interface stops when the array is full.

Run-time errors:

Error code Meaning

F0h Mismatch parameter number

F1h Mismatch parameter type

F2h Out of string variable space

Chapter 18. Bluetooth

497

Function #14 .fcBTClrLnk

Erase authenticated Bluetooth device addresses
Syntax: CALL "BT.FN3" .fcBTClrLnk [BDADDR$]

Description: This function erases the Bluetooth device addresses of authenticated

remote devices.

Parameters: BDADDR$[()]

Authenticated Bluetooth device addresses (strings of 12

hexadecimal digits each) to erase.

Omitting the BDADDR$ parameter erases the entire list.

Returned value: (NONE)

Note: Erasing a authenticated Bluetooth device address may make it impossible

to connect to the corresponding remote device using security mode 3 (link

level enforced security.) If this happens, try reconnecting using security

mode 2 (service level enforced security.)

Run-time errors:

Error code Meaning

F0h Mismatch parameter number

F1h Mismatch parameter type

498

Function #15 .fcBTHold

Control power-saving mode
Syntax: CALL "BT.FN3" .fcBTHold INTERVAL%

Description: This function shifts into the power-saving mode or disable it. For further

details on the power-saving mode, refer to Section 18.2.4.4 "Power

Supply Control."

Parameters: INTERVAL%

HOLD mode interval (0, 1 to 128 (unit: 100 ms))

Setting INTERVAL% to 0 disables the use of the power-saving mode.

Returned value: (NONE)

Note: The function should be executed after execution of OPEN "COM4:M" or

OPEN "COM4:S" statement.

 If the connected remote device does not support the HOLD mode, there is

no transition, and the operation aborts with run-time error 640h.

 Sending duplicate requests for shifts to the power-saving mode produces

the run-time error 641h.

Chapter 18. Bluetooth

499

Run-time errors:

Error code Meaning

05h Parameter out of the range

34h Bad file name or number. (The Bluetooth communications device
file is not opened)

F0h Mismatch parameter number

F1h Mismatch parameter type

105h Power-off detected.

640h Failed to shift to power-saving mode

641h Already in power-saving mode

500

Function #20 .fcBTChkSnd

Check data transmit result
Syntax: CALL "BT.FN3" .fcBTChkSnd STATUS%

Description: This function checks whether all transmit data has been transmitted to the

remote device.

Parameters: (None)

Returned value: STATUS% Status

STATUS% Current Connection Status

0 Transmission complete

1 Transmission not complete

Note: The function should be executed after execution of OPEN "COM4:M" or

OPEN "COM4:S" statement.

Run-time errors:

Error code Meaning

34h Bad file name or number. (The Bluetooth communications device
file is not opened)

F0h Mismatch parameter number

F1h Mismatch parameter type

105h Power-off detected.

Chapter 18. Bluetooth

501

Example:
Transmit a message and wait for completion of the transmission

PRINT #4, "1234567890" ' Transmit data
TIMEA = 50 ' Transmission timeout: 5 seconds
SLOOP% = 1
WHILE TIMEA<>0 AND SLOOP% = 1 ' Wait for transmission completion

' or timeout
 CALL "BT.FN3" .fcBTChkSnd STATUS%
 IF STATUS% = 0 THEN
 SLOOP% = 0
 ENDIF
WEND

502

Function #21 .fcBTGetSvc

Read service discovery results
Syntax: CALL "BT.FN3" .fcBTGetSvc NUM%,SCLASS%[()],SNAME$[()]

Description: This function reads results from service discovery with an OPEN
"COM4:M,SDAP" statement.

Parameters: (None)

Returned value: NUM% Number of services found

 SCLASS%[()]

Service classes found

SCLASS% Service Class

0 UNKNOWN_SERVICE_CLASSES

1 SERIAL_PORT

2 LAN_ACCESS_USING_PPP

3 DIALUP_NETWORKING

4 IRMC_SYNC

5 OBEX_OBJECT_PUSH

6 OBEX_FILE_TRANSFER

7 IRMC_SYNC_COMMAND

8 HEADSET

9 CORDLESS_TELEPHONY

10 INTERCOM

11 FAX

12 HEADSET_AUDIO_GATEWAY

 SNAME$[()]

Service names found

NUM% gives the number of valid entries in the arrays SCLASS% and

SNAME$.

If NUM% is greater than 1, treat SCLASS% and SNAME$ as array

variables.

If the number of services found exceeds the number of SCLASS% and

Chapter 18. Bluetooth

503

SNAME$ entries, the interface stops when the arrays are full.

If the service name is longer than the string length of SNAME$, the

interface discards the excess bytes.

Note: The function should be executed after execution of OPEN
"COM4:M,SDAP" statement.

Run-time errors:

Error code Meaning

34h Bad file name or number. (The Bluetooth communications device
file is not opened)

F0h Mismatch parameter number

F1h Mismatch parameter type

105h Power-off detected.

Example:

Query and browse for service and display the results.

DIM SCLASS%(4) ' Allocate space for 5 entries
DIM SNAME$(4) ' Allocate space for 5 entries
OPEN "COM4:M,SDAP,112233AABBCC" AS #4 ' Service discovery
CALL "BT.FN3" .fcBTGetSvc NUM%, SCLASS%(), SNAME$()
 ' Read search results
FOR I%=0 TO NUM%-1

PRINT SCLASS%(I%);SNAME$(I%) ' Display services found
NEXT
CLOSE #4 ' Close Bluetooth communications

' device file

504

AppendicesAppendicesAppendicesAppendices

CONTENTSCONTENTSCONTENTSCONTENTS

Appendix A Error Codes and Error Messages...505
A1. Run-time Errors..505
A2. Compilation Errors ...509

Appendix B Reserved Words ..517

Appendix C Character Sets ...518
C1. Character Set...518
C2. National Character Sets...519

Appendix D I/O Ports...520

Appendix E Key Number Assignment on the Keyboard ..529

Appendix F Memory Area..530

Appendix G Handling Space Characters in Downloading......................................533

Appendix H Programming Notes ...537

Appendix I Program Samples..538

Appendix J Quick Reference for Statements and Functions..................................541

Appendix K Unsupported Statements and Functions ..549

Appendices

505

Appendix AAppendix AAppendix AAppendix A
Error Codes and Error MessagesError Codes and Error MessagesError Codes and Error MessagesError Codes and Error Messages

A1. RunA1. RunA1. RunA1. Run----time Errorstime Errorstime Errorstime Errors
Error code Meaning

00h Internal system error
01h NEXT without FOR
02h Syntax error
03h RETURN without GOSUB
04h Out of DATA

(No DATA values remain to be read by the READ statement.)
05h Parameter out of the range
06h The operation result is out of the allowable range.
07h Insufficient memory space

(Too deep nesting, etc.)
08h Array not defined
09h Subscript out of range

(An array subscript is out of the array. Or the array is referenced by
different dimensions.)

0Ah Duplicate definition
(An array is double defined.)

0Bh Division by zero
0Ch CASE and END SELECT without SELECT
0Dh END DEF or EXIT DEF statement executed outside the DEF FN

statement block
0Fh String length out of the range
10h Expression too long or complex
14h RESUME without error

(RESUME statement occurs before the start of an error-handling
rou-tine.)

1Fh Function number out of the range (in CALL statement)
32h File type mismatch
33h Received text format not correct
34h Bad file name or number

(A statement uses the file number of an unopened file.)
35h File not found

506

Error code Meaning

36h Improper file type
(The statement attempts an operation that conflicts with the file type--
data file, communications device file, or bar code device file.)

37h File already open
(An OPEN statement executed for the already opened file.)

38h The file name is different from that in the receive header.
39h Too many files
3Ah File number out of the range
3Bh The number of the records is greater than the defined maximum value.
3Ch FIELD overflow

(A FIELD statement specifies the record length exceeding 255 bytes.)
3Dh A FIELD statement specifies the field width which does not match one

that specified in file creation.
3Eh FIELD statement not executed yet

(A PUT or GET statement executed without a FIELD statement.)
3Fh Bad record number

(The record number is out of the range.)
40h Parameter not set

(ID not set)
41h File damaged
42h File write error

(You attempted to write onto a read-only file.)
43h Not allowed to access data in drive B

Not allowed to access a read-only file
45h Device files prohibited from opening concurrently
46h Communications error
47h Abnormal end of communications or termination of communications by

the Clear key
48h Device timeout

(No CS signal has been responded within the specified time period.)
49h Received program file not correct
F0h Mismatch parameter number
F1h Mismatch parameter type
F2h Out of string variable space

Insufficient number of array variable elements

Appendices

507

Error code Meaning
100h Cannot specify communications pathway
101h Cannot connect to communications pathway
102h Communications pathway not specified
103h Communications pathway already connected
104h Communications pathway already disconnected
105h Power-off detected

106h An internal error has occurred in the TCP/IP module during data
transmission.

107h The TCP/IP module has not been initiated.
108h The memory for the TCP/IP module has became insufficient during data

transmission.
110h Response other than 2XX received
111h File not closed
201h Cannot connect to socket
209h Socket identifier is invalid.
20Dh Attempt to connect to different FTP server without disconnecting
216h A parameter is invalid.

The FTP client handle is invalid.
A parameter is invalid, or the socket is already bound.

218h Too many sockets
224h The socket is being assigned an address.
225h The last close operation for the specified socket is not complete.
228h The maximum number of bytes to receive is too small.
229h The specified socket does not match the connection target socket.
22Ah This option is not recognized at the specification level.
22Bh This protocol family does not support the specified protocol type and

protocol.
22Fh The specified address family is invalid for this socket.
230h The specified address is already in use.
231h The specified address is invalid.
236h An RST from the opposite end has forced disconnection.
237h There is insufficient system area memory.
238h The specified socket is already connected.
239h The specified socket is not connected.
23Ah The specified TCP socket has been closed.
23Ch The connection attempt has timed out.
23Dh Failed to connect
241h There is no connection pathway to the host for TCP socket.

508

Error code Meaning
293h The problem occurred on the communication pathway.
295h There is no user for login request.
600h Failed to open a Bluetooth communications device file.
601h Failed to connect.
602h Connection timed out.
610h Bluetooth data link already disconnected.
620h Not connected to a remote device.
621h Failed to get remote device name.
622h No response from Bluetooth interface.
630h No services found.
631h Service discovery timed out.
640h Failed to shift to power-saving mode.
641h Already in power-saving mode

Appendices

509

A2. Compilation ErrorsA2. Compilation ErrorsA2. Compilation ErrorsA2. Compilation Errors
����Fatal ErrorsFatal ErrorsFatal ErrorsFatal Errors

Error code & Message
fatal error 1: Out of memory
fatal error 2: Work file I/O error
fatal error 3: Object file I/O error
fatal error 4： Token file I/O error
fatal error 5: Relocation information file I/O error
fatal error 6: Cross reference file I/O error
fatal error 7: Symbol file I/O error
fatal error 8: Compile list file I/O error
fatal error 9: Debug information file I/O error (source-address)
fatal error 10: Debug information file I/O error (label-address)
fatal error 11: Debug information file I/O error (variable-intermediate code)
fatal error 12: Out of disk space for work file
fatal error 13: Out of disk space for object file
fatal error 14: Out of disk space for token file
fatal error 15: Out of disk space for relocation information file
fatal error 16: Out of disk space for cross reference file
fatal error 17: Out of disk space for symbol file
fatal error 18: Out of disk space for compile list file
fatal error 19: Out of disk space for debug information file (source-address)
fatal error 20: Out of disk space for debug information file (label-address)
fatal error 21: Out of disk space for debug information file (variable-intermediate code)
fatal error 22: Source file I/O error
fatal error 23: Cannot find XXXX.SRC
fatal error 24: Error count exceeds 500
fatal error 25: Out of memory (internal labels exceed 3000)
fatal error 26: Control structure nesting exceeds 30
fatal error 27: Expression type stack exceeds 50
fatal error 28: Program too large (Object area overflow)

Error code & Message
fatal error 29: Out of memory for cross reference
fatal error 30: Cannot find include file
fatal error 31: Cannot nest include file
fatal error 32: Internal memory allocation error (tag list buffer) [function name]
fatal error 33: (Preprocess) Source file I/O error
fatal error 34: (Preprocess) Internal memory overflow
fatal error 35: (Preprocess) Macro work file I/O error
fatal error 36: (Preprocess) Macro double defined [Macro name]
fatal error 37: (Preprocess) Internal memory overflow (unread buffer)
fatal error 38: (Preprocess) Memory allocation error
fatal error 39: (Preprocess) Macro circular reference [Macro name]

510

����Syntax ErrorsSyntax ErrorsSyntax ErrorsSyntax Errors
Error code & Message
error 1: Improper label format
error 2: Improper label name

(redefinition, variable name, or reserved word used)
error 3: ’"’missing
error 4: Improper expression
error 5: Variable name redefinition

(common variable already defined as label name or variable name)
error 6: Variable name redefinition

(register variable already defined as label name or variable name)
error 7: Variable name redefinition

(variable already defined as label name, non-array string work variable,
register variable, or common variable)

error 8: Too many variables
(work integer non-array)

error 9: Too many variables
(work float non-array)

error 10: Too many variables
(work string non-array)

error 11: Too many variables
(register integer non-array)

error 12: Too many variables
(register float non-array)

error 13: Too many variables
(register string non-array)

error 14: Too many variables
(common integer non-array)

error 15: Too many variables
(common float non-array)

error 16: Too many variables
(common string non-array)

error 17: Too many variables
(work integer array)

error 18: Too many variables
(work float array)

error 19: Too many variables
(work string array)

error 20: Too many variables
(register integer array)

Appendices

511

Error code & Message
error 21: Too many variables

(register float array)
error 22: Too many variables

(register string array)
error 23: Too many variables

(common integer array)
error 24: Too many variables

(common float array)
error 25: Too many variables

(common string array)
error 26: Too many variable

(work integer array, two-dimensional)
error 27: Too many variables

(work float array, two-dimensional)
error 28: Too many variables

(work string array, two-dimensional)
error 29: Too many variables

(register integer array, two-dimensional)
error 30: Too many variables

(register float array, two-dimensional)
error 31: Too many variables

(register string array, two-dimensional)
error 32: Too many variables

(common integer array, two-dimensional)
error 33: Too many variables

(common float array, two-dimensional)
error 34: Too many variables

(common string array, two-dimensional)
error 35: Source line too long
error 36:
error 37:
error 38:
error 39:
error 40:
error 41: Value out of range for integer constant
error 42: Value out of range for float constant
error 43: Value out of range for integer constant

(hexadecimal expression)
error 44: Improper hexadecimal expression
error 45: Symbol too long

512

Error code & Message
error 46:
error 47:
error 48:
error 49:
error 50: Incorrect use of IF...THEN...ELSE...ENDIF
error 51: Incomplete control structure

(IF...THEN...ELSE...ENDIF)
error 52: Incorrect use of FOR...NEXT
error 53: Incomplete control structure

(FOR...NEXT)
error 54: Incorrect FOR index variable
error 55: Incorrect use of SELECT...CASE...END SELECT
error 56: Incomplete control structure

(SELECT...CASE...END SELECT)
error 57: Incorrect use of WHILE...WEND
error 58: Incomplete control structure

(WHILE...WEND)
error 59: Incorrect use of DEF FN...EXIT DEF...END DEF
error 60: Incomplete control structure

(DEF...FN...END DEF)
error 61: Cannot use DEF FN in control structure
error 62: Operator stack overflow
error 63: Inside function definition
error 64: Function redefinition
error 65: Function definitions exceed 200
error 66: Arguments exceed 50
error 67: Total arguments exceed 500
error 68: Mismatch argument type or number
error 69: Function undefined
error 70: Label redefinition
error 71: Syntax error
error 72: Variable name redefinition
error 73: Improper string length
error 74: Improper array elements number
error 75: Out of space for register variable area
error 76: Out of space for work, common variable area

Appendices

513

Error code & Message
error 77: Initial string too long
error 78: Array symbols exceed 30 for one DIM, GLOBAL, or PRIVATE

statement
error 79: Record number out of range (1 to 32767)
error 80: Label undefined
error 81: Must be DATA statement label

(in RESTORE statement)
error 82: ’(’ missing
error 83: ’)’ missing
error 84: ’]’ missing
error 85: ’,’ missing
error 86: ’;’ missing
error 87: ’DEF’ missing
error 88: ’TO’ missing
error 89: ’INPUT’ missing
error 90: ’{’ missing
error 91: Improper initial value for integer variable

(not integer or out of range)
error 92: Incorrect use of SUB、EXIT_SUB、END_SUB
error 93: Incomplete control structure

(SUB...END_SUB)
error 94: Cannot use SUB statement in control structure
error 95: Incorrect use of FUNCTION、EXIT_FUNCTION、END_FUNCTION
error 96: Incomplete control structure

(FUNCTION...END_FUNCTION)
error 97: Cannot use FUNCTION statement in control structure
error 98: Incorrect use of CONST

514

����Linking ErrorsLinking ErrorsLinking ErrorsLinking Errors
Error Message
PRC area size different
Out of space in RFG area
Out of space in PRD area
Cannot open project file
Cannot open object file [object name]
Cannot open MAP file
Cannot open PD3 file [PD3 filename]
Cannot close PD3 file [PD3 filename]
Write error to PD3 file [PD3 filename]
Seek error: Cannot move to the filename position
Seek error: Cannot move to the head of the block
Filename area too large
Symbolname area too large
Too many records in symbol table
Too many modules
Too many libraries
Too many objects
Failed to allocate memory in TAG area
Failed to allocate memory in link TAG area
Undefined value set to variable type [Value at variable type]
Undefined value set to tag type [Value at tag type]
Module [modulename] not defined
Symbol [symbolname] not defined
Cannot register symbol
More than one symbol type [variable types*] existing
Defined [variable types*] over the maximum limit
More than one symbol [symbolname] defined
Number of descriptors over the limit
Common variable [variablename] defined out of main module
Common data area overflow
Work data area overflow
Symbol name area overflow

Appendices

515

Error Message
Non-array integer register variable area overflow
Non-array float register variable area overflow
Register memory pool area overflow
Failed to set up initial setting of register data

* To the [Variable type], any of the following character strings applies:

• Non-array integer common variable
• Non-array float common variable
• Non-array string common variable
• Non-array integer work variable
• Non-array float work variable
• Non-array string work variable
• Non-array integer register variable
• Non-array float register variable
• Non-array string register variable
• One-dimensional array integer common variable
• One-dimensional array float common variable
• One-dimensional array string common variable
• One-dimensional array integer work variable
• One-dimensional array float work variable
• One-dimensional array string work variable
• One-dimensional array integer register variable
• One-dimensional array float register variable
• One-dimensional array string register variable
• Two-dimensional array integer common variable
• Two-dimensional array float common variable
• Two-dimensional array string common variable
• Two-dimensional array integer work variable
• Two-dimensional array float work variable
• Two-dimensional array string work variable
• Two-dimensional array integer register variable
• Two-dimensional array float register variable
• Two-dimensional array string register variable

516

����Library ErrorsLibrary ErrorsLibrary ErrorsLibrary Errors
Error Message
Cannot find object to be deleted [objectname]
Designated object already existing [objectname]
Cannot find object to be updated [objectname]
Module already defined [modulename]
Filename area too large
Too many block information pieces
Cannot open library file
Seek error: Cannot move to the filename position
Seek error: Cannot move to the head of the block

 NOTE No error code precedes any linking error or library

Appendices

517

Appendix BAppendix BAppendix BAppendix B
Reserved WordsReserved WordsReserved WordsReserved Words

The following list shows reserved words (keywords) of BHT-BASIC. Any of these words must
not be used as a variable name or label name.

A ABS F FIELD P POS
 AND FN POWER
 APLOAD FOR PRINT
 AS FRE PRINT#
 ASC G GET PUT

B BCC$ GO R READ
 BEEP GOSUB RECORD

C CALL GOTO REM
 CASE H HEX RESTORE
 CHAIN I IF RESUME
 CHKDGT $INCLUDE RETURN
 CHR INKEY RIGHT$
 CLFILE INP S SCREEN
 CLOSE INPUT SEARCH
 CLS INSTR SELECT
 CODE INT SEP
 COMMON K KEY SOH
 CONT KILL STEP
 COUNTRY KPLOAD STR
 CSRLIN L LEFT STX
 CURSOR LEN T THEN

D DATA LET TIME
 DATE$ LINE TIMEA
 DEF LOC TIMEB
 DEFREG LOCATE TIMEC
 DIM LOF TO

E ELSE M MARK U USING
 END MID V VAL
 EOF MOD W WAIT
 ERASE N NEXT WEND
 ERL NOT WHILE
 ERR O OFF X XFILE
 ERROR ON XOR
 ETB OPEN
 ETX OR
 EXIT OUT

518

Appendix CAppendix CAppendix CAppendix C
Character SetsCharacter SetsCharacter SetsCharacter Sets

C1. Character SetC1. Character SetC1. Character SetC1. Character Set
The table below lists the character set which the BHT can display on the LCD screen. It is
based on the ASCII codes.

NOTE 1:

NOTE 2:

NOTE 3:
NOTE 4:
NOTE 5:
NOTE 6:

You can assign user-defined fonts to codes from 80h to 9Fh with APLOAD state-ment.
(Refer to APLOAD statement in Chapter 14.)
Characters assigned to codes 20h to 7Fh are default national characters when the
English message version is selected on the menu screen* in System Mode.
They can be switched to other national characters (see Appendix C2) by
COUNTRY$ function. (Refer to COUNTRY$ function in Chapter 15.)
BS (08h) is a backspace code.
CR (0Dh) is a carriage return code.
C (18h) is a cancel code.

is a space code.

]

Appendices

519

C2. National Character SetsC2. National Character SetsC2. National Character SetsC2. National Character Sets
You may switch characters assigned to codes 20h to 7Fh of the character set table listed in
Appendix C1 to one of the national character sets by using the COUNTRY$ function.
The default national character set is America (code A) or Japan (code J) depending upon the
English or Japanese message version selected on the menu screen in System Mode,
respectively.
Listed below are national characters which are different from the defaults.

* Refer to COUNTRY$ function in Chapter 15.
COUNTRY$ = "countrycode"

NOTE 1:
NOTE 2:

is a space code.

Empty boxes in the above table are assigned the same characters as default ones listed in
Appendix C1.

]

520

Appendix DAppendix DAppendix DAppendix D
I/O PortsI/O PortsI/O PortsI/O Ports

����Input PortsInput PortsInput PortsInput Ports
A user program can monitor the hardware status through the input ports by using the WAIT
statement or INP function. BHT-BASIC defines each of these ports as a byte. The table below
lists the input ports and their monitoring function in the BHT.

Port No.
Bit

assign-
ment

Monitors the following:

- 0 No data 0 Keyboard buffer .pvEvKeyOn 1 Data stored
- 0 No data 1 Barcode buffer

.pvEvBarOn 1 Data stored
- 0 OFF 2 Trigger switch *1

.pvEvTrgOn 1 ON
- 0 No data 3 Receive buffer

.pvEvtCmOn 1 Data stored
- 0 Nonzero 4 Value of TIMEA

function .pvEvTma0 1 Zero
- 0 Nonzero 5 Value of TIMEB

function .pvEvTmb0 1 Zero
- 0 Nonzero 6 Value of TIMEC

function .pvEvTmc0 1 Zero
- 0 OFF or file closed

.pnEvent 0

7 CS (CTS) signal *2
.pvEvCsOn 1 ON

.pnLCDCnt 3 2-0 LCD contrast level *3 0 to 7 (0: Lowest, 7: Highest)
.pvSysMSG 0 Japanese .pnMgLng 4 0 Message version *4
.pvEnglis

h
1 English

Appendices

521

Port No.
Bit

assign-
ment

Monitors the following:

- 0 Deactivated 0 Wakeup function
.pvWupOn 1 Activated

- 0 Initiated by the
power key

1 Initiation of BHT *5

.pvWupPwOn 1 Initiated by the
wakeup function

- 0 System time
selected

2 TIME$ function

.pvWupTmSt 1 Wakeup time
selected

- 0 Not set

.pnWupCtrl 8

3 Wakeup time
.pvWupTmOn 1 Set
.pvSysOff 0 OFF .pnSysSts Eh 7-0 System status

indication .pvsysOn 1 ON
.pnBarRrd Fh 7-0 Re-read prevention

enabled time *6
0-255

- 0 OFF - 10h-
40Fh

7-0 VRAM *7
- 1 ON

.pnBtVolt 6010
h

7-0 Battery voltage
level *8

0-255

.pvBtRcrg 0 Rechargeable
battery cartridge

.pnBtType 6011
h

0 Battery type

.pvBtDry 1 Dry cells

522

Port No.
Bit

assign-
ment

Monitors the following:

- 0 Released 0 Magic key 1
.pvM1kyOn 1 Held down

- 0 Released 1 Magic key 2
.pvM2kyOn 1 Held down

- 0 Released 2 Magic key 3
.pvM3kyOn 1 Held down

- 0 Released

.pnMKey 6040h

3 Magic key 4
.pvM4kyOn 1 Held down
.pvCPBHT 0 BHT-protocol .pnCmPrtcl 6060h 7-0 Communicatio

ns protocol *9 .pvCPBHTIr 2 BHT-Ir protocol
.pnBHTIDL 6061h 7-0 ID (lower byte)

*10
0-255

.pnBHTIDH 6062h 7-0 ID (lower byte)
*10

0-255

.pvFtStd 0 Standard-size .pnFont 6080h 0 Display font
size .pvFtSmall 1 Small-size

- 0 Deactivated 0 Beeper
.pvBprOn 1 Activated

- 0 Deactivated

.pnBprVib 6090h

1 Vibrator
.pvVibOn 1 Activated
.pvKyNm 0 Numeric entry .pnKeyEnt 60B0h 0 Key entry

system .pvKyAlpNm 1 Alphanumeric
entry

.pvKMNm 0 Numeric .pnKeyMd 60B1h 0 Key entry
mode .pvKMAlp 1 Alphanumeric

.pnBprVolm 60C0h 1-0 Beeper volume
*11

0-3

.pnDfrgSzL 60E0h 7-0 Drive size to be
defragmented
(lower byte)

*12

0-255

.pnDfrgSzH 60E1h 7-0 Drive size to be
defragmented
(upper byte)

*12

0-255

Appendices

523

Port No. Bit assign-
ment Monitors the following:

.pvRwuOff 0 Deactivated .pnRwuCtrl 60F0h 0 Remote wakeup
function *13 .pvRwuOn 1 Activated

.pvRwu96 001 9600bps
.pvRwu192 010 19200bps
.pvRwu384 011 38400bps
.pvRwu576 100 57600bps

.pnRwuSpd 60F1h 2-0 Transmission
speed for remote

wakeup *14

.pvRwu1152 101 115200bps
0 Execution record

of remote
wakeup *15

.pvRwuRgst 1 Woken up
remotely

.pnRwuHost 60F2h

1 Termination of
remote wakeup

*16
.pvRwuEdOk 1 Terminated

nor-mally

.pnRwuEfT
60F4h 7-0 Effective time for

remote wakeup
*17

1 to 24(hours)

*1 Only when the trigger switch function is assigned to either of the magic keys, a user

program returns the ON/OFF state of the switch.
*2 During the direct-connect interface operation, a user program can regard RD signal as CS

signal, provided that the returned value of CS should be specified by RS/CS control
parameter in the OPEN "COM:" statement as listed below.
OPEN "COM:" statement Returned value of CS (CTS)

OPEN "COM:,,,,0"
OPEN "COM:,,,,1"
OPEN "COM:,,,,2"
OPEN "COM:,,,,3"
OPEN "COM:,,,,4"

Always 1
Always 1

1 if RD signal is High.
1 if RD signal is Low.

Depends upon the RD signal state.
If the direct-connect interface is closed, the BHT returns the value 0.

*3 Lower three bits (bit 2 to bit 0) in this byte represent the contrast level of the LCD in 000 to
111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

*4 In System Mode, the message version appears as English or Japanese on the LCD.
*5 If the BHT is initiated by the wakeup function, then this bit goes ON (1).
*6 The BHT returns the re-read prevention enabled time length in units of 100 ms. If the

returned value is zero (0), it means that the re-read prevention is permanently enabled so
that the BHT does not read same bar codes in succession.

*7 An 8-bit binary pattern (bits 7 to 0) on the input ports (which read VRAM) 10h to 1DBFh
rep-resents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

524

*8 A user program returns the A/D converted value (0 to 255) of the battery voltage level (0

to 7V). The returned value is an instantaneous value when data on the input port is read.
The voltage level varies depending upon the BHT operation and it is not in proportion to
the battery capacity, so use this voltage level as a reference value.

*9 A user program returns the communications protocol type used for file transmission with
the XFILE statement.

*10 A user program returns the BHT’s ID number which is required for the use of the BHT-Ir
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper
byte on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number
is 1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

*11 A user program returns the beeper volume level--01h (Low), 02h (Medium), or 03h (High).
00h means no beeping.

*12 A user program returns the currently specified size of the empty area to be defragmented
in units of 4 kilobytes. The size is expressed by two bytes: lower byte on port 60E0h and
upper byte on port 60E1h. The range of the returned value is from 1 to FFFFh. (The
actually allowable maximum value is the size of the empty user area. If a value exceeding
the size is returned, it means that the whole empty area is specified to be defragmented.)
If the size is 2048 kilobytes, for example, the value on 60E0h is 00h and that on 60E1h is
02h (2048 kilobytes/4 kilobytes = 512 or 200h). 0 means the whole empty area to be
defragmented.

*13 If "0" is returned, the remote wakeup function is deactivated; if "1," the function is
activated.

*14 The transmission speed to be applied when activating the remote wakeup will be
returned.

*15 If the BHT was woken up remotely at the last powering on, then "1" will be returned; if the
BHT is initiated from any other means, "0" will be returned.

*16 If a user program executed by the remote wakeup has been terminated with END,
POWER OFF, or POWER 0 statement, then "1" will be returned; in any other cases, "0"
will be returned.

*17 A user program returns the timeout period during which the BHT will be ready to receive
remote wakeup commands from the host computer.

Appendices

525

����Output PortsOutput PortsOutput PortsOutput Ports
A user program can control the hardware through the output ports by using the OUT statement.
BHT-BASIC defines each of these ports as a byte. The table below lists the output ports and
their controlling function in the BHT.

Port No.
Bit

assign-
ment

Controls the following:

- 0 OFF 0 Indicator LED
(red) *1 .pvLEDRed 1 ON

- 0 OFF

.pnLEDCtrl 1

1 Indicator LED
(green) *1 .pvLEDGrn 1 ON

.pnLCDCnt 3 2-0 LCD contrast level
*2

0 to 7 (0: Lowest, 7: Highest)

.pvSysMSG 0 Japanese .pnMgLng 4 0 Message version
.pvEnglish 1 English

.pnSlpTime 6 7-0 Sleep timer *3 0-255
- 0 Deactivate 0 Wakeup function

*4 .pvWupOn 1 Activate
- 0 Select the system

time

.pnWupCtrl 8

2 TIME$ function *5

.pvWupTmSt 1 Select the
wakeup time

.pvSysOff 0 OFF .pnSysSts Eh 0 System status
indication .pvsysOn 1 ON

.pnBarRrd Fh 7-0 Re-read
prevention

enabled time *6
0-255

- 0 OFF - 10h-
40Fh

7-0 VRAM *7
- 1 ON

.pvSMdNGo 0 Do not initiate .pnSysMd 6000h 0 Initiation of
System Mode *8 .pvSMdGo 1 Initiate

.pvBLOff 0 Turn OFF .pnBLCtrl 6020h 0 Backlight *9
.pvBLOn 1 Turn ON

.pnBLTime 6021h 7-0 Backlight
ON-duration *9 0-255

526

Port No.
Bit

assign-
ment

Controls the following:

.pnTmPOff 6030h 7-0 Effective
held-down time of

power key *10
- 1-255

.pvCPBHT 0 BHT-protocol .pnCmPrtcl 6060h 1-0 Communications
protocol *11 .pvCPBHTIr 2 BHT-Ir protocol

.pnBHTIDL 6061h 7-0 ID (lower byte)
*12

0-255

.pnBHTIDH 6062h 7-0 ID (upper byte)
*12

0-255

.pvFtStd 0 Standard-size .pnFont 6080h 0 Display font size
.pvFtSmall 1 Small-size

- 0 Deactivate 0 Beeper *13
.pvBprOn 1 Activate

- 0 Deactivate

.pnBprVib 6090h

1 Vibrator *13
.pvVibOn 1 Activate
.pvKyNm 0 Numeric entry .pnKeyEnt 60B0h 0 Key entry system

.pvKyAlpNm 1 Alphanumeric entry
.pvKMNm 0 Numeric .pnKeyMd 60B1h 0 Key entry mode
.pvKMAlp 1 Alphabet

.pnBprVolm 60C0h 1-0 Beeper volume
*14

0-3

.pnDfrgSzL 60E0h 7-0 Drive size to be
defragmented

(lower byte) *15

0-255

.pnDfrgSzH 60E1h 7-0 Drive size to be
defragmented

(upper byte) *15

0-255

.pvDFNoDsp 0 Defragment w/o bar
graph

.pvDFAGrph 1 Defragment w/
absolute bar graph

.pnDfrgGo 60E2h 1-0 Execution of
defragmentation

*16

.pvDFRGrph 2 Defragment w/
relative bar graph

.pvRwuOff 0 Deactivate .pnRwuCtrl 60F0h 0 Remote wakeup
function *17 .pvRwuOn 1 Activate

.pvRwu96 001 9600bps
.pvRwu192 010 19200bps
.pvRwu384 011 38400bps
.pvRwu576 100 57600bps

.pnRwuSpd 60F1h 2-0 Transmission
speed for remote

wakeup *18

.pvRwu1152 101 115200bps
.pnRwuEfT 60F4h 7-0 Effective time for

remote wakeup
*19

1 to 24(hours)

Appendices

527

*1 The indicator LED is controllable only when the bar code device file is closed. If the file

is opened, the OUT statement will be ignored.
If you have set the indicator LED to OFF in the OPEN "BAR:" statement, then a user
program can control the indicator LED although the bar code device file is opened.

*2 Lower three bits (bit 2 to bit 0) in this byte control the contrast level of the LCD in 000
to 111 in binary notation or in 0 to 7 in decimal notation. 0 means the lowest contrast; 7
means the highest.

OUT 3,7 'Contrast is highest
OUT 3,&h07 'Contrast is highest

*3 The sleep timer feature automatically interrupts program execution if no event takes
place within the specified length of time preset by bit 7 to 0. Shown below are
examples of OUT statements. Setting 0 to this byte disables the sleep timer feature.
(Refer to Chapter 10.)

OUT 6,30 '3 seconds
OUT 6,0 ' No sleep operation

*4 To activate the wakeup function, set 1 to this bit; to deactivate it, set 0.
*5 To make the TIME$ function return or set the system time, set 0 to this bit; to make the

TIME$ function return or set the wakeup time, set 1.
Execution of the TIME$ function after selection of the wakeup time will automatically
reset this bit to zero.

*6 This byte sets the re-read prevention enabled time length in units of 100 ms.
Specification of zero (0) permanently enables the re-read prevention so that the BHT
does not read same bar codes in succession. The default is 10 (1 second).

*7 An 8-bit binary pattern (bits 7 to 0) on the output ports (which are stored in the VRAM)
10h to 1DBFh represents a basic dot pattern column of the LCD. Bit value 1 means a
black dot.
The port number gives the dot column address.

*8 Refer to Appendix H, "Program file named APLINT.PD3."
*9 If the backlight function is activated with the OUT statement, the specification by the KEY

statement will be ignored. For details, refer to Chapter 13.
If you set 0 to the ON-duration (6021h), the backlight will not come on; if you set 255, it
will be kept on.

*10 You can set the held-down time of the power key required for powering off the BHT.
The setting range is from 0.1 to 25.5 seconds in increments of 0.1 second. The default
is 5 (0.5 second).

528

*11 You can set the communications protocol type for transmitting files with the XFILE

statement.
*12 You may set the BHT’s ID number to be used for the BHT-Ir protocol. The ID number is

expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h. The
setting range is from 1 to FFFFh. To set the ID number to 1234h, for example, write as
follows:

OUT
&h6061h,&h34

'Sets 34h to the lower byte of the ID

OUT
&h6062h,&h12

'Sets 12h to the upper byte of the ID

*13 If you set 0 (Deactivate) to both bits 0 and 1, only the beeper will work.
*14 The beeper volume level may be adjusted to four levels--01h (Low), 02h (Medium), 03h

(High), and 00h (OFF).
*15 You may specify the size of the empty user area to be defragmented in units of 4

kilobytes. The size is expressed by two bytes: lower byte on port 60E0h and upper byte
on port 60E1h. The setting range is from 1 to FFFFh. (The actually allowable maximum
value is the size of the empty user area. If you specify a value exceeding the size, the
whole empty area will be defragmented.)
To defragment 2048 kilobytes of area, for example, write as follows:
2048 kilobytes/4 kilobytes = 512 (200h), so

OUT &h60E0,0 'Sets 00h to the lower byte
OUT &h60E1,2 'Sets 02h to the upper byte

If "0" is set, the whole empty user area will be defragmented.
*16 To defragment the drive, set "0," "1," or "2." Setting "1" or "2" will display an absolute

bar graph or relative bar graph indicating the defragmentation progress during drive
defrag-mentation, respectively. The bar graph will disappear after completion of
defragmentation and the previous screen will come back.
To defragment the drive while showing a relative bar graph, write as follows:

OUT &h60E2,1 'Defragment the drive showing absolute bar
'graph

*17 To activate the remote wakeup, set "1"; to deactivate, set "0."
*18 Set the transmission speed to be applied for remote wakeup.
*19 You may set the timeout period during which the BHT will be ready to receive remote

wakeup commands from the host computer.

Appendices

529

Appendix EAppendix EAppendix EAppendix E
Key Number Assignment on the Key Number Assignment on the Key Number Assignment on the Key Number Assignment on the

KeyboardKeyboardKeyboardKeyboard

����Key Number AssignmentKey Number AssignmentKey Number AssignmentKey Number Assignment
The keys on the BHT keyboard are assigned numbers as shown below.

����Default Data AssignmentDefault Data AssignmentDefault Data AssignmentDefault Data Assignment
The default data assignment is shown below.

 BS, CR, and C are a backspace (08h), carriage return (0Dh), and cancel (18h) code,
respectively.

Shift mode

TRG TRG

M N O P

I J K L

Q R S

W

+

,

Z

VU

Y

-

X T

Non-shift mode

TRG TRG

E F G H

A B C D

1 2 3

4 5 6

7 8 9

0 . CR

BS C

Non-shift mode

35 36

5 6 7 8

1 2 3 4

3130

Shift mode

37 38

13 14 15 16

9 10 11 12

3433

17 18 19

23

27

29

26

2221

25

28

24 20

530

Appendix FAppendix FAppendix FAppendix F
Memory AreaMemory AreaMemory AreaMemory Area

����Memory MapMemory MapMemory MapMemory Map
The memory maps are shown below.

ROM 4MB, RAM 512KB Type

System work area
(512KB)

Font area
JIS Level 1 font,16-dot (120 KB)
JIS Level 2 font,16-dot (112 KB)
JIS Level 1 font,12-dot (88 KB)
JIS Level 2 font,12-dot (84 KB)

User area
(2156KB)

This area may be
used as a user area if you
delete these fonts.

System program area
(1536KB)

RAM

ROM

Appendices

531

ROM 8MB, RAM 512KB Type (except BHT8048DB)

System work area
(512KB)

Font area
JIS Level 1 font,16-dot (120 KB)
JIS Level 2 font,16-dot (112 KB)
JIS Level 1 font,12-dot (88 KB)
JIS Level 2 font,12-dot (84 KB)

User area
(6060KB)

This area may be
used as a user area if you
delete these fonts.

System program area
(1728KB)

RAM

ROM

BHT8048DB

System work area
(512KB)

Font area
JIS Level 1 font,16-dot (120 KB)
JIS Level 2 font,16-dot (112 KB)
JIS Level 1 font,12-dot (88 KB)
JIS Level 2 font,12-dot (84 KB)

User area
(5932KB)

This area may be
used as a user area if you
delete these fonts.

System program area
(1856KB)

RAM

ROM

532

����Memory ManagementMemory ManagementMemory ManagementMemory Management
The BHT manages the user area of the memory for user programs and data files by a unit of
segment called "cluster." The cluster size is usually 4 kilobytes.
The maximum allowable size for a single user program is 64 kilobytes excluding register
variables.

����Battery Backup of Memory
The BHT backs up the memory with a battery cartridge. Therefore, data stored in the memory
will not be lost if the BHT power is turned off.

����Memory Space Available for Variables
Listed below are the maximum memory spaces available for work, common, and register
variables.

Variables Max. memory space
Work and common variable area 32KB
Register variable area 64KB

Each variable occupies the memory space as listed below.
Variables Max. memory space

Integer variable 2 bytes
Real variable 6 bytes
String variable 2 to 256 bytes

(Including a single character count byte)
An array variable occupies the memory space by (number of bytes per array element x
number of array elements).

Appendices

533

Appendix GAppendix GAppendix GAppendix G
Handling Space CharactersHandling Space CharactersHandling Space CharactersHandling Space Characters

in Downloadingin Downloadingin Downloadingin Downloading

����Space characters used as padding charactersSpace characters used as padding charactersSpace characters used as padding charactersSpace characters used as padding characters
A data file can be downloaded with System Mode or an XFILE statement according to the
communications protocol which is designed to eliminate trailing spaces padded in the tail of
each data field.
The BHT has a new feature which can handle trailing spaces in a data field as data.
The figure below shows the process in which the spaces used as padding characters are
eliminated. (Note that spaces between a and b and between b and c in field 3 are not padding
characters.)

1 2 3 4 A B C D a b c

4 1 2 3 4 4 A B C D 5 a b c

 1 2 3 4 A B C D a b c

Downloading a data file

Host computer

Field 1 Field 2 Field 3

]]]]]]]

(denotes a space character.)]

is the count byte of a
significant data length
in a field.

Field 1 Field 2 Field 3

]]

]]

BHT

534

����To handle space characters as data
To handle trailing spaces in a data field as data (not as padding characters), you must take
special considerations in programming.
If you want to search for a field data containing spaces in its tail by using a SEARCH function,
for instance, use any of the following methods:
Example 1 After downloading a data file, fill the unused spaces in each field with

spaces
and then search for the target field data.

Example 2 Before downloading a data file, substitute any of the characters which will

not be
used as effective data, e.g., an asterisk (*), for the spaces in the host
computer.

Filling with space characters

Send data]] A B C

A B C

]]A B C

]]A B C

Receive data

Search data to be specified
（ denotes a space character.）]

A B C

A B C

A B C

A B C

Send data

Receive data

* *

* *

* *

]] Data to be searched

Search data to be specified
（ denotes a space character.）]

Appendices

535

Example 3 When specifying a field data to be searched, do not include trailing spaces

in a
data field.

A B C

A B C

A B C

A B C

Send data

Receive data

]] Data to be searched

]]

Search data to be specified
（ denotes a space character.）]

536

����To make the BHT handle space characters as dataTo make the BHT handle space characters as dataTo make the BHT handle space characters as dataTo make the BHT handle space characters as data
You can specify the handling of trailing spaces in a data field with System Mode or an XFILE
statement.
System Mode: To handle trailing spaces as data, select "Data" in FIELD SPACE item on

the SET PROTOCOL screen of the SET SYSTEM menu.
XFILE statement: To handle trailing spaces as data, specify T to "protocolspec" in the

XFILE
statement.
XFILE "d2.dat","T"

The figure below shows the process in which trailing spaces in a data field are handled as
data in the BHT.

1 2 3 4 A B C D a b c

4 1 2 3 4 6 A B C D 8 a b c

 1 2 3 4 A B C D a b c

Host computer

Downloading a data file

Field 1 Field 2 Field 3
]]]]]]]

(denotes a space character.)]

BHT

is the count byte of a
significant data length
in a field.

Field 1 Field 2 Field 3

]]

]]

]]
]]

]]]

]]]

Appendices

537

Appendix HAppendix HAppendix HAppendix H
Programming NotesProgramming NotesProgramming NotesProgramming Notes

����Program file named APLINT.PD3Program file named APLINT.PD3Program file named APLINT.PD3Program file named APLINT.PD3
If a program file named APLINT.PD3 is stored in the BHT, the System Mode initiation
sequence (by pressing the PW key with the SF and 1 keys held down) will not start System
Mode but execute that user program.
Making a program file named APLINT.PD3 allows you to:

- enter an ID number at the start of System Mode and
- set the condensed System Mode which is used for maintenance of user programs.

To terminate the APLINT.PD3 file, you use the END or POWER OFF statement. When
terminating the file with the END statement, you may start System Mode by setting the port
6000h as listed below.

Port No. Bit assignment Controls the following:
6000h 0 0: Not start System Mode (default)

1: Start System Mode

538

Appendix IAppendix IAppendix IAppendix I
Program SamplesProgram SamplesProgram SamplesProgram Samples

Writing the function for receiving both bar code entry and key entry
Feature: This function receives earlier one of either bar code entry or key entry. If bar

code reading is completed, the function returns the scanned bar code data;
if key entry comes first, the function inhibits bar code reading and echoes
back the key entry data, then returns the key entry data when the ENT key
is pressed.
If pressing the BS key or C key makes the input string empty, then the
function becomes ready to receive the subsequent bar code entry or key
entry.

Returned value: The function returns bar code data or key entry data which has come in
until
the ENT key is pressed, as a string.

Arguments: f.no%Specifies the file number which opens the bar code device file.
(Invariant allowed)
bar$ Specifies bar code reading. (Invariant allowed)

Ex. "M:10-20"
max%Specifies the maximum length of a returned string
esc$ If a key(s) contained in this string is entered, the function

returns
the key entry only.

Work: .kb$ and .rt$
If you use an invariant for f.no% or bar$, it is not necessary to pass the value as an
argument.
The bar$ can pass a single type of bar code. If two or more types are required, directly
describe necessary invariants.
def fnbarkey$(f.no%, bar$, max%, esc$)

while 1
open "BAR:" as #f.no% code bar$

wait 0, 3 'Wait for completion of bar code reading or key entry.
if loc(#f.no%) then

beep 'Beep when bar code reading is completed.
fnbarkey$ = input$(max%, #f.no%)
 'For displaying:
 'rt$ = input$(max%, #f. no%) : print .rt$;
 'fnbarkey$ = .rt$
close #f.no%
exit def

else
close #f.no% 'Receive only key entry.

.rt$ = ""

Appendices

539

.kb$ = input$(1)
while .kb$<>""

if instr(esc$, .kb$) then'Key designated in esc$?
fnbarkey$ = .kb$ 'Then, return the character.
exit def

endif
select .kb$
case chr$(13)

fnbarkey$ = .rt$
exit def

case chr$(8) 'BS key.
if len(.rt$) then

print chr$(8);'Erase one character.
.rt$ = left$(.rt$, len(.rt$)-1)

endif
case chr$(24)'Clear key.

while len(.rt$)'Erase all characters entered.
print chr$(8);
.rt$ = left$(.rt$, len(.rt$)-1)

wend
case else

if len(.rt$)<max% then
'Check if only numeric data should be

 'received.
print .kb$; 'Echo back.
.rt$ = .rt$ + .kb$

else
beep 'Exceeded number of characters error.

endif
end select
if .rt$="" then'If input string is empty, go back to

 'the initial state.
.kb$ = ""

else
.kb$ = input$(1)'Subsequent key entry.

end if
wend

endif
wend

end def

540

Testing the written functionTesting the written functionTesting the written functionTesting the written function
while 1 'Infinite loop
a$ = fnbarkey$ (1, "A", 15, "DL")'F4 and SFT/F4 as escape characters.

print
if a$<>"D" and a$<>"L" then

print "Data="; a$
else

print "ESC(";a$;") key push"
endif

wend
end

Appendices

541

Appendix JAppendix JAppendix JAppendix J
Quick ReferenceQuick ReferenceQuick ReferenceQuick Reference

for Statements and Functifor Statements and Functifor Statements and Functifor Statements and Functionsonsonsons

Controlling program flow

Statements
CALL Calls an FN3 or SUB function.
CHAIN Transfers control to another program.
END Terminates program execution.
FOR...NEXT Defines a loop containing statements to be executed a

specified number of times.
GOSUB Branches to a subroutine.
GOTO Branches to a specified label.

IF...THEN...ELSE...E
ND IF

Conditionally executes specified statement blocks
depending upon the evaluation of a conditional
expression.

ON...GOSUB Branches to one of specified labels according to the value
of an expression.

ON...GOTO Branches to one of specified labels according to the value
of an expression.

RETURN Returns control from a subroutine or an event-han-dling
routine (for keystroke interrupt).

SELECT...CASE...END
SELECT

Conditionally executes one of statement blocks depending
upon the value of an expression.

WHILE...WEND Continues to execute a statement block as long as the
conditional expression is true.

542

Handling errors

Statements

ON ERROR GOTO Enables error trapping.
RESUME Causes program execution to resume at a specified

location after control is transferred to an error-handling
routine.

Functions
ERL Returns the current statement location of the program

where a run-time error occurred.
ERR Returns the error code of the most recent run-time error.

Defining and allocating variables
Statements

COMMON Declares common variables for sharing between user
programs.

CONST Defines symbolic constants to be replaced with labels.
DATA Stores numeric and string literals for READ statements.
DECLARE Declares user-defined function FUNCTION or SUB

externally defined.
DEFREG Defines register variables.
DIM Declares and dimensions arrays; also declares the string

length for a string variable.
ERASE Erases array variables.
GLOBAL Declares one or more work variables or register variables

defined in a file, to be global.
LET Assigns a value to a given variable.
PRIVATE Declares one or more work variables or register variables

defined in a file, to be private (as local variables.)
READ Reads data defined by DATA statement(s) and assigns

them to variables.
RESTORE Specifi es a DATA statement location where the READ

statement should start reading data.

Appendices

543

Controlling the LCD screen
Statements

APLOAD Loads a user-defined font in the single-byte ANK mode.
CLS Clears the LCD screen.
CURSOR Turns the cursor on or off.
KEY Assigns a string or a control code to a function key;

also defines a function key as a backlight function on/off
key. This statement also defines a magic key as a trigger
switch, shift key, or battery voltage display key.

KPLOAD Loads a user-defined Kanji font in the two-byte Kanji
mode. This statement also loads a user-defined cursor.

LOCATE Moves the cursor to a specified position and changes the
cursor shape.

PRINT Displays data on the LCD screen.
PRINT USING Displays data on the LCD screen under formatting control.
SCREEN Sets the display mode (screen mode, and font size) and

character attributes (character enlargement, and font
reverse attributes).

Functions
COUNTRY$ Sets a national character set or returns a current country

code.
CSRLIN Returns the current row number of the cursor.
POS Returns the current column number of the cursor.

544

Controlling the keyboard input
Statements

INPUT Reads input from the keyboard into a variable.
KEY Assigns a string or a control code to a function key; also

defines a function key as a backlight function on/off key.
This statement also defines a magic key as a trigger
switch, shift key, or battery voltage display key.

KEY ON Enables keystroke trapping for a specified function key.
KEY OFF Disables keystroke trapping for a specified function key.
LINE INPUT Reads input from the keyboard into a string variable.
ON KEY...GOSUB Specifies an event-handling routine for keystroke interrupt.

Functions
INKEY$ Returns a character read from the keyboard.
INPUT$ Returns a specified number of characters read from the

keyboard or from a device file.

Beeping

Statements

BEEP Drives the beeper or vibrator.

Manipulating the system date, the current time, or the timers
Functions

DATE$ Returns the current system date or sets a specified system
date.

TIME$ Returns the current system time or wakeup time, or sets a
specified system time or wakeup time.

TIMEA Returns the current value of timer A or sets timer A.
TIMEB Returns the current value of timer B or sets timer B.
TIMEC Returns the current value of timer C or sets timer C.

Appendices

545

Communicating with I/Os
Statements

OUT Sends a data byte to an output port.
POWER Controls the automatic power-off facility.
WAIT Pauses program execution until a designated input port

presents a given bit pattern.
Functions

FRE Returns the number of bytes available in a speci-fied area
of the memory.

INP Returns a byte read from a specified input port.

Communicating with the barcode device
Statements

CLOSE Closes file(s).
INPUT # Reads data from a device I/O file into specified variables.
OPEN "BAR:" Opens the bar code device file. This statement also

activates or deactivates the indicator LED and the beeper
(vibrator) individually.

Functions
CHKDGT$ Returns a check digit of bar code data.
EOF Tests whether the end of a device I/O file has been

reached.
INPUT$ Returns a specified number of characters read from the

keyboard or from a device file.
LOC Returns the current position within a specified file.
MARK$ Returns the bar code type and the number of digits of a

bar code

546

Manipulating data files and user program files
Statements

CLFILE Erases the data stored in a data file.
CLOSE Closes file(s).
FIELD Allocates string variables as field variables.
GET Reads a record from a data file.
KILL Deletes a specified file from the memory.
OPEN Opens a data file for I/O activities.
PUT Writes a record from a field variable to a data file.

Functions
LOC Returns the current position within a specified file.
LOF Returns the length of a specified file.
SEARCH Searches a specified data file for specified data, and then

returns the record number where the search data is found.

Communicating with communications devices
Statements

CLOSE Closes file(s).
INPUT # Reads data from a device I/O file into specified variables.
LINE INPUT # Reads data from a device I/O file into a string variable.
OPEN "COM:" Opens a communications device file.
PRINT # Outputs data to a communications device file.
XFILE Transmits a designated file according to the specified

communications protocol.

Appendices

547

Functions

BCC$ Returns a block check character (BCC) of a data block.
EOF Tests whether the end of a device I/O file has been

reached.
ETX$ Modifies the value of a terminator (ETX) for the

BHT-protocol; also returns the current value of a
terminator.

INPUT$ Returns a specified number of characters read from the
keyboard or from a device file.

LOC Returns the current position within a specified file.
LOF Returns the length of a specified file.
SOH$ Modifies the value of a header (SOH) for the BHT-protocol;

also returns the current value of a header.
STX$ Modifies the value of a header (STX) for the BHT-protocol;

also returns the current value of a header.

Commenting a program

Statements
REM Declares the rest of a program line to be remarks or

comments.

Manipulating numeric data
Functions

ABS Returns the absolute value of a numeric expression.
INT Returns the largest whole number less than or equal to the

value of a given numeric expression.

548

Manipulating string data
Functions

ASC Returns the ASCII code value of a given character.
CHR$ Returns the character corresponding to a given ASCII

code.
HEX$ Converts a decimal number into the equivalent

hexadecimal string.
INSTR Searches a specified target string for a specified search

string, and then returns the position where the search
string is found.

LEFT$ Returns the specified number of leftmost characters from a
given string expression.

LEN Returns the length (number of bytes) of a given string.
MID$ Returns a portion of a given string expression from

anywhere in the string.
RIGHT$ Returns the specified number of rightmost characters from

a given string expression.
STR$ Converts the value of a numeric expression into a string.
VAL Converts a string into a numeric value.

Creating user-defined functions
Statements

DEF FN Names and defines a user-defined function.
DEF FN...END DEF Names and defines a user-defined function.
FUNCTION...END
FUNCTION

Names and defines user-defined function FUNCTION.

SUB...END SUB Names and defines user-defined function SUB.

Specifying included files
Statements

$INCLUDE Specifies an included file.
REM $INCLUDE Specifies an included file.

Appendices

549

Appendix KAppendix KAppendix KAppendix K
Unsupported Statements and Unsupported Statements and Unsupported Statements and Unsupported Statements and

FunctionsFunctionsFunctionsFunctions

BHT-BASIC does not support the following MS-BASIC statements and functions:

- For handling sequential data files

CVD MKD$ PRINT USING
CVI MKI$ RSET
CVS MKS$ WRITE #
LSET PRINT #

- For RS-232C interface operation
PRINT #USING
WRITE #

- For interrupt handling
COM OFF ON STOP GOSUB
COM ON STOP OFF
COM STOP STOP ON
ON STCOM GOSUB

- For graphics and color control
CIRCLE DRAW WIDTH
COLOR LINE WINDOW
CONSOLE POINT
CSRLIN PSET

- For I/O control
DEFUSR POKE
PEEK VARPTR

- For mathematical functions and trigonometric functions

ATN LOG SQR
COS SCNG TAN
EXP SIN

- For others
CDBL FIX SGN
CINT IF GOTO STRING$
CLEAR LPOS SWAP
COPY OCT$ TAB
DEF DBL OPTION BASE WRITE
DEF SNG RANDOMIZE
DEFINT RND

550

SupplementSupplementSupplementSupplement

CONTENTSCONTENTSCONTENTSCONTENTS

Supplement A What's different from the BHT-5000?...551
A.1 Communication..551
A.2 Bar code reading ...552
A.3 Screen display...553
A.4 Keyboard ...554
A.5 Backlight..554
A.6 Files...555
A.7 Work and common variables ...555
A.8 Beeper & vibrator control...556
A.9 Sleep function..556
A.10 Extended functions and extension library ..556
A.11 Remote wakeup...556
Supplement B What's different from the BHT-6000? ..557
B.1 Communication..557
B.2 Bar code reading ...557
B.3 Screen display...558
B.4 Keyboard ...559
B.5 Backlight..559
B.6 Files...560
B.7 Work and common variables ...560
B.8 Beeper & vibrator control...561
B.9 Extended functions and extension library ..561
B.10 Remote wakeup...561
Supplement C What's different from the BHT-7000? ..562
C.1 Files...562
C.2 Battery voltage display key..562
C.3 Monitor the CU state..563
C.4 Scanning range marker ...563
C.5 System status indicator..563
C.6 Beeper...563
C.7 Remote wakeup...564
C.8 Key data assigned for the alphabet entry mode ..564

Supplement

551

Suuplement ASuuplement ASuuplement ASuuplement A
What's different from the What's different from the What's different from the What's different from the

BHTBHTBHTBHT----5000?5000?5000?5000?
A.1 CommunicationA.1 CommunicationA.1 CommunicationA.1 Communication

Item BHT-5000 BHT-8000
Communications
operation Full duplex Half duplex

Transmission speed
300, 600, 1200, 2400,
4800, 9600, 19200,
38400 bps

2400, 9600, 19200,
38400, 57600, 115200
bps

Parity bit None, Odd, or Even None
Character length 7 or 8 bits 8 bits
Stop bits 1 or 2 bits 1 bit

Optical interface

Signal lines SD, RD, RS, CS SD, RD

Direct-connect
interface Transmission speed

300, 600, 1200, 2400,
4800, 9600, 19200,
38400 bps

300, 600, 1200, 2400,
4800, 9600, 19200,
38400, 57600, 115200
bps

Simultaneous opening with the bar code
device file Possible

Optical (IrDA) interface:
Not possible
Direct-connect interface:
Possible

Communications protocol BHT-protocol
Multilink protocol

BHT-protocol
BHT-Ir protocol

Receive file with
the name given by
the sender

Not possible Possible File transmission
with XFILE
statement Receive file with

different name Not possible Possible

•••• Setting the transmission speedSetting the transmission speedSetting the transmission speedSetting the transmission speed for IrDA communication for IrDA communication for IrDA communication for IrDA communication
For communication between the BHT-8000 and the host via the CU, you need to set the
transmission speed of the CU to the same value as that of the BHT using the DIP switch
located at the bottom of the CU.

552

•••• Switching time between sending and receiving on the IrDA interfaceSwitching time between sending and receiving on the IrDA interfaceSwitching time between sending and receiving on the IrDA interfaceSwitching time between sending and receiving on the IrDA interface
For IrDA communication with the BHT-8000, the IrDA interface should satisfy the following
requirements in switching between sending and receiving:

a) Within 10 ms from completion of sending, the IrDA interface should become ready to
receive.

b) After 10 ms or more from completion of receiving, the IrDA interface should start
sending.

•••• NNNNote for specifying communications parameterote for specifying communications parameterote for specifying communications parameterote for specifying communications parameters for the IrDA interfaces for the IrDA interfaces for the IrDA interfaces for the IrDA interface
If you specify communications parameters not supported by the IrDA interface in the
BHT-8000, the following will result.

Communications
parameters

Parameters not supported by
IrDA interface Execution result

Transmission speed 300, 600, 1200, 4800 bps Run-time error
Parity bits Odd or Even None
Character length 7 bits 8 bits
Stop bit(s) 2 bits 1 bit

A.2 Bar code readingA.2 Bar code readingA.2 Bar code readingA.2 Bar code reading
Item BHT-5000 BHT-8000

OPEN "BAR:" statement extension*1 Not available Available

Code 128 special characters
conversion*1

Conforms to the 1986 USS
Standard

Conforms to the 1993 USS
Standard (Conversion
system differs in some
parts)

Length of beep at completion of
reading*1 100 ms 60 ms

Drive vibrator at completion of
reading*1 Not available Available

Bar code types that can be specified
by CHKDGT$ function*2

EAN-13, EAN-8, UPC-A,
UPC-E, ITF, Code 39,
Codabar (NW-7)

EAN-13, EAN-8, UPC-A,
UPC-E, STF, ITF, Code
39, Codabar (NW-7)

If bar code data contains characters
out of the specification,
CHKDGT$ function returns: *2

Calculation result Null string

*1 For details, refer to OPEN "BAR:" in Chapter 14 "Statement Reference."

*2 For details, refer to CHKDGT$ in Chapter 15 "Function Reference."

Supplement

553

A.3 Screen displayA.3 Screen displayA.3 Screen displayA.3 Screen display
Item BHT-5000 BHT-8000

BHT-2000 compatible
mode

Available Not available

Standard-size font:21 x 8 (6 x 8)
ANK*1 21 x 8 (6 x 8) Small-size font: 21 x 10 (6 x 6)

*2
Standard-size font

Full-width: 8 x 4 (16 x 16)

Full-width:
Half-width:

8 x 4 (16 x 16)
16 x 4 (8 x 16)

Small-size font *2
Kanji

Half-width: 16 x 4 (8 x 16)

Full-width:
Half-width:

10 x 5 (12 x 12)
21 x 5 (6 x 12)

Full-width: 10 x 4 (12 x 16)

Chars x Lines
(Dots, W x H)

Condensed
Kanji Half-width: 21 x 4 (6 x 16)

Not available *3

Double-width Not available Available
No. of user-defined fonts
loadable

ANK: 32 fonts
Kanji: 32 fonts

ANK: 32 fonts
Kanji: 128 fonts

User-defined cursor
load/display function *4 Not available Available

Characters that
COUNTRY$ function can
display

ANK only ANK and half-width Kanji

*1 ANK: Alphanumerics and Katakana

*2 Switching between the standard-size and small-size fonts may be specified by the OUT
statement. For the setting procedure, refer to Chapter 7 "I/O Facilities, "Chapter 14
"Statement Reference, OUT," and Appendix D "I/O Ports."

*3 In the BHT-8000, specifying the condensed Kanji mode will result in a run-time error.

*4 This function displays a cursor in the shape defined by the user. The cursor shape may
be defined with the APLOAD or KPLOAD statement. The defined cursor may be
displayed with the LOCATE statement. Refer to Chapter 14 "Statement Reference."

554

A.4 KeyboardA.4 KeyboardA.4 KeyboardA.4 Keyboard
Item BHT-5000 BHT-8000

Magic keys *1 M1 and M2 keys M1, M2, M3, and M4 keys

Default trigger switch Dedicated trigger switch M3 (left-hand) and M4
(right-hand) keys

Key number assignment range 1 to 34 1 to 31 and 33 to 38
(32 ignored)

Alphabet entry *2 Available in 32-keypad
models only

Available (Alphabet entry
mode added)

*1 For definition of magic keys, refer to the KEY statement in Chapter 14 "Statement
Reference."

*2 For details about the alphabet entry, refer to Chapter 7, Section 7.2 "Input from the
Keyboard."

A.5 BacklightA.5 BacklightA.5 BacklightA.5 Backlight
Item BHT-5000 BHT-8000

Default backlight on/off control key Trigger switch with SF key
held down

M1 key with SF key held
down

Key assignment numbers for
backlight on/off control

0 to 34 0 to 38

Supplement

555

A.6 FilesA.6 FilesA.6 FilesA.6 Files
Item BHT-5000 BHT-8000

File storage
device(s)

RAM (Drive A)
Flash ROM (Drive B)

Flash ROM (The RAM is
used to run programs
efficiently.)

Max. number of
files loadable

RAM (Drive A): 40
Flash ROM (Drive B): 40 80

Cluster size 4 KB
8 KB (BHT-5079 only) 4 KB

User area

RAM (Drive A) 92 KB (BHT-5071)

464 KB (BHT-5075)

964 KB (BHT-5077)
 1976
KB (BHT-5079)
Flash memory (Drive B) 124 KB (380
KB*)

Max. 2156 KB
(2560 KB *)

Defragment the
drive Not available

Available
(Can be initiated by the
user or automatically
during auto power-off)

Specify drive B with
FRE function Available Not available (Resulting in

a run-time error)
* Values in parentheses are user areas available when font files are deleted.

•••• Defragment the driveDefragment the driveDefragment the driveDefragment the drive
To use the user area efficiently, the BHT-8000 supports the defragmentation of drive that
can be initiated by the user or automatically. For details, refer to Chapter 8 "Files,"
Subsection 8.2.5 "Programming for Data Files."

•••• Specify driveSpecify driveSpecify driveSpecify drive
In the BHT-8000, drive B is provided for ensuring compatibility with other BHT series. For
details, refer to Chapter 8 "Files," Subsection 8.2.6 "About Drives."

A.7 Work and common variableA.7 Work and common variableA.7 Work and common variableA.7 Work and common variablessss

Item BHT-5000 BHT-8000
Max. memory spaces
available for work and
common variables

6 KB 32 KB

556

A.A.A.A.8 Beeper & vibrator control8 Beeper & vibrator control8 Beeper & vibrator control8 Beeper & vibrator control
Item BHT-5000 BHT-8000

Beeper volume adjustment in user programs Not available Available
Beeper and vibrator switching & control in user
programs Not available Available

Drive the vibrator with BEEP statement Not available Available

Frequencies by the special beeper effects in
BEEP statement

Low:1015 Hz
Medium:2042 Hz
High:4200 Hz

Low: 698 Hz
Medium:1396 Hz
High:2793 Hz

Frequency range that drives no beeper in BEEP
statement 3 to 260 Hz 3 to 61 Hz

A.9 Sleep functionA.9 Sleep functionA.9 Sleep functionA.9 Sleep function
Item BHT-5000 BHT-8000

Activate the sleep function when the
sleep timer is set to 10 seconds or more
in TIMEA/TIMEB/TIMEC function

No Yes

A.10 Extended functions andA.10 Extended functions and exnsion library A.10 Extended functions and A.10 Extended functions and exnsion library
Item BHT-5000 BHT-8000

Extended functions None

SYSTEM.FN3
(Read or write system settings from/to the
memory)
SYSMDFY.FN3 (Control system files)
CRC.FN3 (Calculate a CRC)

Extension library Exclusively designed. Exclusively designed.

A.11 Remote wakeupA.11 Remote wakeupA.11 Remote wakeupA.11 Remote wakeup
Item BHT-5000 BHT-8000

Remote wakeup Not available Available

•••• Remote wakeupRemote wakeupRemote wakeupRemote wakeup
The remote wakeup function allows you to automatically wake up the BHT-8000 placed on
the CU from a remote location by sending the specified command from the host computer
to the BHT-8000. For details, refer to Chapter 12 "Power-related Functions," Section 12.4
"Remote Wakeup Function."

Supplement

557

Supplement BSupplement BSupplement BSupplement B
What's different from the What's different from the What's different from the What's different from the

BHTBHTBHTBHT----6000?6000?6000?6000?

B.1 CommunicationB.1 CommunicationB.1 CommunicationB.1 Communication
Item BHT-6000 BHT-8000

Receive file with
the name given by
the sender

Not possible Possible File transmission
with XFILE
statement Receive file with

different name Not possible Possible

Specify the output pulse width of IR beam Possible Not possible *
* Ignored if specified by the OUT statement.

B.2 Bar code readingB.2 Bar code readingB.2 Bar code readingB.2 Bar code reading
Item BHT-6000 BHT-8000

OPEN "BAR:" statement extension*1 Not available Available

Code 128 special characters
conversion*1 FNC characters ignored

Conforms to the 1993 USS
Standard (Conversion
system differs in some
parts)

Length of beep at completion of
reading*1 100 ms 60 ms

Drive vibrator at completion of
reading*1 Not available Available

Bar code types that can be specified
by CHKDGT$ function*2

EAN-13, EAN-8, UPC-A,
UPC-E, ITF, Code 39,
Codabar (NW-7)

EAN-13, EAN-8, UPC-A,
UPC-E, STF, ITF, Code
39, Codabar (NW-7)

If bar code data contains characters
out of the specification,
CHKDGT$ function returns: *2

Calculation result Null string

*1 For details, refer to OPEN "BAR:" in Chapter 14 "Statement Reference."

*2 For details, refer to CHKDGT$ in Chapter 15 "Function Reference."

558

B.3 Screen displB.3 Screen displB.3 Screen displB.3 Screen displayayayay
Item BHT-6000 BHT-8000

Standard-size font: 16 x 6
(6 x 8)

Standard-size font: 21 x 8
(6 x 8) ANK*1

Small-size font: 16 x 8
(6 x 6)

Small-size font: 21 x 10
(6 x 6)

Standard-size font
 Full-width: 6 x 3 (16 x
16)
 Half-width: 12 x 3 (8 x
16)

Standard-size font
 Full-width: 8 x 4 (16 x
16)
 Half-width: 16 x 4 (8 x 16)

Chars x Lines
(Dots, W x H)

Kanji
Small-size font
 Full-width: 8 x 4 (12 x
12)
 Half-width: 16 x 4 (6 x
12)

Small-size font
 Full-width: 10 x 5 (12 x
12)
 Half-width: 21 x 5 (6 x
12)

Double-width Not available Available
No. of user-defined
fonts loadable

ANK: 32 fonts
Kanji: 32 fonts

ANK: 32 fonts
Kanji: 128 fonts

User-defined cursor
load/display function *2 Not available Available

Characters that
COUNTRY$ function
can display

ANK only ANK and half-width Kanji

Column 1 to 17 Column 1 to 22

ANK*1

Row

Standard-size font:
1 to 6

Small-size font:
1 to 8

Row

Standard-size font:
1 to 8

Small-size font:
1 to 10

Column

Standard-size font:
1 to 13

Small-size font:
1 to 17

Column

Standard-size font:
1 to 17

Small-size font:
1 to 22

Specification
range in
LOCATE and
Returned value
of
POS/CLRLIN
functions

POS: Same as
Row
CLRLIN: Same
as Column

Kanji

Row

Standard-size font:
1 to 5

Small-size font:
1 to 7

Row

Standard-size font:
1 to 7

Small-size font:
1 to 9

VRAM size 576 bytes 1024 bytes
*1 ANK: Alphanumerics and Katakana

*2 This function displays a cursor in the shape defined by the user. The cursor shape may
be defined with the APLOAD or KPLOAD statement. The defined cursor may be
displayed with the LOCATE statement. Refer to Chapter 14 "Statement Reference."

Supplement

559

B.4 KeyboardB.4 KeyboardB.4 KeyboardB.4 Keyboard
Item BHT-6000 BHT-8000

Magic keys *1 M1 and M2 keys M1, M2, M3, and M4 keys

Default trigger switch M1 and M2 keys M3 (left-hand) and M4
(right-hand) keys

Key number assignment range 1 to 31, 33, and 34 1 to 31 and 33 to 38
(32 ignored)

Alphabet entry *2 Available (entry procedure
exclusively designed)

Available (entry procedure
exclusively designed)

*1 For definition of magic keys, refer to the KEY statement in Chapter 14 "Statement
Reference."

*2 For details about the alphabet entry, refer to Chapter 7, Section 7.2 "Input from the
Keyboard."

B.5 BacklightB.5 BacklightB.5 BacklightB.5 Backlight
Item BHT-6000 BHT-8000

Key assignment numbers for
backlight on/off control

1-31, 33, and 34 0 to 38

560

B.6 FilesB.6 FilesB.6 FilesB.6 Files
Item BHT-6000 BHT-8000

File storage
device(s)

RAM (Drive A)
Flash ROM (Drive B)

Flash ROM (The RAM is
used to run programs
efficiently.)

Max. number of
files loadable

RAM (Drive A): 40
Flash ROM (Drive B): 40 80

Cluster size 4 KB
8 KB (BHT-6049 only) 4 KB

RAM (Drive A)
Flash memory (Drive B)

468 KB
64 KB (BHT-6045)

User area
568 KB (BHT-6047)

1584 KB (BHT-6049)
(If font files are deleted)

320 KB (BHT-6045)
828 KB (BHT-6047)

1840 KB (BHT-6049)

Max. 2156 KB
(2560 KB if font files are
deleted)

Defragment the
drive Not available

Available
(Can be initiated by the
user or automatically
during auto power-off)

Specify drive B with
FRE function Available Not available (Resulting in

a run-time error)

•••• Defragment the driveDefragment the driveDefragment the driveDefragment the drive
To use the user area efficiently, the BHT-8000 supports the defragmentation of drive that
can be initiated by the user or automatically. For details, refer to Chapter 8 "Files,"
Subsection 8.2.5 "Programming for Data Files."

•••• Specify driveSpecify driveSpecify driveSpecify drive
In the BHT-8000, drive B is provided for ensuring compatibility with other BHT series. For
details, refer to Chapter 8 "Files," Subsection 8.2.6 "About Drives."

B.7 Work and common variableB.7 Work and common variableB.7 Work and common variableB.7 Work and common variablessss
Item BHT-6000 BHT-8000

Max. memory spaces
available fro work and
common variables

6 KB 32 KB

Supplement

561

B.8 Beeper & vibrator controlB.8 Beeper & vibrator controlB.8 Beeper & vibrator controlB.8 Beeper & vibrator control
Item BHT-6000 BHT-8000

Beeper volume adjustment in user programs Not available Available
Beeper and vibrator switching & control in user
programs Not available Available

Drive the vibrator with BEEP statement Not available Available

Frequencies by the special beeper effects in
BEEP statement

Low:
Medium:
High:

1033 Hz
2168 Hz
4337 Hz

Low:
Medium:
High:

698 Hz
1396 Hz
2793 Hz

B.9 Extended functions and extension libraryB.9 Extended functions and extension libraryB.9 Extended functions and extension libraryB.9 Extended functions and extension library
Item BHT-6000 BHT-8000

Extended functions None

SYSTEM.FN3
(Read or write system settings from/to the
memory)
SYSMDFY.FN3 (Control system files)
CRC.FN3 (Calculate a CRC)

Extension library Exclusively designed Exclusively designed

B.10 Remote wakeupB.10 Remote wakeupB.10 Remote wakeupB.10 Remote wakeup
Item BHT-6000 BHT-8000

Remote wakeup Not available Available

•••• Remote wakeupRemote wakeupRemote wakeupRemote wakeup
The remote wakeup function allows you to automatically wake up the BHT-8000 placed on
the CU from a remote location by sending the specified command from the host computer
to the BHT-8000. For details, refer to Chapter 12 "Power-related Functions," Section 12.4
"Remote Wakeup Function."

562

Supplement CSupplement CSupplement CSupplement C
 What's different from the What's different from the What's different from the What's different from the

BHTBHTBHTBHT----7000?7000?7000?7000?
C.1 FilesC.1 FilesC.1 FilesC.1 Files

Item BHT-7000 BHT-8000

Drive defragmentation
will be initiated:

- Specified by the user in the
OUT statement.

- When updating or adding
files is performed with
insufficient free space of
the user area.

- Specified by the user in the
OUT statement.

- When updating or adding files
is performed with insufficient
free space of the user area.

- When the auto power-off
function turns off the BHT.

•••• Defragment the driveDefragment the driveDefragment the driveDefragment the drive
For details, refer to Chapter 8 "Files," Subsection 8.2.5 "Programming for Data Files."

C.2 Battery voltage display keyC.2 Battery voltage display keyC.2 Battery voltage display keyC.2 Battery voltage display key
Item BHT-7000 BHT-8000

Define function key or magic
key as battery voltage display
key

Not possible Possible*

* The BHT-8000 may define a magic key as a battery voltage display key. For details, refer
to the KEY statement in Chapter 14 "Statement Reference."

Supplement

563

C.3 Monitor the CUC.3 Monitor the CUC.3 Monitor the CUC.3 Monitor the CU state state state state
Item BHT-7000 BHT-8000

Get the CU state

Can get the following three
states:
- CU with BHT placed

- CU without BHT

- CU loaded with dry battery
cartridge

Can get the following state only:
- CU without BHT

C.4 Scanning range markerC.4 Scanning range markerC.4 Scanning range markerC.4 Scanning range marker
Item BHT-7000 BHT-8000

Scanning range marker
control in user programs Possible

Not possible
(No scanning range marker is
provided.)

C.5 System status indicatorC.5 System status indicatorC.5 System status indicatorC.5 System status indicator
Item BHT-7000 BHT-8000

System status indicator on/off
control in user programs

Not possible
(Always displayed) Possible

C.6 BeeperC.6 BeeperC.6 BeeperC.6 Beeper
Item BHT-7000 BHT-8000

Frequency range that drives
no beeper in BEEP statement 3 to 39 Hz 3 to 61 Hz

564

C.7 Remote wakeupC.7 Remote wakeupC.7 Remote wakeupC.7 Remote wakeup
Item BHT-7000 BHT-8000

When the rechargeable
battery cartridge is loaded Available Available

When the dry cells are loaded Not available Available
Effective period in which the
BHT is ready to receive
remote wakeup commands

When the BHT is placed on
the CU after turned off.

Within the specified period
after the BHT is turned off

Initiation of remote wakeup
WAKE command following
specified commands sent
from the host

Any message being sent from
the host in succession for at
least one minute at 30-ms
intervals.

•••• Remote wakeupRemote wakeupRemote wakeupRemote wakeup
For details, refer to Chapter 12 "Power-related Functions," Section 12.4 "Remote Wakeup
Function."

C.8 Key data assigned in the alphabet entry mode C.8 Key data assigned in the alphabet entry mode C.8 Key data assigned in the alphabet entry mode C.8 Key data assigned in the alphabet entry mode
for the alphanumeric systemfor the alphanumeric systemfor the alphanumeric systemfor the alphanumeric system

Key data assigned to the following three keys is different from that assigned in the BHT-7000:

Keys BHT-7000 BHT-8000
3 key Y, Z, +, y, z Y, Z, space, y, z
0 key -, %, $, +, -, *,
Period(.) key comma (,), /, space /, $, %, comma (,)

IndexIndexIndexIndex

_

_(underline, underscore), 433, 436

1

12-dot font, 87

16-dot font, 87

A

ACK, 143, 144, 309

address-source list, 30, 33, 36, 39, 317

alternate switching mode, 136, 243,

245

AND, iv, 55, 69, 70, 76, 78, 81, 82, 108,

120, 374, 501, 517

APLOAD, 94, 98, 103, 152, 153, 154,

155, 156, 164, 165, 173, 223, 226,

517, 518, 543, 553, 558

application program, i, ii, 4, 5, 6, 138,

361, 367, 369, 384, 396, 400, 361

arithmetic operation, 77

arithmetic operator, 69, 80

array integer type, 34

array integer variable, 66, 153, 154,

155, 170, 222, 223, 224

array real type, 34

array real variable, 66, 170

array register variable, 186

array string type, 34

array string variable, 16, 65, 156, 170,

190, 192, 225, 358

arraystringvariable, 185, 186

ASCII code, 250, 302, 309, 518, 548

auto-off mode, 136, 243, 245

auto-repeat, 106

B

backlight, iii, 136, 140, 150, 151, 214,

215, 216, 217, 218, 527, 543, 544,

554, 559

backlight function on/off key, 150, 151,

214, 215, 216, 217, 218, 543, 544

backlightkeynumber, 214, 215, 217

bar code device, 111, 118, 121, 136, 212,

230, 240, 241, 242, 243, 244, 251,

253, 255, 324, 331, 333, 506, 527,

538, 545, 551

bar code device file, 121, 136, 212, 230,

240, 241, 242, 243, 244, 251, 253,

255, 324, 331, 333, 506, 527, 538,

545, 551

barcode device, 545

baud, 252, 253

BCC, vi, 292, 293, 300, 303, 452, 517,

547

BEEP, 85, 107, 129, 152, 157, 158, 159,

517, 544, 556, 561, 563

beeper, ii, iii, 107, 121, 136, 140, 157,

158, 191, 242, 245, 249, 524, 528,

544, 545, 556, 561, 563

BHT-BASIC, i, ii, iii, iv, v, 1, 3, 4, 5, 6,

7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,

19, 29, 32, 33, 37, 38, 39, 40, 41, 43,

50, 54, 65, 67, 69, 77, 78, 83, 107,

111, 125, 128, 161, 208, 290, 309,

335, 349, 361, 376, 383, 385, 451,

481, 517, 520, 525, 549, 361

BHT-BASIC 3.0, 1, 6, 18, 19

BHT-BASIC Compiler, v, 10, 12, 13, 29,

37, 376

BHT-BASIC Extension Library, 3, 161

BHT-BASIC Interpreter, v, 3

BHT-Ir protocol, 110, 113, 123, 124,

125, 126, 292, 294, 295, 353, 460,

463, 522, 524, 526, 528, 551

BHT-protocol, 110, 113, 124, 125, 126,

292, 294, 319, 341, 343, 463, 522,

526, 547, 551

bind, 387, 389

block check character, 293, 303, 452,

547

Block-format user-defined function, 49

block-structured statement, 16, 49,

176, 178, 182, 183, 196, 198, 205,

207, 236, 238, 283, 285, 286, 290

Bluetooth, 362, 416, 444

Bluetooth communications, iii, 122,

253, 359, 362, 364, 366, 416, 443,

447, 448, 450, 451, 452, 453, 456,

457, 459, 461, 463, 464, 466, 467,

468, 469, 470, 471, 474, 475, 477,

478, 479, 480, 481, 483, 486, 489,

491, 493, 494, 495, 499, 500, 503,

508

Bluetooth Communications, 444

Bluetooth device address, 449, 451,

455, 458, 472, 473, 477, 481, 484,

488, 489, 490, 491, 492, 494, 496,

497

Bluetooth device name, 484, 488, 490

Bluetooth passkey, 451, 452, 455, 456,

458, 459, 472, 473, 476, 477, 484

Bluetooth system, 481, 487

build, 6, 8, 18, 19, 20, 23, 26, 35

C

CALL, 6, 152, 160, 161, 162, 284, 285,

349, 351, 354, 355, 356, 357, 358,

373, 374, 389, 390, 392, 394, 395,

396, 400, 402, 403, 405, 406, 408,

410, 412, 413, 415, 416, 417, 418,

420, 421, 422, 423, 427, 428, 429,

430, 431, 432, 433, 434, 436, 437,

438, 439, 440, 441, 442, 450, 456,

457, 459, 461, 481, 482, 483, 484,

486, 487, 488, 489, 490, 491, 492,

493, 494, 495, 496, 497, 498, 500,

501, 502, 503, 505, 517, 541

chain, 50

CHAIN, iv, 50, 147, 152, 153, 154, 164,

170, 171, 223, 312, 517, 541

chained, 50, 67, 147, 153, 154, 164,

170, 223, 312

chaining, ii, 50

charaattribute, 88, 169, 280, 281

character attribute, 88, 260, 280, 543

character code, 84, 126, 153, 154, 215,

222, 302, 303, 322

character enlargement, 173, 210, 229,

280, 324, 543

check digit, 4, 118, 120, 247, 248, 249,

250, 305, 545

CLFILE, 58, 115, 117, 152, 166, 167,

194, 221, 517, 546

close, 5, 111, 367, 368, 369, 375, 385,

388, 397, 407, 415, 423, 424, 426,

429, 435, 437, 457, 461, 463, 481,

495, 507, 514, 538

CLOSE, 32, 111, 115, 117, 152, 167,

168, 194, 213, 221, 231, 241, 296,

373, 374, 450, 453, 457, 459, 461,

466, 478, 489, 491, 493, 503, 517,

545, 546

CLS, 16, 96, 97, 101, 152, 169, 260,

344, 517, 543

cluster, 320, 532

code mark, 120

comment, 53, 54, 57, 275, 297

COMMON, 35, 50, 54, 65, 67, 71, 75,

152, 154, 155, 156, 161, 164, 165,

170, 171, 192, 223, 224, 226, 299,

517, 542

common variable, 34, 35, 50, 67, 75,

170, 192, 193, 299, 510, 512, 515,

532, 542, 550, 555, 560

communications device, 111, 136, 212,

230, 240, 241, 243, 251, 252, 253,

255, 258, 262, 263, 295, 309, 324,

331, 333, 361, 362, 369, 372, 373,

374, 375, 385, 416, 447, 452, 464,

469, 472, 476, 506, 546

communications device file, 136, 212,

230, 240, 241, 243, 251, 252, 253,

255, 258, 262, 263, 295, 309, 324,

331, 333, 417, 419, 447, 469, 472,

476, 506, 546

communications parameter, 123, 552

communications protocol, 124, 292,

296, 367, 466, 480, 524, 528, 533,

546

compilation error, 51, 297

compiler, v, 37, 38, 376

compiling option, 17, 30, 38

concatenate, 83

connect, ii, 122, 253, 254, 352, 363,

387, 390, 391, 417, 419, 427, 428,

446, 461, 464, 466, 471, 474, 497,

507, 508, 551

CONST, 6, 152, 172, 513, 542

constant, 6, 63, 511

continuous reading mode, 136, 243,

245

control code, 56, 57, 58, 63, 214, 215,

263, 309, 324, 543, 544

count, 66, 67, 113, 130, 136, 159, 346,

375, 392, 410, 460, 509, 532

counter, 216, 258, 259

country code, 246, 311, 312, 543

countrycode, 311, 312, 519

CRC-16, 303, 358

cross reference, 5, 30, 39, 51, 297, 509

CU, v, vi, 11, 122, 126, 142, 144, 416,

550, 551, 556, 561, 563, 564

cursor, 89, 94, 95, 97, 103, 153, 154,

155, 169, 173, 210, 222, 223, 224,

229, 232, 233, 260, 261, 267, 293,

313, 322, 324, 337, 543, 553, 558

CURSOR, iv, 152, 173, 210, 229, 322,

325, 517, 543

cursor shape, 94, 103, 173, 210, 229,

232, 324, 543, 553, 558

cursorswitch, 223, 232

D

DATA, 54, 107, 152, 161, 174, 273, 274,

276, 351, 352, 353, 354, 355, 421,

422, 432, 433, 482, 483, 484, 486,

488, 489, 505, 513, 517, 542

data file, ii, 44, 61, 111, 112, 113, 114,

115, 116, 124, 125, 126, 136, 166,

168, 193, 194, 201, 202, 220, 240,

241, 243, 271, 272, 292, 294, 295,

296, 316, 319, 320, 325, 331, 333,

339, 340, 341, 342, 343, 376, 380,

432, 433, 436, 506, 532, 533, 534,

546, 549

debug information, 10, 14, 30, 31, 39,

509

declarative statement, 50, 54, 175

DECLARE, 6, 7, 48, 72, 75, 152, 162,

163, 175, 176, 199, 200, 287, 542

DEF FN, 47, 48, 57, 60, 68, 83, 152,

176, 177, 178, 179, 180, 181, 182,

183, 184, 196, 198, 205, 206, 207,

208, 236, 238, 283, 285, 290, 505,

512, 548

DEF FN...END DEF, 47, 83, 183, 548

default gateway, 363

Default gateway, 363, 365, 386, 418,

421

defragmentation, 116, 526, 528, 555,

560, 562

DEFREG, 16, 32, 54, 65, 67, 71, 73,

152, 154, 155, 156, 161, 185, 186,

187, 188, 190, 192, 203, 204, 223,

224, 226, 268, 269, 270, 299, 450,

517, 542

delimiter, 54, 92, 275, 376, 378, 380,

382, 384, 432, 433, 436, 437, 438

device discovery, 449, 469, 481, 482,

492

device I/O file, 111, 168, 212, 213, 230,

231, 316, 545, 546, 547

Dial-up Networking Profile, 444, 454,

457, 472

DIM, 16, 65, 67, 152, 154, 155, 156,

161, 188, 189, 190, 192, 204, 223,

224, 226, 269, 270, 452, 459, 461,

493, 503, 513, 517, 542

direct-connect interface, 11, 123, 243,

252, 253, 254, 255, 352, 353, 451,

469, 472, 476, 523

directories, 27

directory, 27, 37, 41, 43, 114, 115, 166,

220, 376, 385, 424, 426, 430, 431,

432, 436, 438, 440

directory, directories, 376, 385, 424,

425, 426, 430, 431, 432, 436, 438,

440

double-touch reading, 118

double-width, 88, 94, 97, 98, 154, 155,

173, 210, 223, 225, 229, 233, 324,

337

drivers, 3

dummy argument, 34, 68

dummy character, 306, 307, 308

dummy parameter, 162, 179, 184, 200,

286, 337

dummyparameter, 162, 175, 176, 177,

178, 179, 181, 182, 184, 197, 198,

200, 284, 285, 286

E

END, 7, 16, 32, 45, 48, 68, 72, 73, 74,

75, 132, 133, 138, 143, 147, 152, 163,

168, 176, 178, 181, 182, 183, 184,

191, 196, 197, 198, 199, 200, 205,

206, 207, 208, 221, 236, 237, 238,

282, 283, 284, 285, 286, 287, 290,

457, 505, 512, 513, 517, 524, 537,

541

ENQ, 294, 309

environmental variable, 40

ERASE, 67, 152, 154, 190, 192, 223,

517, 542

error trapping, 79, 128, 131, 235, 542

error-/event-handling routine, 47

error-handling routine, 47, 128, 131,

132, 176, 178, 182, 198, 235, 277,

278, 285, 317, 318, 372, 375, 542

ERRORLEVEL, 10, 29, 40

Ethernet, 370

event polling, ii, 127, 128, 129, 130

event trapping, 133

event-handling routine, 47, 49, 128,

133, 176, 178, 182, 198, 218, 238,

279, 285, 544

execution program, 45, 50

expression, 69, 70, 77, 78, 79, 80, 81,

84, 172, 177, 178, 179, 207, 227, 236,

237, 264, 265, 266, 267, 282, 290,

328, 337, 510, 511, 541

extended function, iii, 2, 147, 161, 349,

369, 372, 385, 448, 450, 452, 455,

458, 459, 461, 463, 464, 468, 472,

479, 481

extension libraries, 2, 3, 376, 378, 379

extension library, 160, 161, 363, 365,

366, 383, 432, 550, 556, 561

extension library, extension libraries,

363, 365, 366, 376, 378, 384, 432

extension program, 3, 44, 161

F

FD_CLR, 387, 403

FD_ISSET, 387, 405

FD_SET, 387, 403

FD_ZERO, 387, 403

field, 113, 115, 124, 193, 194, 201, 266,

271, 292, 293, 295, 339, 353, 380,

385, 432, 433, 435, 506, 533, 534,

535, 536, 546

FIELD, 55, 58, 113, 114, 115, 152, 167,

193, 194, 201, 202, 271, 272, 296,

332, 339, 340, 506, 517, 536, 546

field length, 115, 124, 380, 385, 433

field length, field width, fieldwidth,

380, 385, 424, 433

field variable, 193, 201, 271, 546

field width, 193, 194, 271, 506

fieldvariable, 193, 339

fieldwidth, 193, 194

file number, 70, 111, 168, 193, 201, 316,

505, 538

file type, 31, 166, 194, 202, 213, 231,

263, 272, 316, 325, 331, 333, 340,

435, 506

filenumber, 166, 168, 193, 194, 201,

202, 212, 213, 230, 231, 240, 242,

252, 253, 255, 262, 263, 271, 272,

316, 324, 325, 331, 332, 333, 339,

340, 468, 471, 475

firmware, 488

font size, 85, 86, 87, 89, 173, 210, 224,

229, 280, 281, 324, 355, 522, 526,

543

FOR...NEXT, 47, 48, 49, 512, 541

frequency, 107, 157, 158, 339, 460

FTP, iii, 349, 359, 360, 361, 366, 372,

376, 377, 378, 380, 381, 382, 383,

384, 385, 424, 425, 427, 428, 429,

430, 431, 432, 433, 434, 435, 436,

437, 438, 439, 440, 441, 442, 448,

507

FTP client, iii, 349, 361, 376, 377, 378,

380, 381, 382, 383, 384, 385, 424,

427, 428, 429, 430, 431, 432, 435,

436, 437, 440, 441, 442, 507

FTP library, 448

FTP server, 349, 361, 376, 385, 424,

425, 427, 428, 430, 431, 432, 436,

438, 440, 442, 507

Function operations, 78

function operator, 83

FUNCTION...END FUNCTION, 6, 47,

83, 198, 199, 548

G

generalexpression, 181, 183, 197, 199

Generative polynomial, 303

Generic Access Profile, 444, 449

GET, 116, 117, 152, 194, 201, 202, 272,

331, 332, 333, 340, 506, 517, 546

getsockopt, 387, 392

GLOBAL, 6, 7, 71, 72, 73, 152, 198,

203, 204, 269, 270, 285, 513, 542

global variable, 6, 7, 33, 71, 72, 73, 162,

178, 182, 183, 199, 285

GOSUB, iv, 32, 47, 48, 129, 133, 152,

205, 217, 218, 219, 236, 237, 238,

239, 275, 279, 505, 517, 541, 549

GOTO, 16, 47, 49, 53, 129, 152, 205,

206, 208, 236, 237, 275, 374, 517,

541, 549

H

header, 32, 124, 296, 341, 343, 506,

547

heading text, 341

HOLD mode, 464, 465, 498

htonl, 387, 394

htons, 387, 394

I

I/O ports, 148, 245

icon, 101, 105, 106

identifier, 60, 65, 66, 172, 386, 387,

389, 390, 391, 392, 393, 396, 397,

400, 401, 402, 403, 404, 405, 406,

407, 408, 409, 410, 411, 412, 413,

415, 423, 507

IF...THEN...ELSE...END IF, 47, 48,

541

illumination LED, iii, 136, 140, 242,

243, 244

INCLUDE, 6, 32, 51, 152, 275, 297,

517, 548

include file, 298, 509

indicator LED, 108, 121, 242, 245, 249,

527, 545

inet_addr, 387, 394

INPUT, v, 58, 116, 119, 134, 152, 173,

209, 210, 211, 212, 213, 215, 218,

228, 229, 230, 231, 300, 316, 322,

324, 325, 333, 451, 461, 462, 466,

467, 478, 480, 513, 517, 544, 545,

546, 547

INPUT #, 152, 212, 213, 230, 231, 466,

478, 545, 546

input port, 101, 254, 288, 323, 520,

523, 524, 545

integer constant, 63, 160, 175, 176,

177, 179, 183, 186, 187, 189, 190,

197, 199, 204, 240, 241, 269, 286,

511

integerconstant, 185, 204, 269

Interpreter, v, 1, 5, 8, 14, 35, 36, 45, 50,

54, 67, 68, 69, 70, 98, 114, 120, 128,

131, 154, 195, 205, 218, 223, 235,

238, 247, 248, 250, 256, 320, 346

interrupt, 47, 128, 131, 133, 134, 238,

279, 372, 373, 541, 544, 549

IP address, 363, 365, 383, 389, 396,

406, 408, 421, 424, 428, 438, 456

IR interface port, 11

IrDA interface, 122, 123, 243, 251, 252,

253, 254, 255, 352, 353, 469, 472,

476, 552

Ir-Transfer Utility C, vi, 10, 12, 13, 14,

44, 110, 126

K

KEY, 106, 120, 133, 150, 151, 152, 164,

214, 215, 216, 217, 218, 219, 238,

239, 279, 322, 517, 527, 543, 544,

554, 559, 562

KEY OFF, 152, 217, 218, 238, 239, 322,

544

KEY ON, 133, 152, 217, 218, 238, 239,

322, 544

keyboard buffer, 109, 215

keystroke trapping, 133, 134, 218, 238,

322, 324, 544

KILL, 115, 117, 152, 220, 221, 517, 546

KPLOAD, 94, 98, 103, 152, 156, 164,

165, 173, 222, 223, 225, 226, 517,

543, 553, 558

L

label, iv, 5, 15, 31, 53, 59, 61, 131, 132,

133, 172, 205, 206, 235, 236, 237,

238, 239, 275, 276, 277, 279, 351,

509, 510, 513, 517, 541

LET, 152, 227, 517, 542

LINE INPUT, 116, 119, 129, 134, 152,

173, 211, 213, 215, 218, 228, 229,

230, 231, 316, 325, 333, 462, 466,

478, 544, 546

LINE INPUT #, 129, 152, 213, 230,

231, 466, 478, 546

link layer, 364, 416

link level, 473, 476, 482, 497

local variable, 6, 7, 33, 71, 73, 178, 182,

198, 269, 285, 542

LOCATE, 89, 94, 96, 97, 103, 152, 154,

173, 210, 211, 223, 229, 232, 233,

234, 260, 261, 296, 313, 322, 324,

325, 337, 517, 543, 553, 558

logical operation, 70, 81

logical operator, 69, 81

LSB, 100, 155

M

M1 key, 150, 216, 217, 351, 554

M2 key, 216, 351, 554, 559

magic key, 105, 106, 108, 109, 120, 133,

214, 216, 242, 243, 244, 523, 543,

544, 554, 559, 562

main routine, 47, 48, 49, 131, 132

mantissa, 64

mapfile, 10, 35, 36

maximum length of a record, 113

maximum number of registrable

records, 114, 241, 271

memory area, 5, 68, 113, 114, 166, 186,

320

memory space, 66, 112, 163, 164, 165,

171, 180, 184, 190, 196, 200, 204,

205, 237, 239, 241, 270, 272, 287,

296, 435, 505, 532, 555, 560

MOD-10, 247, 250, 305

MOD-16, 248, 305

MOD-43, 248, 305

Modulo arithmetic, 78, 79, 305

momentary switching mode, 136, 243,

245

MSB, 100, 155

multiple code reading, 120

Multi-statements, 54

N

national character, 103, 311, 312, 518,

519, 543

non-array integer variable, 66, 170,

175, 177, 197, 284

non-array real variable, 66, 170, 175,

177, 197, 284

non-array register variable, 67

non-array string variable, 16, 65, 66,

170, 175, 177, 190, 192, 193, 197,

284, 339, 358

non-arraystringvariable, 185, 186

NOT, 69, 70, 76, 78, 81, 129, 517

ntohl, 387, 395

ntohs, 387, 395

null character, 67

null character string, 67

number of written records, 115, 166,

201

numeric constant, 63

numeric expression, 77, 115, 153, 157,

160, 166, 168, 189, 193, 201, 204,

207, 212, 214, 217, 218, 222, 230,

232, 236, 238, 240, 242, 252, 256,

258, 262, 269, 271, 280, 288, 301,

303, 309, 316, 320, 321, 323, 324,

326, 328, 329, 331, 333, 335, 338,

339, 342, 346, 468, 471, 475, 547,

548

numericconstant, 185, 186, 203, 268

O

object program, v, 3, 5, 6, 13, 14, 18, 31,

33, 41, 50, 164

offduration, 157, 158

ON ERROR GOTO, 32, 59, 132, 152,

164, 235, 278, 317, 318, 372, 373,

374, 542

ON KEY...GOSUB, 59, 133, 544

ON...GOSUB, 236, 541

ON...GOTO, 236, 541

onduration, iv, 157, 158, 214, 215, 216

open, 19, 21, 29, 40, 111, 116, 117, 220,

241, 243, 251, 253, 255, 296, 369,

385, 417, 419, 424, 425, 427, 428,

435, 437, 461, 463, 464, 469, 470,

472, 474, 476, 477, 481, 495, 506,

508, 514, 516, 538

OPEN, 58, 61, 109, 111, 114, 115, 117,

118, 119, 120, 121, 123, 129, 136,

152, 167, 168, 193, 194, 201, 202,

212, 213, 230, 231, 240, 241, 242,

243, 244, 245, 246, 247, 248, 249,

250, 252, 253, 254, 263, 271, 272,

292, 295, 296, 308, 316, 319, 325,

332, 333, 340, 341, 343, 373, 374,

450, 452, 453, 455, 456, 458, 459,

461, 466, 468, 469, 471, 475, 488,

489, 490, 491, 492, 493, 494, 498,

500, 502, 503, 506, 517, 523, 527,

545, 546, 552, 557

optimizing drive, 385

OR, 16, 55, 69, 70, 76, 78, 81, 82, 152,

461, 517

OUT, 6, 85, 87, 96, 97, 99, 100, 101,

102, 104, 105, 108, 116, 121, 125,

136, 146, 150, 151, 152, 158, 245,

256, 257, 281, 289, 323, 345, 383,

385, 517, 525, 527, 528, 545, 553,

557, 562

output port, 121, 256, 525, 527, 545

P

parity, 123, 252, 253, 254, 292, 293,

296, 352, 353

port number, 99, 109, 256, 288, 323,

396, 406, 408, 424, 441, 523, 527

port number, port No., portnumber,

396, 406, 408, 424, 441

portnumber, 256, 257, 288, 289, 323

POWER, 45, 116, 138, 143, 147, 152,

258, 259, 517, 524, 537, 545

PPP, 363, 364, 365, 416, 418, 421, 456,

457, 502

primary station, 124, 125

PRINT, iv, 15, 48, 54, 55, 56, 57, 58, 68,

83, 84, 96, 97, 107, 116, 129, 132,

152, 153, 156, 180, 184, 200, 208,

222, 226, 260, 261, 262, 263, 264,

265, 266, 267, 273, 274, 283, 287,

296, 306, 307, 308, 309, 310, 328,

330, 335, 342, 344, 347, 451, 453,

456, 457, 461, 466, 479, 489, 491,

493, 501, 503, 517, 543, 546, 549

PRINT USING, 15, 55, 57, 58, 152,

261, 264, 265, 266, 267, 543, 549

PRINT#, 15, 55, 116, 517

PRIVATE, 6, 7, 71, 72, 73, 152, 198,

204, 268, 269, 285, 513, 542

profile, 444, 472, 473, 476

program file, 43, 72, 73, 296, 320, 376,

377, 378, 384, 433, 435, 437, 506,

537

program file name, 537

programfilename, 164, 165

protocol function, 124, 125, 126, 319,

341, 343

PUT, 114, 116, 117, 152, 194, 202, 241,

271, 272, 332, 340, 506, 517, 546

R

READ, iv, 107, 152, 174, 273, 274, 276,

505, 517, 542

real argument, 68

real constant, 64

realparameter, 160, 162, 177, 178, 179,

181, 183, 184, 197, 199, 200, 284,

285, 286

receive buffer, 316, 331, 333, 386, 392,

396, 398, 399, 400, 410, 452, 461,

466, 467, 480

record, 43, 113, 114, 115, 148, 193, 194,

201, 202, 271, 331, 339, 376, 377,

378, 379, 380, 381, 382, 385, 432,

435, 438, 506, 523, 546

recv, 387, 396

recvfrom, 387, 400

register variable, 6, 7, 30, 34, 35, 36,

39, 67, 71, 136, 138, 185, 186, 187,

192, 193, 203, 268, 299, 510, 512,

515, 532, 542

Relational operations, 78

relational operator, 80, 81

REM, 16, 32, 51, 54, 152, 174, 275, 297,

517, 547, 548

remote wakeup, iii, 142, 143, 144, 145,

146, 147, 148, 523, 524, 526, 528,

556, 561, 564

re-read prevention, 523, 527

re-read prevention enabled time, 523,

527

reserved word, iv, 59, 60, 61, 275, 510,

517

RESTORE, 152, 174, 274, 276, 513,

517, 542

RESUME, 47, 59, 131, 132, 152, 235,

277, 278, 317, 318, 372, 373, 374,

505, 517, 542

resume function, ii, 45, 138, 147, 259

RETURN, 47, 48, 129, 133, 152, 205,

238, 279, 373, 374, 505, 517, 541

round trip time, 392, 410

RS, vi, 11, 252, 253, 254, 523, 549, 551

RS/CS, 252, 253, 254, 523

RS-232C, vi, 11, 549

S

SCREEN, 87, 88, 96, 97, 152, 156, 169,

226, 233, 260, 261, 280, 310, 313,

337, 517, 543

screen mode, 87, 89, 173, 210, 229, 280,

324, 337, 543

secondary station, 124, 125

security mode, 451, 455, 473, 476, 477,

482, 497

SELECT...CASE...END SELECT, 47,

48, 512, 541

sendto, 387, 406, 408

Serial Port Profile, 444, 451, 472, 476

service discovery, 458, 502

Service Discovery, 443, 444, 458, 472

Service Discovery Application Profile,

444, 458, 472

service level, 452, 456, 473, 476, 497

Service level, 482

setsockopt, 387, 410

shift JIS code, 222, 310

shutdown, 387, 412, 463

single-byte ANK mode, 98, 103, 153,

154, 173, 210, 229, 324, 543

sizes of common variables, 30, 39

sleep timer, 108, 136, 527, 556

small-size, 87, 96, 97, 98, 154, 173, 210,

223, 229, 281, 324, 553

small-size font, 87, 96, 97, 98, 154, 223,

281, 553

socket, iii, 349, 361, 363, 364, 365, 366,

367, 369, 372, 373, 374, 375, 387,

388, 389, 390, 391, 392, 394, 395,

396, 397, 400, 402, 403, 405, 406,

407, 408, 410, 412, 413, 415, 423,

427, 428, 429, 430, 431, 435, 437,

440, 441, 442, 456, 457, 507

socket API, 367, 369, 387, 388, 389,

390, 392, 394, 395, 396, 400, 402,

403, 405, 406, 408, 410, 412, 413,

415

socket application program interface,

iii, 349, 361, 367

socket library, 364

software keyboard, 104, 218

source program, v, 6, 8, 9, 13, 14, 15,

18, 27, 31, 32, 33, 41, 42, 50, 51, 162,

170, 172, 174, 176, 178, 182, 186,

189, 191, 199, 205, 297, 362

special character, 103, 249, 552, 557

spread spectrum, 361, 372, 385, 416

standard-size, 87, 96, 97, 173, 210, 229,

324, 553

standard-size font, 87, 96, 97

start character, 249

start/stop character, 118, 248, 249, 250

statement block, 47, 48, 49, 53, 182,

183, 198, 199, 206, 207, 208, 236,

282, 283, 285, 286, 290, 291, 505,

541

stop bit, 123, 254

stop character, 119, 247, 250, 307, 308

string, iv, 16, 34, 36, 56, 57, 58, 59, 60,

63, 64, 65, 66, 67, 68, 77, 83, 84, 115,

119, 133, 143, 144, 146, 147, 160,

161, 163, 164, 170, 171, 172, 174,

175, 177, 178, 181, 182, 186, 187,

189, 190, 193, 197, 198, 209, 210,

212, 214, 215, 216, 217, 218, 220,

227, 228, 229, 230, 231, 240, 242,

260, 262, 264, 265, 266, 271, 273,

274, 282, 284, 286, 287, 302, 303,

305, 306, 307, 308, 309, 311, 314,

319, 320, 321, 322, 324, 326, 327,

329, 330, 334, 335, 338, 339, 341,

342, 343, 344, 347, 350, 354, 355,

386, 396, 400, 406, 408, 421, 424,

438, 439, 466, 471, 472, 475, 476,

478, 481, 484, 485, 486, 487, 488,

489, 490, 491, 493, 494, 496, 503,

506, 510, 511, 512, 513, 515, 538,

539, 542, 543, 544, 546, 548, 552,

557

string constant, 57, 63, 172, 174, 209,

210, 228, 229, 231

string constant, stringconstant, 172

string expression, 77, 160, 164, 172,

177, 197, 214, 220, 240, 242, 260,

262, 282, 284, 303, 311, 314, 319,

326, 329, 335, 338, 339, 341, 343,

344, 347, 548

string operation, 57, 320

string operator, 83, 84

string variable, 16, 58, 65, 66, 67, 119,

160, 161, 163, 170, 171, 186, 187,

189, 190, 193, 209, 212, 227, 228,

230, 273, 335, 339, 386, 396, 400,

424, 466, 478, 484, 485, 487, 489,

491, 493, 494, 496, 506, 542, 544,

546

stringconstant, 185, 186, 203, 268

SUB...END SUB, 6, 7, 47, 83, 162, 285,

286, 548

subnet mask, 363

Subnet mask, 363, 365, 386, 418, 421

subroutine, 47, 205, 206, 279, 541

subscript, 57, 65, 66, 185, 187, 189,

190, 203, 204, 268, 269, 505

SUM, 303

supplemental code, 246

symbol table, 14, 30, 39, 514

System Mode, 3, 45, 50, 106, 124, 125,

126, 138, 143, 147, 148, 247, 250,

311, 350, 351, 352, 354, 355, 357,

363, 518, 519, 523, 525, 533, 536,

537

system program, 2, 3, 45

system status, 101, 102, 169, 425

T

tag-jump function, 27

TCP/IP, iii, 349, 359, 361, 362, 363,

364, 365, 366, 367, 369, 372, 373,

374, 375, 388, 391, 393, 397, 401,

402, 407, 411, 412, 414, 415, 416,

417, 418, 420, 421, 422, 427, 428,

429, 430, 431, 435, 437, 440, 441,

442, 448, 454, 456, 457, 460, 463,

507

terminator, 124, 125, 126, 293, 319,

547

text control character, 293, 319, 341,

343

timeout, 107, 142, 143, 146, 147, 252,

254, 294, 295, 296, 353, 402, 423,

449, 450, 451, 452, 455, 456, 458,

459, 461, 471, 473, 475, 476, 482,

501, 506, 524, 528

timer, ii, 107, 136, 148, 346, 369, 392,

410, 423, 461, 525, 527, 544

Transfer Utility, vi, 10, 12, 13, 14, 44,

110, 122, 124, 126

transmission speed, 123, 143, 146, 147,

524, 528, 551

trap, 47, 128, 132, 133, 164, 218, 235,

238, 279

trigger switch, 45, 108, 109, 120, 136,

150, 214, 216, 217, 218, 242, 243,

244, 258, 523, 543, 544, 554, 559

two-byte Kanji mode, 98, 103, 173, 210,

222, 223, 229, 281, 324, 543

type conversion, 69, 70, 81, 227

U

UDP, 359, 367, 368, 370, 386, 387, 400,

407, 408, 413

unoccupied area, 333

user datagram protocol, 367, 368, 370

user program, v, 2, 3, 5, 6, 8, 9, 11, 12,

13, 14, 17, 18, 19, 20, 23, 24, 26, 35,

36, 37, 38, 43, 44, 45, 50, 51, 67, 71,

101, 104, 111, 112, 116, 121, 126,

128, 131, 136, 138, 141, 142, 143,

147, 148, 153, 154, 164, 170, 173,

186, 215, 220, 223, 276, 288, 289,

352, 363, 370, 376, 384, 432, 435,

447, 449, 450, 452, 455, 458, 460,

461, 463, 464, 479, 487, 492, 494,

496, 520, 523, 524, 525, 527, 532,

537, 542, 546, 556, 561, 563

user-defined font, 98, 153, 154, 223,

518, 543, 553, 558

user-defined function, 6, 7, 31, 33, 34,

36, 48, 57, 68, 77, 131, 162, 163, 175,

176, 177, 178, 179, 181, 182, 183,

184, 197, 198, 199, 200, 284, 285,

286, 297, 320, 542, 548

V

variable, iv, v, 7, 30, 31, 33, 34, 35, 50,

57, 61, 65, 66, 67, 69, 70, 71, 72, 73,

74, 75, 136, 154, 155, 160, 161, 162,

170, 171, 178, 179, 182, 183, 184,

186, 187, 190, 192, 193, 195, 196,

198, 199, 200, 204, 209, 210, 211,

212, 213, 223, 224, 227, 228, 229,

230, 231, 269, 270, 273, 274, 275,

285, 286, 297, 299, 386, 396, 400,

406, 408, 424, 467, 480, 482, 492,

496, 506, 509, 510, 511, 512, 513,

514, 517, 532, 542, 544

VRAM, vi, 85, 99, 101, 102, 169, 521,

523, 525, 527, 558

W

WAIT, 85, 107, 109, 119, 120, 129, 152,

257, 288, 289, 323, 461, 466, 480,

517, 520, 545

wakeup, iii, 139, 141, 142, 143, 144,

146, 147, 148, 344, 345, 521, 523,

525, 526, 527, 544, 550, 556, 561,

564

WHILE...WEND, 47, 48, 512, 541

work variable, 6, 7, 30, 34, 35, 39, 67,

71, 170, 203, 268, 299, 320, 510, 515,

542

X

XFILE, 114, 117, 124, 125, 126, 152,

292, 293, 294, 295, 296, 319, 341,

343, 466, 480, 517, 524, 528, 533,

536, 546, 551, 557

XOR, 69, 70, 76, 78, 81, 82, 303, 517

BHT-BASIC
(BHT-8000 series)
Programmer’s Manual
3rd Edition, June 2003

DENSO WAVE INCORPORATED
The purpose of this manual is to provide accurate information in the development of
application programs in BHT-BASIC. Please feel free to send your comments regarding any
errors or omissions you may have found, or any suggestions you may have for generally
improving the manual.
In no event will DENSO WAVE be liable for any direct or indirect damages resulting from the
application of the information in this manual.

	Preface
	Chapter 1 Software Overview for the BHT
	1.1 Software Overview
	1.1.1 Software Structure of the BHT
	1.1.2 Overview of BHT-BASIC

	1.2 BHT-BASIC
	1.2.1 Features
	1.2.2 What's New in BHT-BASIC 3.5 Upgraded from BHT-BASIC 3.0?

	1.3 Program Development and Execution
	1.3.1 Compiler
	1.3.2 Interpreter

	Chapter 2 Development Environment and Procedures
	2.1 Overview of Development Environment
	2.1.1 Required Hardware
	2.1.2 Required Software

	2.2 Overview of Developing Procedures
	2.2.1 Developing Procedures
	2.2.2 Functions of BHT-BASIC 3.5

	2.3 Writing a Source Program
	2.3.1 Writing a Source Program by an Editor
	2.3.2 Rules for Writing a Source Program

	2.4 Producing a User Program
	2.4.1 Starting the BHT-BASIC 3.5 Compiler
	2.4.2 Outline of User Program or Library Production Procedure
	2.4.3 Designating a Single Source File or a Project File
	2.4.3.1 Designating a single source file
	2.4.3.2 Designating a project file

	2.4.4 Compiling and Building
	2.4.5 Setting the Editor for Displaying Files
	2.4.6 Error Messages and Their Indication onto the Main Window
	2.4.7 Options
	2.4.8 Starting the BHT-BASIC Compiler from the Command Line
	2.4.9 Output from the BHT-BASIC 3.5 Compiler
	2.4.10 Structure of User Programs and Libraries

	2.5 Downloading
	2.5.1 Overview of Transfer Utility/Ir-Transfer Utility C/Ir-Transfer ...
	2.5.2 Setting up the BHT

	2.6 Executing a User Program
	2.6.1 Starting
	2.6.2 Execution
	2.6.3 Termination

	Chapter 3 Program Structure
	3.1 Program Overview
	3.1.1 Statement Blocks
	3.1.2 Notes for Jumping into/out of Statement Blocks

	3.2 Handling User Programs
	3.2.1 User Programs in the Memory
	3.2.2 Program Chaining
	3.2.3 Included Files

	Chapter 4 Basic Program Elements
	4.1 Structure of a Program Line
	4.1.1 Format of a Program Line
	4.1.2 Program Line Length

	4.2 Usable Characters
	4.2.1 Usable Characters
	4.2.2 Special Symbols and Control Codes

	4.3 Labels
	4.4 Identifiers
	4.5 Reserved Words

	Chapter 5 Data Types
	5.1 Constants
	5.1.1 Types of Constants

	5.2 Variables
	5.2.1 Types of Variables according to Format
	5.2.2 Classification of Variables

	5.3 User-defined Functions
	5.4 Type Conversion
	5.4.1 Type Conversion
	5.4.2 Type Conversion Examples

	5.5 Scope of Variables
	5.5.1 Global Variables
	5.5.2 Local Variables
	5.5.3 Variables Not Declared to be Global or Local
	5.5.4 Common Variables

	Chapter 6 Expressions and Operators
	6.1 Overview
	6.2 Operator Precedence
	6.3 Operators
	6.3.1 Arithmetic Operators
	6.3.2 Relational Operators
	6.3.3 Logical Operators
	6.3.4 Function Operators
	6.3.5 String Operators

	Chapter 7 I/O Facilities
	7.1 Output to the LCD Screen
	7.1.1 Display Fonts
	7.1.2 Coordinates on the LCD
	7.1.3 Dot Patterns of Fonts
	7.1.4 Mixed Display of Different Screen Modes, Font Sizes, and/or Cha...
	7.1.5 Displaying User-defined Characters
	7.1.6 VRAM
	7.1.7 Displaying the System
	7.1.8 Other Facilities for the LCD

	7.2 Input from the Keyboard
	7.2.1 Alphabet Entry
	7.2.2 Other Facilities for the Keyboard

	7.3 Timer and Beeper
	7.3.1 Timer Functions
	7.3.2 BEEP Statement

	7.4 Controlling and Monitoring the I/Os
	7.4.1 Controlling by the OUT Statement
	7.4.2 Monitoring by the INP Function
	7.4.3 Monitoring by the WAIT Statement

	Chapter 8 Files
	8.1 File Overview
	8.1.1 Data Files and Device I/O Files
	8.1.2 Access Methods

	8.2 Data Files
	8.2.1 Overview
	8.2.2 Naming Files
	8.2.3 Structure of Data Files
	8.2.4 Data File Management by Directory Information
	8.2.5 Programming for Data Files
	8.2.6 About Drives

	8.3 Bar Code Device
	8.3.1 Overview
	8.3.2 Programming for Bar Code Device

	8.4 Communications Device
	8.4.1 Overview
	8.4.2 Hardware Required for Data Communications
	8.4.3 Programming for Data Communications
	8.4.4 Overview of Communications Protocols
	8.4.5 File Transfer Tools

	Chapter 9 Event Polling and Error/Event Trapping
	9.1 Overview
	9.2 Event Polling
	9.3 Error Trapping
	9.4 Event (of Keystroke) Trapping

	Chapter 10 Sleep Function
	10.1 Sleep Function

	Chapter 11 Resume Function
	11.1 Resume Function

	Chapter 12 Power-related Functions
	12.1 Low Battery Warning
	12.2 Prohibited Simultaneous Operation of the Beeper, Illumination L...
	12.3 Wakeup Function
	12.4 Remote Wakeup Function

	Chapter 13 Backlight Function
	13.1 Backlight Function

	Chapter 14 Statement Reference
	APLOAD
	BEEP
	CALL
	CHAIN
	CLFILE
	CLOSE
	CLS
	COMMON
	CONST
	CURSOR
	DATA
	DECLARE
	DEF FN
	DEF FN…END DEF
	DEFREG
	DIM
	END
	ERASE
	FIELD
	FOR…NEXT
	FUNCTION…END FUNCTION
	GET
	GLOBAL
	GOSUB
	GOTO
	IF…THEN…ELSE…END IF
	INPUT
	INPUT #
	KEY
	KEY ON and KEY OFF
	KILL
	KPLOAD
	LET
	LINE INPUT
	LINE INPUT #
	LOCATE
	ON ERROR GOTO
	ON…GOSUB, ON…GOTO
	ON KEY…GOSUB
	OPEN
	OPEN "BAR: "
	OPEN "COM: "
	OUT
	POWER
	PRINT
	PRINT #
	PRINT USING
	PRIVATE
	PUT
	READ
	REM
	RESTORE
	RESUME
	RETURN
	SCREEN
	SELECT…CASE…END SELECT
	SUB…END SUB
	WAIT
	WHILE…WEND
	XFILE
	$INCLUDE
	Additional Explanation for Statements

	Chapter 15 Function Reference
	ABS
	ASC
	BCC$
	CHKDGT$
	CHR$
	COUNTRY$
	CSRLIN
	DATE$
	EOF
	ERL
	ERR
	ETX$
	FRE
	HEX$
	INKEY$
	INP
	INPUT$
	INSTR
	INT
	LEFT$
	LEN
	LOC
	LOF
	MARK$
	MID$
	POS
	RIGHT$
	SEARCH
	SOH$
	STR$
	STX$
	TIME$
	TIMEA/TIMEB/TIMEC
	VAL

	Chapter 16 Extended Functions
	16.1 Overview
	16.2 Reading or writing system settings from/to the memory (SYSTEM....
	16.2.1 Function Number List of SYSTEM.FN3
	16.2.2 Detailed Function Specifications

	16.3 Controlling system files(SYSMDFY.FN3)
	16.3.1 Function Number List of SYSMDFY.FN3
	16.3.2 Detailed Function Specifications

	16.4 Calculating a CRC (CRC.FN3)
	16.4.1 Function Number List of CRC.FN3
	16.4.2 Detailed Function Specifications

	Chapter 17 TCP/IP
	17.1 Two Sides
	17.1.1 BHT
	17.1.2 Hosts

	17.2 Programming Procedure
	17.2.1 Bluetooth Communication System

	17.3 Socket API
	17.3.1 Overview
	17.3.2 Programming Notes for Socket API

	17.4 FTP Client
	17.4.1 Overview
	17.4.2 File Formats
	17.4.3 Using FTP Client

	17.5 Socket Library (SOCKET.FN3)
	17.5.1 Overview
	17.5.2 Detailed Function Specifications

	17.6 FTP Library (FTP.FN3)
	17.6.1 Overview
	17.6.2 Detailed Function Specifications

	Chapter 18 Bluetooth (BHTs with Bluetooth communications device)
	18.1 Bluetooth Communications
	18.1.1 Introduction
	18.1.2 System Components

	18.2 Programming Overview
	18.2.1 Software Components
	18.2.2 Statements and Functions Used
	18.2.3 Programming Procedures
	18.2.3.1 Discovering Accessible Remote Devices in the Vicinity (Inquiry...
	18.2.3.2 Serial Link with Remote Device
	18.2.3.3 Dial-Up Networking via Remote Device
	18.2.3.4 Service Discovery

	18.2.4 Programming Notes
	18.2.4.1 Retransmission control in serial communications
	18.2.4.2 Reading data received in serial communications
	18.2.4.3 Resume Operation
	18.2.4.4 Power Supply Control

	18.3 Bluetooth Statements and Functions
	18.3.1 Overview
	18.3.2 Detailed Specifications

	18.4 Bluetooth Extended Functions (BT.FN3)
	18.4.1 Overview
	18.4.2 Detailed Specifications

	Appendices
	Appendix A Error Codes and Error Messages
	A1. Run-time Errors
	A2. Compilation Errors

	Appendix B Reserved Words
	Appendix C Character Sets
	C1. Character Set
	C2. National Character Sets

	Appendix D I/O Ports
	Appendix E Key Number Assignment on the Keyboard
	Appendix F Memory Area
	Appendix G Handling Space Characters in Downloading
	Appendix H Programming Notes
	Appendix I Program Samples
	Appendix J Quick Reference for Statements and Functions
	Appendix K Unsupported Statements and Functions

	Supplement
	Suuplement A What's different from the BHT-5000?
	A.1 Communication
	A.2 Bar code reading
	A.3 Screen display
	A.4 Keyboard
	A.5 Backlight
	A.6 Files
	A.7 Work and common variables
	A.8 Beeper & vibrator control
	A.9 Sleep function
	A.10 Extended functions and extension library
	A.11 Remote wakeup

	Supplement B What's different from the BHT-6000?
	B.1 Communication
	B.2 Bar code reading
	B.3 Screen display
	B.4 Keyboard
	B.5 Backlight
	B.6 Files
	B.7 Work and common variables
	B.8 Beeper & vibrator control
	B.9 Extended functions and extension library
	B.10 Remote wakeup

	Supplement C What's different from the BHT-7000?
	C.1 Files
	C.2 Battery voltage display key
	C.3 Monitor the CU state
	C.4 Scanning range marker
	C.5 System status indicator
	C.6 Beeper
	C.7 Remote wakeup
	C.8 Key data assigned in the alphabet entry mode for the alphan...

	Index

